
Using a Dynamic Schedule to Increase the
Performance of Tiling in Stencil Computations

Michael Freitag
Department of Informatics and Mathematics

University of Passau
D-94032 Passau

Abstract—A stencil computation determines the values of
points in a grid of some dimensionality by repeatedly evaluating
a given function of a grid point and its neighbors. The paral-
lelization and optimization of stencil computations are subject of
ongoing research. The most prevalent approach is the subdivision
of the iteration domain into smaller pieces, called tiles. We give
an overview of a method to increase the performance of one such
tiling algorithm further by employing a dynamic schedule for tile
processing, improving both load balance and cache efficiency. A
set of onedimensional stencil benchmarks exhibits a performance
increase of up to 20% in comparison to the Pochoir stencil
compiler.

I. INTRODUCTION

Stencil codes are computationally intensive programs com-
monly found in scientific or engineering applications. They are
employed, for example, in the solution of partial differential
equations, geometric modeling and image processing [1].

A stencil determines the value of a point in a grid of
some dimensionality as a function of previous values of this
point and its neighbors, which is generally called the kernel
function. A stencil computation applies the kernel function
repeatedly to all points in a grid. While stencil computations
are conceptually easy to implement using nested loops (see
Figure 1), these implementations frequently exhibit rather poor
performance due to insufficient data reuse and parallelism.

f o r (t = 1 ; t < T ; t ++) {
f o r (i = 0 ; i < N; i ++) {

B[i] = 0 .125 ∗ (A[i −1] − 2 ∗ A[i] + A[i + 1]) ;
}

swap (A, B) ;
}

Fig. 1. A loop-based implementation of a onedimensional heat equation
stencil.

Fortunately the regular computational structure of sten-
cil computations comes with a number of properties that
make them suitable for optimization. Past research has found
tiling of the iteration domain to be a key transformation for
improving the performance of stencil computations. There
are multiple approaches to tiling of stencil codes, including
parallelogram tiling [2], diamond tiling [3] and trapezoidal
tiling [4]. One of the most efficient tiling schemes is the
trapezoidal tiling algorithm employed by the Pochoir stencil
compiler [4]. It has been used as a reference to evaluate

the performance of other approaches [3], [5]. But, although
it already produces highly performant code, this algorithm
can be improved further, because its recursive nature induces
unnecessary synchronization and dependences between tiles,
as is outlined in the next section.

Based on Pochoir’s trapezoidal tiling algorithm, we devel-
oped a two-stage tiling algorithm which minimizes the amount
of dependences and synchronization. The key idea of this
algorithm is to decompose the iteration domain into tiles in a
separate stage, before actually evaluating the kernel function
in the second stage. This allows for otherwise infeasible
optimizations to be performed in both stages. In the first
stage, a tile dependence graph is generated using a slightly
modified version of Pochoir’s trapezoidal algorithm. In the
second stage, this graph is traversed in parallel following
a dynamic schedule while still respecting all dependences
between tiles. This is possible with minimal synchronization,
and without any barrier synchronization.

The rest of this paper is arranged as follows. Section II
identifies the problems with the tiling algorithm employed by
Pochoir in more detail. Section III provides an overview of
the approach taken to overcome these problems. Section IV
presents the results of experimental evaluation, and conclu-
sions are drawn in Section V.

II. PROBLEM DESCRIPTION

The tiling algorithm of Pochoir is based on trapezoidal de-
compositions [2], [6], which recursively fragment the iteration
domain into well-defined tiles of trapezoidal shape (see Figure
2). Let us call these trapezoidal tiles trapezoids below [4].
Different types of cuts along the spatial and time dimensions
are employed to decompose a trapezoid, each of which re-
quires the size of a trapezoid to meet certain constraints in
order to be applicable. Given a trapezoid of adequate size,
so-called spacecuts and timecuts are performed depending on
the properties of the trapezoid, resulting in multiple smaller
trapezoids that can then be processed recursively [4].

A spacecut is the preferred way of decomposing a trapezoid,
as it produces three trapezoids of which two are independent.
Thus, these two trapezoids can be processed in parallel, while
the third one has to be processed either before or after them
(see Figures 2a–2b).

If a spacecut cannot be applied, it is tried to apply a
timecut instead. This results in two trapezoids, one of which

space

time

b
b

b

(a)

space

time

b
b b

(b)

space

time

b

b

(c)

Fig. 2. Example of the resulting subtrapezoids and dependences when
applying a spacecut as in (a) and (b) or a timecut as in (c) to a given trapezoid.
Trapezoids of the same color can be processed in parallel, and the dark gray
trapezoids can only be processed after the light gray trapezoids have been
processed.

is dependent on the other. Therefore they have to be processed
sequentially (see Figure 2c). If neither a spacecut nor a timecut
can be applied, the kernel function is evaluated for all points of
the trapezoid to be processed in the last step of the algorithm.

Pochoir does not explicitly keep track of dependences that
accumulate while performing space- or timecuts. Instead, in
each recursive step, a barrier synchronization is enforced
after spawning tasks to handle independent subtrapezoids, thus
making sure that all dependences are obeyed before processing
the next subtrapezoid. This leads to subtrapezoids inheriting
the dependences of their parent trapezoids during spacecuts
and timecuts. However, some of these dependences may be
redundant, because they do not represent actual flow depen-
dences (see Figure 3). The elimination of these dependences
is the starting point for the optimizations we performed.

This behavior is intended in Pochoir’s algorithm, as it en-
sures a processing order that increases cache efficiency greatly
[4]. Nevertheless, it gives rise to a number of experimentally
verifiable problems. First of all, a notable load imbalance is
induced because the processing of some tiles takes longer
than that of others. Particularly in boundary regions of the
iteration domain, extensive boundary checks and evaluation
of boundary functions may increase the processing time of a

space

time

b

bb

b

b

b

b

Fig. 3. Example of a trapezoid inheriting its predecessor’s dependences. An
additional spacecut has been applied to the trapezoids produced by a spacecut
as depicted in Figure 2a, leading to the false dependences colored in red.

tile by an order of magnitude. Additionally, data reuse suffers
between tiles that are too large to fit into the cache, as such
tiles are processed in all before any dependent tile can be
processed. Therefore, a large amount of data that could be
reused is expelled from the cache before being referenced.
Evidence of both of these issues has been found during
experimental evaluation and is highlighted in Section IV.

III. OVERVIEW OF APPROACH

The algorithm that we developed to overcome these issues
is based on the recursive algorithm employed by Pochoir.
However, it separates the generation of tiling information
and the actual stencil computation into distinct stages. In the
first stage, a tile dependence graph is produced which holds
information about the shape and dependences of each tile. This
graph is used in the second stage to perform the actual stencil
computation, by traversing the graph in parallel and evaluating
the kernel function on the points contained in each tile, while
ensuring that all dependences are respected and as much data
as possible is reused.

A. Generation of the Tile Dependence Graph

The tile dependence graph is a directed acyclic graph that
holds all information needed to model the decomposition of an
iteration domain with a given size. Each node V in the graph
represents one trapezoid, while each edge V → W indicates
a flow dependence between the trapezoids represented by V
and W , respectively.

To generate the tile dependence graph, we start with one
node representing the entire iteration domain and expand
that node by recursively applying spacecuts and timecuts as
Pochoir does. In each expansion step, a node is replaced by
several nodes representing the subtrapezoids that result from
applying a cut to the trapezoid represented by the original
node. All dependences of the original node are initially
inherited by the replacement nodes. Additional dependences
between the replacement nodes are added as needed (see
Figures 4a–4b). Due to space limitations, we refrain from a
detailed description of Pochoir’s trapezoidal algorithm [4].

As opposed to Pochoir, we represent trapezoids as polyhedra
using the Integer Set Library [7] during the first stage. This
enables us to apply a polyhedral dependence analysis in order
to eliminate all false dependences that the cutting strategy
suggests, immediately after a cut was applied (see Figure 4c).

space

time

b

b

(a)

space

time

b

b
b

b

(b)

space

time

b

b
b

b

(c)

Fig. 4. Example of a recursive expansion of a node in the tile dependence graph by applying a spacecut. The node representing the blue trapezoid in (a) is
replaced by nodes representing the blue subtrapezoids in (b). Each node inherits the dependences of the original node in (a), resulting in the redundant red
dependences. These are eliminated by a polyhedral dependence analysis, which leads to the final tile dependence graph in (c).

1: procedure PROCESS(V)
2: Evaluate kernel function for all points in V
3: for all edges V →W do
4: remove edge V →W
5: if W has no incoming edges then
6: Spawn parallel task PROCESS(W)
7: end if
8: end for
9: end procedure

Fig. 5. Algorithm used to process a node V in the tile dependence graph.

The recursive expansion of the nodes in the tile dependence
graph terminates when a tile is smaller than a given threshold
value, which can be adjusted to adapt the algorithm to different
cache architectures. As boundary checks generally increase the
processing time of a tile by a significant amount, a separate
threshold value is maintained for boundary tiles. By lowering
that threshold, the number of tiles that contain boundary
accesses can be reduced further.

B. Traversal of the Tile Dependence Graph

After the tile dependence graph has been generated, it can
be used to perform the stencil computation in the second stage
for an arbitrary number of times. To do so, we traverse the
graph in parallel using the algorithm outlined in Figure 5.

First of all, the kernel function is evaluated on all grid
points in the trapezoid represented by a node V (line 2). This
step accounts for most of the time needed to process a node.
Afterwards, all outgoing edges V → W are removed (lines
3-4), and a new parallel task to process W is spawned if W
has no more incoming edges, i.e., pending dependences (lines
5-7). Synchronization is needed only while we check whether
W has no more incoming edges and spawn a parallel task if
so. It is sufficient to synchronize only threads that access the
same node, so no barrier synchronization is required.

Our algorithm starts off by spawning tasks for all nodes
that have no incoming edges. These nodes represent trapezoids
that depend only on the initial conditions of the stencil

computation. The algorithm terminates when all nodes in the
tile dependence graph have been processed.

C. Further Optimizations

We performed further optimizations on the evaluation of
the kernel function itself, similar to those performed by the
Pochoir stencil compiler. Code cloning is employed to generate
a boundary clone and a faster interior clone of the kernel
function, the latter not performing any boundary checks. Most
optimizations target the interior clone, as the boundary region
of the iteration domain is small compared to the interior [4].

IV. EMPIRICAL EVALUATION

We evaluated the performance of our algorithm on a set
of onedimensional stencil codes and used Pochoir’s tiling
algorithm as a reference. Owing to limited space, we present
only the results for one selected stencil code in the following,
namely the onedimensional heat equation stencil [8] that is
shown in Figure 1.

A. Benchmark setup

We used an Intel Core i7-2630QM processor with 4 cores
for benchmarks. This CPU has 32 KB L1 cache, and 256
KB L2 cache per core, while all cores share 6 MB L3 cache.
All benchmarks use double-precision floating-point operations,
leading to a theoretical peak performance of 89.6 GFLOPS.
Our implementation was compiled with g++ -O3, while
Pochoir was compiled with icpc -O3, as we were not able
to compile Pochoir successfully using the g++ compiler and
vice-versa. Up to now, we have not been able to pinpoint pre-
cisely why our code fails to execute properly when compiled
with icpc. The tile sizes were tuned using a combination of
manual search and the Intel Software Autotuning Tool [9] in
a limited amount of time.

We gathered information about execution time, cache ef-
ficiency and CPU load using the Linux perf performance
counter subsystem for different problem sizes and on a vari-
able number of cores. We performed benchmarks on grids
containing 0.1 · 106 to 1.5 · 106 points over 50000 timesteps
using all 4 available CPU cores, as shown in Figures 6a–6c.

grid width

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

0.0e+00 5.0e+05 1.0e+06 1.5e+06

 0

 5

 10

 15

 20

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●● Pochoir
Dynamic Schedule

(a)

grid width

ca
ch

e
m

is
s

ra
tio

 (
%

)

0.0e+00 5.0e+05 1.0e+06 1.5e+06

0.0

1.0

2.0

3.0

●
●

● ●

●

●
●

●
●

● ●
●

●
● ●

● Pochoir
Dynamic Schedule

(b)

grid width

in
st

ru
ct

io
ns

 p
er

 c
yc

le

0.0e+00 5.0e+05 1.0e+06 1.5e+06

1.0

2.0

3.0

4.0

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

● Pochoir
Dynamic Schedule

(c)

number of cores

ex
ec

ut
io

n
tim

e
(s

)

1 2 3 4

0
5

10
15
20
25
30
35
40
45

●

●

●
●

● Pochoir
Dynamic Schedule

(d)

Fig. 6. Benchmark results for a onedimensional heat equation stencil, implemented using our implementation and the Pochoir stencil compiler. (a) shows
the execution time in relation to the problem size, i.e. the number of grid points. (b) shows the cache miss ratio, and (c) shows the number of instructions
processed per CPU cycle. (d) shows how our implementation and Pochoir scale depending on the number of CPU cores available.

Additionally, we performed benchmarks on a grid containing
106 points over 50000 timesteps using 1, 2, 3 and 4 CPU
cores, with results as shown in Figure 6d.

B. Benchmark results

We were able to outperform Pochoir on all problem sizes
by up to 20%. Figure 6b also shows a notable improvement
in cache efficiency for adequate problem sizes. Figure 6c ex-
hibits that, although Pochoir and our implementation perform
roughly the same number of instructions, our implementation
causes the instruction pipeline to be idle in fewer CPU cycles.
This indicates that our implementation induces better load
balancing. For other onedimensional stencil codes that we
used for benchmarks, our implementation exhibits a similar
performance increase in comparison to Pochoir.

V. CONCLUSION

We gave an overview of how the tiling algorithm of Pochoir
can be improved by eliminating redundant dependences and
by employing a dynamic schedule for tile processing. A
set of onedimensional stencil benchmarks shows a notable
improvement of both cache efficiency and CPU load, leading
to a significantly shorter execution time. In the future, our
implementation will be extended to support different tiling
algorithms and stencil codes of higher dimensionality. Related
work [3] encourages the assumption that other algorithms
can also benefit from employing a dynamic schedule for tile
processing.

ACKNOWLEDGMENT

Partial funding was gratefully received from DFG Priority
Programme SPP 1648 (SPPEXA), Project ExaStencils (LE
912/15-1).

REFERENCES

[1] Y. Tang, R. Chowdhury, C.-K. Luk, and C. E. Leiserson, “Coding
stencil computations using the Pochoir stencil-specification language,”
Poster session presented at the 3rd USENIX Workshop on Hot Topics in
Parallelism, 2011.

[2] M. Frigo and V. Strumpen, “Cache oblivious stencil computations,” in
Proceedings of the 19th Annual International Conference on Supercom-
puting (ICS). ACM, 2005, pp. 361–366.

[3] V. Bandishti, I. Pananilath, and U. Bondhugula, “Tiling stencil com-
putations to maximize parallelism,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC). IEEE Computer Society Press, 2012, pp. 40:1–40:11.

[4] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E.
Leiserson, “The Pochoir stencil compiler,” in Proceedings of the 23rd
Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA). ACM, 2011, pp. 117–128.

[5] T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and
P. Sadayappan, “A stencil compiler for short-vector simd architectures,”
in Proceedings of the 27th Annual International Conference on Super-
computing (ICS). ACM, 2013, pp. 13–24.

[6] M. Frigo and V. Strumpen, “The cache complexity of multithreaded cache
oblivious algorithms,” in Proceedings of the 18th Annual ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA). ACM, 2006,
pp. 271–280.

[7] “Integer set library homepage.” [Online]. Available:
http://www.ohloh.net/p/isl

[8] J. F. Epperson, An Introduction to Numerical Methods and Analysis. John
Wiley & Sons, 2007.

[9] “Intel software autotuning tool.” [Online]. Available:
http://software.intel.com/en-us/articles/intel-software-autotuning-tool/

