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Abstract—Program comprehension is the main activity of the
software developers. Although there has been substantial research
to support the programmer, the high amount of time developers
need to understand source code remained constant over thirty
years. Beside more complex software, what might be the reason?
In this paper, I explore the past of program-comprehension
research, discuss the current state, and outline what future
research on program comprehension might bring.

I. INTRODUCTION

Program comprehension is an important cognitive process in
software development, because developers spend most of their
time with understanding source code [36], [38], [40]. Despite
more than 30 years of research in software engineering, this
amount still has not decreased notably. Of course, software
is getting more and more complex, and there have been
advancements, such as integrated development environments
(IDEs), source-code visualizations, and new programming
languages, which have made the job for developers more
comfortable. However, the understanding of how and why
these advancements help developers is rather limited.

One reason for our limited understanding of the programmer
is that in the mid-90s, research ceased to make progress for
over a decade. Thus, many of the approaches to support
the developer are not properly evaluated regarding their ef-
fect on developer activity. This has led to a feature creep
software-engineering research, meaning that new tools and
extensions are developed almost on a monthly basis, but they
are only rarely evaluated sufficiently. For example, together
with colleagues, I developed the tool View Infinity to support
program comprehension for feature-oriented software devel-
opment [37]. However, our evaluation was based on seven
developers, who solved several tasks in 30 minutes. This is
hardly a sufficient evaluation, but falls more in the category
of “I showed it my friends and they liked it”. Thus, we
cannot know whether and how View Infinity supports program
comprehension in typical every-day tasks. Another problem is
that tools and extensions often support only a small part of
developers’ every-day task. For example, the main purpose of
View Infinity was to help developers get an overview of a
feature-oriented software system, which is only a fraction of
developers’ every-day tasks. As a consequence of the feature
creep, developers are overwhelmed by the availability of
support and often only use their preferred IDE in conjunction
with external tools [23].

To provide optimal support for the developers’ tasks, and
ultimately support developers in writing better software, we
need to understand how they complete their tasks. Thus,

the programmer needs to get more focus again in software-
engineering research, not only the approaches that support
the programmer. In this paper, I highlight past successful
theory-driven research on program comprehension and efforts
to support the programmer, discuss the current state and its
problems, and outline where future research might be directed
to.

II. PAST

In the past, there has been extensive ground research on pro-
gram comprehension, leading to different models explaining it.
In this section, I concentrate on how program comprehension
was measured and the models that emerged based on that
research. Furthermore, I briefly highlight programming lan-
guages and tools that were developed to support the developer.

A. Measuring Program Comprehension

Research on program comprehension started more than
30 years ago [2], [24]. During that time, numerous studies
have been conducted to investigate how developers understand
source code. Most of these studies used rather small pro-
grams, compared to the size of typical programs of today. To
measure program comprehension, researchers used different
approaches: think-aloud protocols, memorization, and compre-
hension tasks.

1) Think-Aloud Protocols: Think-aloud protocols, or in-
trospection, have been used to observe cognitive processes
for more than 140 years [41]. In such studies, participants
verbalize their thoughts, which are typically audio- or video-
taped. These tapes are transcribed, and the transcriptions are
used to analyze the thought process of the participants. Back
then, the think-aloud protocol was a common technique to
observe the comprehension process. As an example, Shaft and
Vessey gave programmers the task to understand a program
while thinking aloud, which gave an impression of how
developers proceed when working with source code of a
familiar and unfamiliar domain [26]. As a result, the authors
found that developers state hypotheses when they are familiar
with a program’s domain and inferences when they are not
familiar. In another study, Mayrhauser and Vans let developers
think aloud while they completed a maintenance task with a
comprehension component [39]. They used a larger software
system of more than 40 thousand lines of code and found
that developers build different models of the source code
and switch between these models. To support this process,
developers need natural-language support to better complete
their tasks. The drawback of using think-aloud protocols is the



effort that comes with them, as the data needs to be recorded,
transcribed, and then analyzed, which is very tedious. Thus,
many researchers eschew this effort.

2) Memorization: Another way to measure program com-
prehension was to test free recall of source code. Letting
developers recall source code to measure whether they com-
prehended it seems weird today, however, memorization and
subsequent recall of source code (or any other material) is
easier if it was comprehended first [28]. Shneiderman, who
has published several influential articles on program compre-
hension during that time, likened the ability of programmers to
that of musicians, who can memorize every note of thousands
of songs or symphonies: He suggested programmers obtain the
same ability to memorize entire programs in exact detail [29].

In a study, Shneiderman compared two versions of a pro-
gram, one in which the statements are in an executable order,
and the other in which statement order was scrambled [28].
He found that the version with the executable order could
be recalled better, and this also correlated with programming
experience (the more experience participants have, the better
they are at recalling the version with the executable statement
order). Soloway and Ehrlich gave programmers small source-
code snippets [35]. As a task, developers should memorize the
source code and recall it verbatim. As result, the authors found
that experienced programmers rely on coding conventions
(e.g., variable names according to their content) and are as
slow as beginning programmers when the coding conventions
are violated. Pennington also used memorization to measure
program comprehension and evaluated how priming affects
response time [20]. Priming means that, if you see a target
stimulus, you respond faster to it if you previously saw another
related stimulus. Since both stimuli are stored close together
in your memory, the related stimulus also activates the target
stimulus, so you can react faster. Participants in the study
should decide whether statements, presented sequentially, were
part of the source code they studied. The response time was
faster if a statement was preceded by a related statement.

3) Comprehension Tasks: In the study of Soloway and
Ehrlich, another task for programmers was to fill in a left-
out line to correctly complete the source code, referred to
as “fill in the blanks”. Developers can only correctly com-
plete the program if they understood it first [35]. Boysen
let participants decide whether simple expressions, such as
x < 5, were true or false, or determine the value of a
variable for more complex statements, such as if x < 5
then y = 1 else y = 2 [2]. He measured correctness
and response time of participants. Since this task explicitly
requires participants to understand source code, it is more
direct than requiring participants to memorize code. He found
that different operators lead to different response times, and
that statements that are true are processed faster.

Most of the approaches of these studies to measure program
comprehension seem unusual and inappropriate today, because
today’s activity of developers does not seem to have much
in common with these studies. Nevertheless, back then, these
studies captured the comprehension process quite well and led

to models of program comprehension, as discussed next.

B. Modeling Program Comprehension

Basically, program-comprehension models comprise two
processes: top-down and bottom-up processes. There are top-
down and bottom-up comprehension models that describe
program comprehension, as well as integrated models that
combine both processes.

1) Top-Down Comprehension Models: If programmers are
familiar with a program’s domain, they use a top-down
approach [39]. Top-down comprehension means that first,
a general hypothesis about a program’s purpose is derived.
This can only be done if programmers are familiar with
a program’s domain, because only then can they use their
knowledge of examples and properties of that domain. This
way, programmers can compare the current program with other
programs they know. During deriving this general-purpose
hypothesis, programmers neglect details, but only concentrate
on relevant aspects for building the hypothesis.

Once a hypothesis of the general purpose of a program
is stated, this hypothesis is evaluated. To this end, program-
mers look at details and refine the hypothesis stepwisely by
developing subsidiary hypotheses. These subsidiary hypothe-
ses are refined further, until the programmers have a low-
level understanding of the source code, such that they can
verify, modify, or reject the hypotheses. During the refine-
ment process, programmers look for beacons, which are “sets
of features that typically indicate the occurrence of certain
structures or operations in the code” [4]. Similar to beacons,
programming plans (i.e., “program fragments that represent
stereotypic action sequences in programming”) are used to
evaluate hypotheses about programs [35].

2) Bottom-Up Comprehension Models: With insufficient
domain knowledge, programmers cannot look for beacons or
programming plans, because they do not know what they
look like. In this case, programmers need to examine the
code closely to be able to state hypotheses of a program’s
purpose. In this case, programmers start to understand a
program by examining its details first: the statements or
control constructs that comprise the program. Statements that
semantically belong together are grouped into higher-level
abstractions, referred to as chunks. If enough chunks are
created, programmers leave the statement level and integrate
those chunks to further higher-level abstractions. For example,
programmers examine several methods of a program. If they
discover that some of these methods have a higher-level
purpose, for example, sorting a list of data-base entries, they
group them to chunks. Now, they do not think of these
methods as single entities anymore, but as the chunk that “sorts
data-base entries”. They examine the program further and
discover further chunks, for example, inserting and deleting
entries of a data base. Now, these chunks are integrated into
a larger chunk, which the programmer refers to as “data-
base-manipulating” chunk. This process continues until the
programmers have a high-level hypothesis of a program’s
purpose. Different bottom-up models differ on the kind of



information that is integrated to chunks. Pennington states that
control constructs (e.g., sequences or iterations) are used as
base for chunking [20], whereas Shneiderman and Mayer say
that chunking begins on the statements of a program [30].

3) Integrated Models: Simple top-down and bottom-up
models often cannot describe the comprehension process suf-
ficiently. Most of the time, developers use both processes,
which is described in integrated models [39]. For example,
if programmers have domain knowledge about a program,
they form a hypothesis about its purpose. If they encounter
fragments that they cannot explain with domain knowledge,
they start to examine the program statement by statement and
integrate the newly acquired knowledge into their hypotheses
about the source code. Usually, programmers use top-down
comprehension where possible and bottom-up comprehension
only when necessary, because top-down comprehension is
more efficient than examining the code statement by state-
ment [26].

The above described models explain the comprehension
process as developers often used it in the past. However,
the models seem incomplete when it comes to explaining
program comprehension of today: The developers’ every-day
tasks seem to be more complex, because programs are larger
and evolve, so that after a few years, nothing of the original
source code may exist anymore. But before discussing the
present, the next section highlights the history of programming
languages.

C. Programming Languages

The first programmable computers were programmed with
machine code, that is, sequences of 1’s and 0’s (the pres-
ence/absence of holes in punched cards). Now imagine you
were to give an instruction to your computer and had to work
only with 1’s and 0’s—it would be very difficult to mem-
orize what the sequence 0000 0100 1100 1011 means
and not confuse it with other sequences. Thus, assembly
languages have been developed, which allowed developers
to use mnemonics, so that developers could work with in-
structions, such as add $t1, $t2, $t3, instead of 0000
0100 1100 1011 [25]. However, this still required low-
level programming close to the hardware, that is, moving
numbers around the registers of a CPU.

Thus, higher-level programming languages were developed,
such as COBOL, Fortran, Java, or C#. These allow developers
to more directly translate their programming problem to a
programming language. Thus, instead of directly working
with CPU registers, developers can simply write if a = 1
then t1 = t2 + t3, which better reflects the intention of
what programmers want to do.

To ease programming, APIs have been developed, which
allowed programmers to reuse often used features without
having to implement them. For example, the Java API provides
often used String operations, and the Android API allows de-
velopers to implement Apps for Android devices and interact
with hardware, such as the camera. Thus, APIs provide support
for specific scenarios.

Similar to APIs, domain-specific languages (DSLs) provide
concepts for a specific domain. DSLs often contain a restricted
set of instructions tailored to a certain domain. This reduces
the expressive power of a programming language, but makes
it easier to learn and write according programs, because there
are not that many instructions to be learned. For example,
the structured query language (SQL) contains instructions for
handling typical data-base operations, such as storing and
loading data. With the simple statement select [column]
from [table] where [condition], many common
data-base queries can be expressed.

D. Programming Tools

In the early days, source code was often written with
a standard editor, such as Emacs or vi. However, as the
complexity of programs grew, a standard text editor was not
sufficient anymore,1 so the need for integrated development
environments rose quickly. Newman describes one of the
first successful IDEs, which integrates the typical tools and
extensions that developers need for their every-day task, such
as an overview of all data and tools for synchronizing design
and implementation level [19].

In addition to IDEs, there was research on how code layout
affects program comprehension [15], [22], [31]. For example,
Shneiderman and McKay found that, with increasing pro-
gram complexity, indentation improves program comprehen-
sion [31]. Miara and others evaluated how different indentation
spaces (0, 2, 4, or 6 white spaces) affect comprehensibility.
They found that indentation of 2 to 4 white spaces was
most beneficial for program comprehension. [15]. Rambally
evaluated how different color-coding styles affect compre-
hensibility [22]. Specifically, he compared how color coding
control structures (e.g., scope of a loop) vs. different kinds of
statements (e.g., I/O, variable declarations) affects comprehen-
sion. He found that coloring different kinds of statements lead
to better comprehensibility than coloring control structures
(which in turn was better than no color coding). Thus, the
need to improve comprehensibility of programs was the target
of early research.

To summarize, there was extensive research in the past on
how to support the programmer’s life. Based on this research,
we know, for example, that we should use useful variable
names, so that they can serve as beacons and developers
can use the fast top-down comprehension process, which is
supported by the results of Shneiderman [31]. We know that
developers need IDE support and that code layout can signif-
icantly affect program comprehension. This research helped
us to understand the programmers of the 90s. However, this
research somehow ceased in the mid-90s, unlike the research
on software engineering. Thus, there now is a gap between

1Of course, there are developers who might not agree. However, many
text editors, such as vi, notepad++, and Emacs, allow developers to integrate
compiler, profiler, debugger, etc., but then, vi is more like an IDE than a text
editor.



our understanding of programmers and the challenges they
face today. Where did this lead us to?

III. PRESENT

Today, software is everywhere, and there are hundreds of
programming languages, source-code-layout guidelines, and
IDEs that have been designed to support the programmer.
However, since research on program comprehension almost
vanished,2 there is now a mismatch between our insights
on program comprehension and state-of-the-art software de-
velopment, so that it is difficult to understand the cognitive
processes of developers when they work with new a pro-
gramming language, source-code layout, or IDE. If we do
a study now, for example, to evaluate whether a new IDE
extension really supports developers in comprehending their
programs, there are so many options to consider to truly
measure program comprehension and not something else, for
example, the familiarity of a programmer with the IDE or a
programming language. In this section, I discuss the present
challenges to measure program comprehension and discuss the
development of programming languages and tools.

A. Challenges of Measuring Program Comprehension

What might be a reason for why research on program
comprehension, and the programmer in general, stopped in the
mid-90s? Based on a recent survey among members of the pro-
gram committees of the major software-engineering venues,
we suspect that one reason is that empirical evaluations of
program comprehension (and of the human factor, in general)
are difficult to conduct and also lost their appreciation [34].
We found a huge difference in the opinion on what makes a
good empirical study, so that there is a high risk of getting
an empirical paper rejected several times, depending on the
reviewers’ opinions.

To illustrate the different points of view on a good empirical
study, I present an example study of 2010 [9]. This study
evaluated the effects of static and dynamic type systems on
development time. Before I proceed, I ask you to think about
how you would design such a study and consider the following
questions: Would you use existing programming languages,
such as Java and PHP, to compare the effect of type systems on
development time? But what about other differences between
both programming languages, could they have an effect on
development time? And would you use an existing IDE, such
as Eclipse? What about the features that Eclipse provides, what
effects do they have on development time? What participants
would you recruit? How do you make sure their experience
and preferences do not bias development time? As you might
suspect, there is not the correct answer to these questions—
instead, there are different alternatives that each have benefits
and drawbacks. Hanenberg chose an approach in which he
controlled the influence of these confounding factors. He

2A notable exception is the International Conference on Program Com-
prehension, which was a workshop until 2005. However, also there, the
programmer was not the focus, but approaches to support the programmer.
Only in recent years, the programmer moved into focus again.

developed a new programming language in two variants, one
with a static and one with a dynamic type system. This
way, the programming language differed only in the type
system. He also developed a new IDE with a very limited
set of features (a class browser, a test browser for running
and testing the application, and a console window to print
strings). Thus, there are no additional features of the IDE
with which one participant is more experienced than another.
For participants, the author conducted extensive interviews
to balance their experience to avoid bias on development
time. Thus, Hanenberg designed a highly controlled setting in
which he excluded the influence of many confounding factors
(i.e., he maximized internal validity). While this is a well-
designed study, of course the generalizability of results to real
programming languages, IDEs, and experienced developers is
very limited (i.e., has very limited external validity).

This trade-off between control and generalizability is in-
herent in empirical research: Researchers always face the
decision how much control they want in an empirical setting
vs. how general the results should be. This is even harder
today, because there are so many factors to consider. In a
study of papers published from 2000 and 2010 in several
(empirical) software-engineering venues, we found 39 such
factors to consider when conducting experiments on program
comprehension, including the above discussed factors (i.e.,
programming language, IDE, programming experience) and
factors that occur only because participants take part in an
experiment, such as evaluation apprehension, motivation, or
biased behavior [33]. In theory, it might be possible to have
both, high control and generalizable results. However, in
practice, it is impossible: Consider we want to evaluate the
effect of two parameters, for example, kind of type system
and programming experience, on development time. There are
two kinds of type systems, static and dynamic, and two levels
of programming experience (there could be more levels, but
for simplicity, we use two). To test the effect of these two
variables on development time, we need to test each of the
four possible combinations (static/low experience, static/high
experience, dynamic/low experience, and dynamic/high expe-
rience). And for each combination, we need a certain number
of participants to gather meaningful data and be able to draw
statistically sound conclusions. If we recruit 5 participants
per combination, we would need 20 participants. What if we
want to consider IDE support, as well? Assuming we use
Eclipse and VisualStudio as representative IDEs, there now
would be 8 combinations to consider. With 5 participants per
combination, we would need 40 participants. Now, if we would
consider all identified 39 parameters (with two variations per
parameter), and we recruit 5 participants per combination, we
would need 239 × 5 = 2.7487791× 1012 participants to cover
all combinations. Since it is impossible to recruit this many
participants, we need to make tradeoffs.

To learn how to manage such trade offs, we can look at
other disciplines that also research the human factor, such as
psychology or medicine. In these disciplines, it is standard
to empirically evaluate theories before they are accepted or



test medicine before it is approved for clinical use. There are,
in essence, two differences of these disciplines to software-
engineering research: First, there are guidelines and standards
on how to conduct empirically sound studies. Unfortunately,
there are no such standards or even guidelines in software-
engineering research, which is why opinions of the key play-
ers on software engineering differ so much. Second, studies
are replicated by independent researchers before results are
accepted. However, in software engineering, replications are
not appreciated and even seen as hunt for publication [34],
and there are only very few of them: In a literature study,
we found that only 8% of papers describe a replication
study [34]. Thus, measurement of program comprehension,
and more general the human factor in software engineering,
is underappreciated and difficult, which is one of the reasons
for why research regarding program comprehension stopped.
Fortunately, researchers are overcoming these obstacles, so
that the human is getting more attention again in recent years,
which can be seen by the increasing number of studies.

For example, Röhm and others used the think-aloud method
to observe professional programmers during their work [23].
As a result of this study, the authors derived several hypotheses
about programmer behavior, for example, that they focus on
getting a task done instead of understanding source code. We
evaluated how background colors can improve comprehensi-
bility of source code that makes heavy use of preprocessor
statements [6]. As result, we found that for familiarizing with
a new program, background colors can significantly support
a programmer. In addition to such conventional techniques,
researchers are also adopting novel measurement techniques to
gain new perspectives on program comprehension, as I explain
next.

B. New Approaches to Measure Program Comprehension

Researchers have discovered that with neuro-imaging tech-
niques, new insights on the programmer could be gained. For
example, we conducted a study in which we let program-
mers understand source code while we observed them with
functional magnetic resonance imaging (fMRI) [32]. fMRI
allows us to observe which brain regions get activated when
participants complete defined tasks, such as understanding
source code. Based on this paradigm and more than 20 years
of fMRI studies (one of the first was published in 1991 [1]),
brain regions are associated with different cognitive processes.
Thus, we can associate the activated areas during program
comprehension with cognitive processes. In a nutshell, we
found several areas that are related to language processing,
which is evidence that program comprehension is also a
language-processing process. While this result does not seem
surprising, there now is empirical evidence on the language-
processing nature of program comprehension.

Other researchers have also started to use neuro-imaging
techniques. For example, Nakagawa and others used near-
infrared spectroscopy to measure changes in blood flow while
programmers mentally executed source code. They found acti-
vation in the prefrontal cortex (a brain area that is necessary for

higher-order cognitive processes), which correlated with the
difficulty of a task [18]. Kluthe used electroencephalography
(EEG) to measure program comprehension of participants with
varying levels of expertise [12]. He let participants mentally
execute the code and asked them to determine the output of
source-code snippets. He found that, with lower expertise,
program-comprehension tasks were more difficult to solve,
indicating a higher cognitive load, which was reflected in
the EEG signals. Thus, EEG could be a reliable way to
measure cognitive load of programmers. In a similar way,
Fritz and others used three psycho-physiological measures—
eye tracker, electrodermal-activity sensor, EEG—to predict
the difficulty of programming tasks [7]. Participants were
required to mentally execute code that drew rectangles and
decide whether rectangles overlap or determine the order in
which rectangles were drawn. The authors found that these
measures are promising to predict task difficulty. In addition
to neuro-imaging techniques, researchers have been using eye
tracking for some time. For example, Sharif and Maletic
evaluated the effect of under_score vs. camelCase style
on recognition time [27]. As result, they found that identifiers
in under_score style are recognized faster than identifiers
in camelCase.

In essence, the programmer is beginning to get into the fo-
cus of software-engineering research again, with conventional
research methods as well as with new research methods.

C. Programming Languages

Today, there are a plethora of programming languages
available, each with different features and focus to support
programmers. Programming languages can have a static or
dynamic type system, can be imperative or functional, be
general-purpose or domain-specific, etc. Often, features of a
programming language are claimed to support a programmer,
but there are hardly evaluations of these features. For example,
the study of Hanenberg evaluated the effect of static vs.
dynamic type systems [9], however, under a highly controlled
setting. There are no studies that generalize the results of this
study, so it is not clear under which circumstances the type
system has no effect on development time.

Also, new programming paradigms have emerged to sup-
port programmers, for example, feature-oriented or aspect-
oriented programming. There are programming languages that
implement these programming paradigms and that extend
existing programming languages (e.g., AspectJ extends Java).
However, they have not been evaluated sufficiently. Hanenberg
and others conducted a study to evaluate how aspect-oriented
programming affects the development speed of crosscutting
concerns [10]. The task for participants was to add a crosscut-
ting concern to an existing application, and the result showed
positive as well as negative effects, depending on different
types of tasks. But again, the generalizability of this result is
unclear.

To summarize, new programming languages, paradigms,
and extensions emerge frequently, but they are often not evalu-
ated sufficiently, so that their effect on program comprehension



is not clear. For example, up to this day, there is a heated
discussion on how to teach programming, that is, whether
starting with a functional programming language or starting
with an object-oriented language is more beneficial. However,
there is only anecdotal evidence. In a nutshell, there are so
many programming languages, paradigms, and extensions that
no one can possibly know which the optimal programming
language is for the current task or state of mind.

D. Programming Tools

The same as for programming languages counts also for
programming tools: There are so many tools to support the
programmer, and for each tool, there are numerous extensions,
which often focus on one aspect of supporting the programmer.
For example, Whyline supports developers during debugging
and lets them ask “Why did/didn’t” questions (e.g., “Why
did the window not resize?”), which is more natural to a
programmer’s thinking and can make debugging faster [13].
Code Bubbles helps developers to define working sets for
defined tasks, which are displayed as bubbles, so that they
can concentrate on the relevant files only [3]. There are
also approaches to let developers adjust their IDE to their
current situation, such as moldable development tools, which
let developers write their own source code with a domain-
specific language to provide different views on programming
objects [5]. However, it is unclear whether and how these
tools help in practice and to what extent. There are studies,
but they are often limited and they are hardly ever replicated.
Furthermore, Röhm and others found that developers often use
additional tools to their IDE, although the IDE has similar
features, of which developers are often not even aware [23].
Also, developers hardly use advanced comprehension support,
such as source-code visualization.

Thus, there is effort to improve the programmer’s life,
which, however, lacks sufficient empirical evaluation. As a
consequence, the feature creep is going around in software-
engineering research. Currently, there is a gap of our knowl-
edge on how programmers complete their every-day task and
the current state of the art in software engineering. This gap
might well be one of the reasons why software projects are
late or fail completely and critical software errors, such as
the Heartbleed bug or Android’s Stagefright exploit, occur so
frequently.

IV. FUTURE

What might the future hold for program-comprehension
research and, more general, the programmer’s life?

A. Near future

In the near future, there will be more and more sound
empirical studies. Already in recent years, the programmer
and, more general, the human factor in software engineering, is
getting attention again: In 2005, Sjøberg and others found that
only 1.9 % of papers conducted an empirical study (with or
without human participants), whereas we found in 2015 almost

every paper included an empirical study, and more than 20 %
consider the human factor [34]. Furthermore, the education of
researchers regarding empirical studies will improve. Several
universities already offer courses especially for empirical
evaluations in software engineering. This way, the expertise
regarding empirical research in program committees will also
improve, as new researchers with these skills will be invited to
program committees. Based on their expertise, they can value
sound empirical studies without being (mis-)guided by their
preferences. Thus, the risk of getting a sound empirical study
rejected is reduced. Furthermore, this will also have a positive
effect on the number of empirical studies.

With increasing frequency of empirical studies of program
comprehension, the old models of program comprehension
will be extended to capture current aspects of program com-
prehension. For example, memorization as Shneiderman de-
scribed it to measure program comprehension might not be
part of the models. Today’s programs are so large that devel-
opers cannot reasonably memorize them. Of course, memory
still plays a role, but in the sense that developers use their
domain knowledge to understand a program with a top-down
approach. The understanding of program comprehension and
according models to explain it will evolve to explain program
comprehension of today and tomorrow. For example, Fritz and
Murphy interviewed professional developers and found that
they also ask questions about who is working on what (e.g.,
“What are colleagues working on right now?”, “How much
work have people done?”), code changes, broken builds, or
test cases [8]. LaToza and Myers found that developers often
ask reachability questions (e.g., “Why is calling method m
necessary?”) [14]. This new understanding of a programmer’s
life will be abstracted and combined to a contemporary model
of program comprehension, which is not focused only on the
source-code level anymore. Program-comprehension tasks of
today’s developers also include:

• Getting an overview of a large program or software
architecture

• Understanding type structures and call hierarchies
• Understanding the relationship between components
• Identifying the developers who are responsible for a

component

For example, to fix a bug, developers start to get an overview
of a system, identify components and their relationships. Then,
developers get closer to the source-code level and understand
which method calls which method and which classes inherit
from which other classes. If, during that process, developers
get stuck, they seek help and identify according developers
and communicate with them. Based on an updated program-
comprehension model, research on program comprehension
can also be theory-driven again, so that we have a clearer path
to follow. For example, we can help developers to identify
developers who can help them by extracting networks of
developers and highlight key developers [11] or to identify
developers of self-admitted code hacks [21].



B. Far future

With the improving quality of evaluation and new mea-
surement techniques, there are whole new options to explore
and support the programmer. For the far future, I envision
a situation-dependent cognitive model of a single developer,
which observes the current mental state of a developer and
gives him or her the optimal support for the current situation.
For example, the work by Fritz and others based on psycho-
physiological measures is a starting point in that direction,
since these measures could predict task difficulty [7]. In the
EEG study by Kluthe, the EEG signal was a predictor for
cognitive load [12]. These devices will get cheaper in the near
future, and also wearing them gets more comfortable than it
currently is. Thus, developers can be observed during their
every-day task. If it becomes clear that their cognitive load
increases beyond its capacity, then IDE support should step in
to support developers. For example, we know that the average
working-memory capacity is 7 ± 2 items [16]. If developers
have to keep in mind the value of too many variables at the
same time, this is reflected in a higher cognitive load. In this
case, a situation-aware IDE, which is coupled to the sensor
data, can detect the increasing cognitive load and identify
relevant variables based on eye-tracking data. Then, the IDE
can automatically store the variable values and display them
to the developer. Of course, with such a situation, there is the
risk that developers feel monitored and patronized by their
IDE. Thus, the IDE should be customizable to developers’
preferences. Additionally, the sensor information could be
used to assess the commitment and opinion of developers
regarding their work. Hence, privacy issues may arise and
become in conflict with the use of such sensors, such that
developers are reluctant to use them. Similar debates are
already occurring today, such as in customized adds depending
on our browsing histories. Currently, we need to explicitly
deactivate such data collection, and it is interesting to see
whether this will also happen with sensor data. Another issue
is that we need approaches to manage this big-data problem,
such as machine-learning techniques to identify an impending
overload of cognitive resources.

Going one step further, brain-computer interfaces might also
become an interesting option to support programmers. Brain-
computer interfaces help patients with locked-in syndrome
to communicate with their outside world. To this end, an
electrode is placed in the motor cortex (i.e., a brain area
that is associated with intentional body movement), and by
imagining moving their hand, patients can control the cursor
of a mouse [17]. It might be interesting to use such brain-
computer interfaces to let developers directly input source
code, without the detour of using the keyboard (which includes
recalling the letters of words and translating the letters to
movements of the fingers). However, with such devices being
rather invasive, it might be a far away before they will be
considered for use by healthy humans.

In addition to better support for professional developers,
I envision that educating new developers will be improved

by individualized teaching methods. Learning programming is
full of obstacles, so that many students do not proceed. With a
dynamic cognitive model of program comprehension, we can
recognize what students are stumbling upon in a situation, and
a dynamic IDE can provide situation-specific support. Thus,
learning to program will not be as difficult as it is today.

To summarize, I envision optimal, individualized support
for developers, so that they can concentrate on the current task
without being obstructed by the limitations of their mind. This
way, developers can better use their cognitive resources and
concentrate on the task at hand. In the long run, this will help
to increase the quality of software and avoid critical errors.

V. CONCLUSION

Program comprehension has received a lot of attention in
the past, but has lost the interest of the software-engineering
researchers in the mid-90s. Fortunately, research on program
comprehension, and the human factor in software engineering
in general, is getting more attention again. Past research gives
a good baseline for our current understanding of program
comprehension, but needs to be extended to accommodate
state-of-the-art software development. Conventional empiri-
cal methods as well as new techniques, which have proved
successful in cognitive neuroscience, help us to gain a new
perspective on the programmer’s life. With these methods
combined, we can provide optimal, situation-specific support
for individual developers, so that they can concentrate on the
task at hand. This way, software projects can be released on
time and without critical errors.
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