
Measuring Non-functional Properties in Software Product Lines for Product
Derivation

Norbert Siegmund, Marko Rosenmüller, Martin Kuhlemann, Christian Kästner, and Gunter Saake
University of Magdeburg

39104 Magdeburg, Germany
{nsiegmun, rosenmue, mkuhlema, ckaestne, saake}@ovgu.de

Abstract

A software product line (SPL) enables stakeholders to
derive different software products for a domain while pro-
viding a high degree of reuse of their code units. Software
products are derived in a configuration process by compos-
ing different code units. The configuration process becomes
complex if SPLs contain hundreds of features. In many
cases, a stakeholder is not only interested in functional but
also in non-functional properties of a desired product. Be-
cause SPLs can be used in different application scenarios
alternative implementations of already existing functional-
ity are developed to meet special non-functional require-
ments, like restricted binary size and performance guaran-
tees. To enable these complex configurations we discuss
and present techniques to measure non-functional proper-
ties of software modules and use these values to compute
SPL configurations optimized to the users needs.

1 Introduction

A software product line (SPL) is developed to create a

large number of related products by reusing a set of software

artifacts called core assets or simply code units [10, 19].

These code units, once developed and tested, can be com-

posed to derive different products with varying functional-

ity. This decreases development effort and time-to-market

while providing a high degree of reuse [16].

The functionality of an SPL is represented as fea-

tures [18, 11]. Product derivation is the process of gen-

erating a tailor-made product of an SPL. It consists of (a)

selecting features (functionality) according to stakeholder

requirements, (b) checking the consistency of the selec-

tion, and (c) composing code units to generate the product.

Even in small SPLs a manual selection is often a complex

task [14]. If a user has additional non-functional require-

ments, e.g., binary size < 100 KByte, because the used de-

vice has restricted memory, the derivation process becomes

even more complex and difficult. SPLs of industrial size can

have thousands of features [32, 20] which makes a manual

product derivation usually impossible. Current research ad-

dresses this problem by providing visualization techniques

and special algorithms to reduce the complexity of the con-

figuration process [33, 7, 35]. While these approaches are

successful for functional requirements they do not address

non-functional requirements.

Environments like embedded systems or large scale

computing systems exhibit non-functional requirements

like restricted memory [4], power consumption [3, 28],

and performance requirements [22, 2]. Current research

for Green IT (power awareness) strengthens the need for

tailor-made, alternative implementations to reduce power

costs [9, 15]. For example, a sorting algorithm in an SPL

can be implemented to minimize the binary size, maximize

the performance, or reduce the power consumptions. How-

ever, there is usually no overall best implementation. A

stakeholder can decide which implementation of the sorting

algorithm fits best to a particular application scenario. Each

implementation has a different impact on the non-functional

properties of a product which cannot be foreseen. Already

the product derivation with a functional selection is a com-

plex task, but how can we provide product derivation sup-

port in presence of additional non-functional requirements?

The selection of functionality that must be part of a prod-

uct is not enough any more and the best implementation

for an application scenario has to be chosen. Such non-

functional requirements can be expressed by defining an

objective function to maximize or minimize a set of non-

functional properties.

In this paper, we present an approach to optimize prod-

ucts toward non-functional properties. To enable this pro-

cess, we address two important steps. First, we explain how

to measure non-functional properties and how they can be

obtained for a feature selection. Second, we present an al-

gorithm to optimize a product configuration according to

user-defined non-functional requirements. We evaluate our

approach in a case study using the non-functional properties

Maintainability, Binary Size, and Performance.

2 Software Product Line Configuration

An SPL is used to derive different related products from

a common code base that belong to one domain [10, 19].

Different programs of an SPL differ in features, e.g., one

database management system (DBMS) product might have

feature Recovery and another not (Figure 1). These differ-

ences are so called variation points. Features of an SPL

and relationships between them are described in a feature

model with additional information like attributes or annota-

tions [18, 11]. A feature model defines whether a feature

is optional or mandatory and is typically visualized with a

feature diagram which is a hierarchical representation of all

features of an SPL (cf. Figure 1). To derive a product, a

stakeholder selects the features from a feature diagram that

fulfill her functional requirements. This derivation process

is completed with the verification of the correctness of the

selection and the generation of the product.

To incorporate non-functional properties, in previous

work, we [30] and others [7] extended the common feature

model concept. The basis of our product derivation process

is a product line model (PLM) that distinguishes between

domain variation points (features) and implementation vari-

ation points (code units) [30]. This gives us the possibility

to express variability of the implementation which bridges

the gap between functional variation (in terms of features)

and non-functional variation (in terms of code units). An

implementation variation point is a decision point where a

user or an optimizer can decide which implementation of

one feature fulfill given requirements. Thus, the user can

choose the implementation of a feature that fits best to her

non-functional requirements.

Figure 1 depicts a small example of a feature diagram for

a PLM representing a DBMS SPL. Feature Sort is imple-

mented with two alternative code units, a power saving opti-

mized JouleSort [34] and a performance optimized Merge-
Sort. When choosing the feature Data Sorting the stake-

holder has to decide which implementation fits best to the

non-functional requirements of the product. In this exam-

ple, the JouleSort algorithm could be selected to minimize

the power consumption. In contrast, the MergeSort algo-

rithm has a smaller binary size. Considering the binary size

of other variation points, it is difficult to decide if a feature

selection violates a binary size constraint. For large SPLs

this can lead to a time-consuming ”trial and error” configu-

ration process.

3 Measuring Non-functional Properties

Before optimizing configurations of SPL products, we

need to measure the non-functional properties. In a case

study, we measured non-functional properties for a refac-

tored version of Berkeley DB SPL1. Using feature-oriented
programming [27, 5] the refactoring resulted in 36 features

and 400.000 possible products. A simple performance mea-

surement for one product, i.e., one complete program was

measured, takes about 9 minutes including compiling this

product and executing the benchmark. This means a com-

plete measurement including all products would take about

2500 days. Hence, we cannot simply measure each product

of this not very large SPL. Moreover, the number of prod-

ucts grows exponentially with the number of features which

also brings measurement frameworks like Skoll [26] to its

limits.

Instead, we aim at measuring the non-functional prop-

erties of features. This is more complex as one would ex-

pected, because not every non-functional property can be

mapped intuitively to a single feature. For example, some

properties emerge only at runtime or depend on the inter-

action of multiple features. For those properties, still each

SPL instance has to be measured to derive the optimal prod-

uct. In the following, we discuss techniques and a classifi-

cation for the measurement of non-functional properties.

3.1 Classification of Non-functional Prop-
erties

Our analysis has shown that non-functional properties

can be categorized into three different classes, Direct As-
signed Properties, Inferred Properties, and Runtime Prop-
erties. This categorization helps us to select the appropriate

measurement technique for a non-functional property.

The first category, Direct Assigned Properties, contains

properties that are fully or partly represented as features, be-

cause the direct assignment by a stakeholder is reasonable.

For example, reliability does not emerge during the devel-

opment or product derivation. It can be directly ascribed to

features and allows its configuration according to reliability

requirements, e.g., Recovery in Figure 1. During measure-

ment, we do not have to care about these kinds of properties

because they are assigned manually and can be directly se-

lected.

Non-functional properties of the category Inferred
Properties are either measured in isolation for each fea-

ture or the values for features are inferred from one or few

products. This means, we assign values for non-functional

properties to features and code units. This allows us to com-

pute emerging non-functional properties for arbitrary prod-

uct configurations in advance. To do this, we have to ag-

1http://www.oracle.com/database/berkeley-db/db

DBMS

Data Sorting Data Storage

Database Core

Real-TimeMain Memory

Feature

Code Unit

Interaction

Footprint: 70KB

Footprint: 143KB Footprint: 255KB

JouleSort MergeSort

Footprint: 120KB
Avg. Power: 10W

Footprint: 60KB
Avg. Power: 33W

Pagesort

Footprint: 12KB

Recovery

Direct Assignment:
Reliability Mandatory

Alternative

Optional

Figure 1. Simple Product Line Diagram.

gregate the values of the properties where the aggregation

method depends on the non-functional property. For ex-

ample, we can measure the binary size per feature and can

compute the size of the product by summing the values of

each configured feature (see Figure 1). The method used for

aggregation has to be defined by a stakeholder and may also

depend on the application scenario.

Finally, the category Runtime Properties is the most

complex class for measurements. These non-functional

properties emerge in a running product. Prominent exam-

ples are performance, power consumption, and used mem-

ory. Feature interactions have a major influence on these

properties so that an inference from code units is not pos-

sible or has an unacceptable fault rate. Thus, we have to

measure these properties in concrete products which leads

to a combinatorial problem reasoned by the large number of

possible products.

We present our approach for measuring three important

non-functional properties, namely Maintainability, Binary
Size, and Performance. We chose these properties to present

the measurements of the categories Inferred Properties and

Runtime Properties. In addition, these are common proper-

ties that are used in practice.

3.2 Measuring Maintainability.

Maintainability describes how much effort is needed to

correct, extend, or simply maintain a software system or

component [1]. Maintainability is especially important for

software development and evolution. To increase maintain-

ability, application engineers structure code units into com-

ponents or packages. Source code guidelines give sugges-

tions how to write maintainable code [24]. It is a difficult

task to quantify the quality of source code. Several met-

rics were proposed to rate and compare source code frag-

ments. Without loss of generality, we choose the metric

cyclomatic complexity [23] for our measurement, but other

metrics likes lines of code, comments per line, and combi-

nations of them can be used as well. The resulting values of

such metrics can be aggregated. We choose the maximum

for cyclomatic complexity to express the difficulty of main-

Feature Cyclomatic Complexity

Cryptography 19

Remove 20

Hash 70

Maximum 70

Table 1. Cyclomatic Complexity of selected
Berkeley DB Features.

taining the source code, so that the maintainability of the

worst module represents the maintainability of the product.

Source code measurements in SPLs can be applied to

code units for each feature separately. Therefore, the main-

tainability is categorized as an Inferred Property. The maxi-

mum complexity of the whole feature is the maximum com-

plexity of each method that belongs to this feature. In Table

1, we show a measurement of the Berkeley DB SPL using

the tool Source Monitor2 to measure the cyclomatic com-

plexity. A number higher than 25 for the cyclomatic com-

plexity often represents poor written code that might be dif-

ficult to understand. That means feature Hash appears to be

very difficult to maintain. Depending on the configuration,

maintainability for the product can significantly change. If

the feature Hash is chosen, the complexity increases to 70,

which means that the code of the resulting product will be

difficult to understand. For the computation of the result-

ing complexity we have to include all scattered code values

that belong to a configuration. To compute cyclomatic com-

plexity for an SPL product, we store the measured values

for each class fragment that belongs to a certain code unit,

separately.

3.3 Measuring Binary Size.

At first sight, it seems that the property binary size has to

be measured for each compiled product. However, a map-

ping from the binary size of a product to features is pos-

sible, e.g., by computing the delta size for different prod-

2http://www.campwoodsw.com/sourcemonitor.html

ucts. For SPLs implemented by separately compilable code

units, e.g., components or Hyper/J [25], can be easily mea-

sured for each compiled code unit. Using preprocessor

statements or feature-oriented programming, the measure-

ment becomes difficult, because the source code is scattered

over modules that cannot be compiled separately. We devel-

oped a technique for feature-oriented programming (used in

our case studies) to compute the binary size of each feature.

First, we include all features into one binary. Second, our

tool extracts the binary size for each method from informa-

tion generated by the Microsoft C++ compiler. Finally, we

compute the size of a feature as the sum of all methods that

belongs to this feature. Therefore, the binary size can be

classified as an Inferred Property. We had to disable func-

tion inlining to assign the binary size of a method to the

correct feature. The impact of function inlining was negli-

gible in our case studies, shown in Section 5, but might be

important in other SPLs.

3.4 Measuring Performance.

The last non-functional property, we want to address in

this paper, is performance. This non-functional property

emerges in a running product, thus, cannot be computed

for each feature in isolation in advance (Runtime Property).

This leads to the combinatorial problem of measuring all

possible products of an SPL.

Each application domain or even each application sce-

nario has demands for specific measurements of Runtime
Properties. For instance, a DBMS can be measured via

standard tests like the TPC Benchmark3 which defines the

data to be stored and queries to be executed. We consider

a benchmark as a client application that uses the derived

product and gives an output that can be evaluated by our

tool. The reason for this consideration is the functional

difference between derived programs, which may require

changes in the benchmark, i.e., explicit function calls to en-

able the new functionality. If the benchmark is static for all

products of the SPL the varying functionality cannot be ac-

tivated. Only adaptable benchmarks, e.g., also implemented

as SPLs, allow for correct measurement of Runtime Proper-
ties of SPLs.

Interpolation between measured products to reduce the

number of performance measurements is not suitable be-

cause of unpredictable feature interactions that lead to false

interpolated values. For example, consider two sorting algo-

rithms that speed up a program and use large main memory

space. Although, both of them increase the performance in

isolation and they have no direct interactions, in combina-

tion they may degrade the performance because both share

the same (too small) main memory. This shows that even

3http://www.tpc.org

features without functional dependencies can have a large

influence on a Runtime Property if used in combination.

4 Optimization Process

Based on measurements of non-functional properties, we

compute an optimized configuration for non-functional re-

quirements. For our optimization process, we adopt the

concept of a staged product derivation process [12]. We

guide a user stepwise through the configuration process.

In each step the number of possible configurations can

be decreased. In the first stage, the user selects features

based on functional requirements, e.g., the user wants the

feature Transaction. Existing approaches only focus on

this stage. The next stages are part of the optimization

of non-functional properties. They are based on the pre-

configuration of the first stage, which consists of config-

ured features that have to appear in a product. The opti-

mization task is to find the best implementations for these

selected features using a given objective function. In the

following process, we use non-functional constraints to re-

strict the number of products and this objective function to

optimize a certain non-functional property. For example, a

stakeholder might want to derive a product with best perfor-

mance while the cyclomatic complexity is less than 25 and

the binary size is smaller than 300 KBytes.

To derive an optimized product in reasonable time, we

developed several strategies to reduce the complexity of

that process. In literature, most approaches are based on

constraint satisfaction problem (CSP) solvers [7]. We de-

veloped a proprietary algorithm that includes several opti-

mization strategies, e.g., using developer knowledge. This

is done by comparing developer annotations of alternative

implementations and rank them to measure Runtime Prop-
erties of the supposable best one at first.

In Figure 2, we present an overview of the optimization

process. Non-functional properties of the category Direct
Assigned Properties are directly mapped to features. For

the Berkeley DB SPL, we have to consider about 400.000

possible products. In the first configuration stage (feature

selection), the number of possible products can be reduced

to several thousand, because only these products provide the

needed functionality. The number of products depends on

the manual selection of functional properties. Members of

category Inferred Properties are measured before product

derivation and are stored in the PLM. In the second stage,

products can be excluded because of given non-functional

constraints like a restricted binary size. This reduction is

possible, because we are able to compute the resulting val-

ues for the Inferred Properties in advance. In our case

studies, only a small number usually lower than one hun-

dred possible products remain. Because this may be still

too large for a complete measurement, we sort the config-

uration (beginning with the best intermediate result of the

objective function) for the last stage to measure required

Runtime Properties of the probably best configuration first.

These measurements allow us to compute the final result of

the objective function. This step is repeated with a slightly

changed configuration (switching between alternative im-

plementations) that may improve the result. Using this pro-

cess, we find a local optimum. If the number of remaining

products allows a complete measurement we find the global

optimum. This process is repeated until a user-defined time

interval exceeds or the user stops the process.

Property Classification

Direct Assigned
Properties

Product Line
Model

Mapping

Inferred
Properties

Measuring

Configuration Optimizer

Runtime
Properties

Measuring

Product

Figure 2. Optimization and Measurement
Chain.

5 Evaluation

We evaluate the derivation process to demonstrate the ap-

plicability of our measurements and the applicability of the

optimization4. We use three different SPLs: LinkedList,

FAME-DBMS, and Berkeley DB. The first SPL ist the very

small LinkedList product line which implements a linked

list with alternative sorting and traversing algorithms. We

use this SPL, because its small size and low number of

products allows building and comparing all products with

the computed values. The refactored version of Berkeley
DB [29] and FAME-DBMS [29] are chosen, because we

want to present evaluation results for SPLs that are used in

real environments. The FAME-DBMS SPL prototype im-

plements a flexible, tailor-made DBMS for use in embed-

ded systems like sensors. The number of features, products,

and lines of code (LOC) are given in Table 3.

Optimization Process. We measured these three SPLs in

two application scenarios to give an impression how much

time is needed to measure non-functional properties and to

4Our evaluations are made on a Pentium 4, 3.00 GHz computer with

2 GB RAM. The installed operation system was Microsoft Windows XP

SP2.

perform the whole derivation process. The first scenario

is located in resource constrained environments. In these

environments the cost of an embedded system strongly de-

pends on the memory that is required. Even a small reduc-

tion of required memory can lead to significant savings in

mass production. Usually, a stakeholder defines an objec-

tive function that may minimize the production cost of an

embedded device. For this scenario, a simplified objective

function might be:

min{BinarySizei}
The binary size is given in Bytes and i represents a product.

The second scenario maximizes the maintainability in order

to derive an evolvable product while having a binary size

and performance constraint:

min{Cyclomatic Complexityi} |
BinarySize < 150KB; Performance >= 20T/s.

The first stage of reducing the search space for an op-

timal product is the functional selection of features which

is the same for both scenarios. Obviously, this depends on

functional requirements of a stakeholder. We randomly se-

lected features in order to simulate such requirements for

both scenarios which are shown in Figure 3 (Txn BDB,

Btree FAME, and Sorting LL). This random configuration

is the result of the first stage. Table 2 depicts the number of

possible products after each stage. The first stage has usu-

ally the largest impact for the reduction. However, it still

results in too many products to measure Runtime Proper-
ties.

In the second stage, we use the given non-functional con-

straints. The binary size constraint of the second scenario

reduces the number of products as shown in Table 2. This

means, that such constraints can have a large impact on

the reduction but can also have no impact for too uncon-

strained non-functional requirements. This depends on the

constraint itself and on the products that can be generated

from an SPL. The second stage already provides the best

product for the first scenario (lowest binary size), thus no

runtime measurements are needed. However, in the second

scenario the configuration with the lowest cyclomatic com-

plexity for a given performance constraint has to be com-

puted. We can already create a ranking of products based

on cyclomatic complexity in the second stage, but we need

runtime measures to determine whether they meet the per-

formance constraints. For Berkeley DB, the first product

fulfills the constraint and for the other products we only

need a small number of measurements (see Table 2).

Time for Measurements. Measuring the properties

maintainability and binary size for all features took from 5

to 21 minutes for one SPL. Measuring the cyclomatic com-

plexity took only a few seconds but the manual allocation to

Txn BDB Btree FAME Sorting LL

Max Products 400 000 320 480

Stage 1 2000 48 120

Stage 2 10 22 40

Stage 3 1 5 3

Table 2. Reducing the number of products
during staged product derivation.

features required a few minutes (see Table 3), but can be au-

tomated. To measure the binary size, we compile each SPL

one time with all features and code units and automatically

allocate the measured binary size of a method to a feature.

The compilation requires the largest amount of time. The

automatic allocation requires less than one minute for the

LinkedList and FAME-DBMS. Performing this task for the

larger Berkeley DB SPL takes 3 minutes. These times (see

Table 3) are within a reasonable range, considering that the

entire SPL is measured, not only a single product.

The whole derivation process, including 5 runtime mea-

surements, requires for the Berkeley DB SPL about 50 min-

utes. Because of faster compilation the LinkedList takes

only 10 minutes for the whole process and FAME-DBMS

requires 35 minutes.

Accuracy of Measurements. The accuracy of the mea-

surement, especially when features are measured in isola-

tion and values are aggregated, is very important to retrieve

the optimal product that fulfill given constraints. First, cy-

clomatic complexity is a metric aggregated from measure-

ments of individual methods. Therefore, a aggregation per

feature and per product is accurate, as we could also confirm

in the generated products.

Second, the performance is measured for each product in

isolation which means that this non-functional property is as

accurate as the benchmark is but depends on the operating

environment and compiler.

Finally, the computation of the binary size of a product

is based on values that can change depending on the com-

piler and the product we want to generate. Therefore, we

have to consider the inaccuracy of the binary size computa-

tion introduced by compiler optimizations like function in-
lining. To evaluate the accuracy of our approach, we derived

some sample products to measure the divergence between

the computed binary size and the real binary size including

compiler optimizations. Although, the results depend on the

implementation of the SPL, we found that the divergence is

less than 10 percent. In Figure 3, we present binary size

evaluations of two products for each SPL. We measured a

minimal version that includes only mandatory features and

a large version with more than 10 additional features. For

the base (minimal configuration) version of the LinkedList

SPL and FAME-DBMS SPL the divergence is less than one

percent. Berkeley DB has a higher fault percentage because

of a large number of small methods that could be optimized

by the compiler. By introducing additional features the di-

vergence of the computed result decreases for Berkeley DB

reasoned by functions that cannot be inlined. The error of

the LinkedList in the product with additional sorting is rea-

soned by the small size of methods. These were often in-

lined in different functions which increases the binary size.

This is the only case where the real binary size is larger than

the computed binary size and the difference is more than

one percent which may lead to measuring Runtime Proper-
ties of invalid configurations.

Discussion. The main problem of measuring non-

functional properties in SPLs and optimizing products for

non-functional properties is the large number of possible

products. The classification, we have shown in Section 3,

allows for measuring some properties without having this

problem. However, for Runtime Properties there is no so-

lution until now that can provide acceptable measurements

regarding the time needed for measurement and accuracy

of the results. We still avoid the combinatorial explosion

by measuring Runtime Properties only for products relevant

for a user, i.e., that fulfill given constraints, which is usu-

ally a small subset of all possible products. To reduce the

number of products, we extended the idea of a staged prod-

uct derivation [12]. The resulting reduction strongly de-

pends on the non-functional constraints and objective func-

tion given by the stakeholder. If only Runtime Properties
are constrained or have to be optimized we cannot signifi-

cantly reduce the search space. This means, that the time for

measuring Runtime Properties can be too large and, thus,

derived products may not be optimal. However, we believe

that in most cases our approach enables stakeholders to de-

rive products in a reasonable time that fulfill desired non-

functional properties.

6 Related Work

There are a number of approaches that ease the prod-

uct derivation process [33, 8, 35]. These tools guide stake-

holders through the selection of features with special visual-

ization techniques. However, these approaches concentrate

only on functional properties of a product and their depen-

dencies. The measurement of non-functional properties and

the configuration of those properties are not addressed.

Some approaches propose techniques on automated rea-

soning on feature models [7, 6] or SPLs in general [35].

Benavides et al. [7] integrate non-functional properties in-

side the product derivation process. However, their work

Time for measuring (in minutes)

SPL Features Products LOC Complexity Binary Size Avg. Performance (one product)

LinkedList 22 480 886 3 2 <1

FAME-DBMS 21 320 8602 3 6 4

Berkeley DB 36 ca. 400.000 90.198 10 11 9

Table 3. Time spent for measuring the maintainability and the binary size of three SPLs in minutes.

0

1

2

3

4

5

6

7

Base_LL Sorting_LL

in
 k

B
yt

es

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0
2
4
6
8

10
12
14
16

Base_FAME Btree_FAME

in
 k

B
yt

es

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0
50

100
150
200
250
300
350
400
450

Base_BDB Txn_BDB

in
 k

B
yt

es

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
Computed

Real

Fault percentage

Configuration Number of Features Short Description

Base LL 5 Minimal product of a LinkedList SPL

Sorting LL 12 Sorting and Traversing features

Base FAME 15 Minimal in-memory FAME-DBMS version

Btree FAME 17 Read and Write support for storage and Btree index

Base BDB 7 Minimal BerkeleyDB configuration

Txn BDB 30 Transaction, Logging, Btree, Upgrade, and Recovery features

Figure 3. Comparison of computed and real binary size for 6 configurations.

leaves the measurement of the values of these properties as

an open problem.

Only a few approaches adapted measurements to SPLs.

Either they define the measurements only from a business

view to evaluate the development effort [13] or they ex-

press only the complexity (in terms of variation points) of

the whole product line [21]. An approach close to our

work is the measurement of the binary size of an aspect-

oriented SPL [17]. Aspects are compiled in distinct files

and their size is measured. The binary size of different

products can be calculated. However, the approach does

not consider other properties or the exponential number of

products that occur during the derivation process. The con-

figuration of non-functional properties in SPLs is also ad-

dressed by Sincero et al. [31]. This approach tries to over-

come the problem of the large number of products by stor-

ing the non-functional properties of each derived product

in a repository. In addition, automatically generated prod-

ucts further enrich the repository. In contrast, we store non

Runtime Properties inside a feature model assigned to fea-

tures. We see this approach complimentary to others and a

combination useful. The Skoll project [26] targets on test-

ing and measuring applications with a large configuration

space. This project tries to overcome the problem of having

a large number of products using a large number of users.

We developed a strategy to address the exponential growth

of products and, thus, can scale.

7 Summary and Future Work

We presented an approach for measuring non-functional

properties in software product lines to allow an automatic

configuration of code units. We have addressed the prob-

lems of measuring diverse non-functional properties by

proposing a classification. For each category, we presented

examples and showed how these can be measured. We pro-

posed several techniques to reduce the number of possible

products by sorting and excluding product candidates in a

staged configuring. In an evaluation, we have shown that

our approach can significantly reduce the product deriva-

tion complexity and the effort to obtain a product including

desired non-functional properties. In further work, we will

extend our approach to dynamically evaluate runtime prop-

erties.

Acknowledgments

This research has been funded by the German Research

Foundation (DFG), project number SA 465/32-15 and the

German Ministry of Education and Research (BMBF),

project ViERforES6.

References

[1] IEEE Standard Computer Dictionary: A Compilation of

IEEE Standard Computer Glossaries, 1990.

[2] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Perfor-

mance guarantees for Web server end-systems: A control-

theoretical approach. IEEE Trans. on Parallel and Dis-
tributed Systems, 13(1):80–96, 2002.

[3] M. Anand, E. B. Nightingale, and J. Flinn. Self-tuning wire-

less network power management. In Proc. Int’l Conf. on
Mobile Computing and Networking, pages 176–189. 2003.

[4] N. Anciaux, L. Bouganim, and P. Pucheral. Memory re-

quirements for query execution in highly constrained de-

vices. In Proc. Int’l Conf. on Very Large Data Bases. 2003.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-

Wise Refinement. IEEE Trans. Softw. Eng., 30(6), 2004.

[6] D. Benavides et al. FAMA: Tooling a Framework for the

Automated Analysis of Feature Models. In Workshop on
Variability Modelling of Software-intensive Systems, 2007.

[7] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated

Reasoning on Feature Models. Proc. Int’l Conf. on Ad-
vanced Information Systems Engineering, 2005.

[8] G. Botterweck et al. Towards Supporting Feature Configu-

ration by Interactive Visualization. In Workshop on Visuali-
sation in Software Product Line Engineering, 2007.

[9] W. chun Feng, X. Feng, and R. Ce. Green supercomputing

comes of age. IT Professional, 10(1):17–23, 2008.

[10] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2002.

[11] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[12] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged

configuration using feature models. In Proc. Int’l Software
Product Line Conference, pages 266–283, 2004.

[13] Dave Zubrow and Gary Chastek. Measures for Software

Product Lines. Technical Report CMU/SEI-2003-TN-031,

Carnegie Mellon University, 2003.

[14] S. Deelstra, M. Sinnema, and J. Bosch. Product derivation in

software product families: a case study. Journal of Systems
and Software, 74(2):173–194, 2005.

[15] G. Graefe. Database servers tailored to improve energy effi-

ciency. In Software Engineering for Tailor-made Data Man-
agement, pages 24–28, 2008.

[16] W. A. Hetrick et al. Incremental return on incremental in-

vestment: Engenio’s transition to software product line prac-

tice. In Proc. Conf. Object-Oriented Programming, Systems,
Languages and Applications, 2006.

5http://fame-dbms.org
6http://vierfores.de

[17] F. Hunleth and R. Cytron. Footprint and Feature Manage-

ment Using Aspect-Oriented Programming Techniques. In

Proc. Int’l Conf. on Languages, Compilers, and Tools for
Embedded Systems, pages 38–45. 2002.

[18] K. Kang et al. Feature-Oriented Domain Analysis (FODA)

Feasibility Study. Technical Report CMU/SEI-90-TR-21,

SE Institute, Carnegie Mellon University, 1990.
[19] C. W. Krueger. New methods in software product line prac-

tice. Commun. ACM, 49(12):37–40, 2006.
[20] F. Loesch and E. Ploedereder. Optimization of Variability

in Software Product Lines. In Proc. Int’l Software Product
Line Conference, pages 161–160. 2007.

[21] R. Lopez-Herrejon and S. Apel. Measuring and Character-

izing Crosscutting in Aspect-Based Programs: Basic Met-

rics and Case Studies. In Proc. Int’l Conf. Fundamental Ap-
proaches to Software Engineering. 2007.

[22] P. Martin et al. Managing Database Server Performance to

meet QoS Requirements in Electronic Commerce Systems.

Int. J. on Digital Libraries, 2002.
[23] T. McCabe. A complexity measure. IEEE Trans. Softw.

Eng., 2(4):308–320, 1976.
[24] S. McConnell. Code Complete, Second Edition. Microsoft

Press, 2004.
[25] H. Ossher and P. Tarr. Hyper/J: Multi-Dimensional Separa-

tion of Concerns for Java. In Proc. Int’l Conf. on Software
Engineering, pages 734–737. 2000.

[26] A. Porter and C. Yilmaz. Distributed continuous quality as-

surance: The skoll project. In Workshop on Remote Analysis
and Measurement of Software Systems, pages 16–19, 2003.

[27] C. Prehofer. Feature-Oriented Programming: A Fresh Look

at Objects. In Proc. Europ. Conf. Object-Oriented Program-
ming, volume 1241, pages 419–443. 1997.

[28] R. Racu et al. Methods for power optimization in distributed

embedded systems with real-time requirements. In Proc.
Int’l Conf. on Compilers, Architecture and Synthesis for Em-
bedded Systems, pages 379–388. 2006.

[29] M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sincero,

S. Apel, T. Leich, O. Spinczyk, and G. Saake. FAME-

DBMS: Tailor-made Data Management Solutions for Em-

bedded Systems. In Workshop on Software Engineering
for Tailor-made Data Management (SETMDM), pages 1–6.

2008.
[30] N. Siegmund et al. Integrated Product Line Model for Semi-

Automated Product Derivation Using Non-Functional Prop-

erties. In Workshop on Variability Modelling of Software-
intensive Systems, pages 25–31, 2008.

[31] J. Sincero et al. On the Configuration of Non-Functional

Properties in Software Product Lines. In Software Product
Line Conference, Doctoral Symposium, 2007.

[32] M. Steger et al. Introducing PLA at Bosch Gasoline Sys-

tems: Experiences and Practices. In Proc. Int’l Software
Product Line Conference, pages 34–50, 2004.

[33] D. Streitferdt, M. Riebisch, and I. Philippow. Details of For-

malized Relations in Feature Models Using OCL. Engineer-
ing of Computer-Based Systems, 00:297–304, 2003.

[34] Suzanne Rivoire and others. JouleSort: a balanced energy-

efficiency benchmark. In ACM SIGMOD Record, 2007.
[35] J. White et al. Automating Product-Line Variant Selection

for Mobile Devices. In Proc. Int’l Software Product Line
Conference, 2007.

