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Abstract—As the ARM processor is receiving increased at-
tention due to the fast growth of mobile technologies and
the internet-of-things (IoT), it is simultaneously becoming the
target of several control flow attacks such as return-oriented
programming (ROP), which uses code present in the software
system in order to exploit memory bugs. While some research can
detect control flow attacks on architectures like x86, the ARM
architecture has been neglected. In this paper, we investigate
whether ROP attack detection and prevention based on hardware
performance counters (HPC) and machine learning can be
effectively transferred to the ARM architecture. Given the ob-
servation that ROP attacks exhibit different micro-architectural
events compared to benign executions of a software, we evaluate
whether and which HPCs, which track these hardware events, are
indicative on ARM to detect control flow attacks. We collect data
exploiting real-world vulnerable applications running on ARM-
based Raspberry Pi machines. The collected data then serves as
training data for different machine learning techniques. We also
implement an online monitor consisting of a modified program
loader, kernel module and a classifier, which labels a program’s
execution as benign or under attack, and stops its execution once
the latter is detected. An evaluation of our approach provides
detection accuracy of 92% for the offline training and 75%
for the online monitoring, which demonstrates that variations
in the HPCs are indicative of attacks on ARM architectures.
The performance overhead of online monitoring evaluated on
8 real-world vulnerable applications exhibits a moderate 6.2%
slowdown on average. The result of our evaluation indicates that
the behavioral changes in micro-architectural events of the ARM
platform can play a vital role in detecting memory attacks.

Index Terms—ROP Detection, ARM, HPC, Machine Learning,
Online Monitor

I. INTRODUCTION

The Advanced RISC Machine (ARM) processor is a modern
processor being widely used in many everyday devices such
as smartphones, thermostats, refrigerators, and smartwatches.
ARM claims that more than 200 billion ARM processors have
been shipped by 20211. Due to the fast growth of mobile
technologies and the internet-of-things (IoT) [31], ARM is
becoming a more appealing target for control flow attacks
aiming to acquire the capability to control a system. A popular
method to that end is code injection, where an attacker exploits
memory bugs as to maliciously altering the program’s behavior
or even taking full control over a system. Memory exploitation

1https://www.arm.com/blogs/blueprint/200bn-arm-chips

can be done by writing new machine code into the vulnerable
program’s memory or by reusing existing code. The latter is
imperative when a protection technique known as W ⊕ X [1]
is applied, which stipulates that memory is either writable
or executable (but not both). Return-into-libc (RILC) [33] is
a relatively simple code-reuse attack where a call stack is
manipulated such that control is transferred to the beginning
of an existing libc function, such as system(). For maximum
expressiveness [15], return-oriented programming (ROP) [6]
was introduced, which exploits a software vulnerability by
chaining existing gadgets (small snippets of code ending
in a return opcode) together in arbitrary ways. Moreover,
Checkoway et. al. [8] show that ROP attacks can be mounted
even without using return instructions, on both the x86 and
ARM architectures.

To detect and protect against code-reuse attacks on ARM
(e.g., ROP and its sibling jump oriented programming
(JOP) [4]) some techniques have been proposed that try to
enforce control flow integrity (CFI) via dynamic binary in-
strumentation (DBI) [17], [28] or the ARM CoreSight debug-
ger [21], [22], [23], [25], [24], supplemented with meta-data
collected by static analysis. Most of them rely on a shadow
call stack (SCS) [27] for stateful backward edge protection
(i.e, to detect ROP), while using a range of different static
forward-edge policies such as branch-table (generated from
CFG) and branch regulation (BR) [19] (i.e., to detect JOP).
However, the techniques that use dynamic instrumentation
suffer from high performance overhead while those that use the
ARM CoreSight debugger suffer from high storage overhead.
Besides, the hardware monitor that uses the hardware debugger
could drop traces given a sufficiently high branch rate since
the monitor requires more time to process a trace than the rate
at which branches occur on the target processor [12]. Another
limitation of using debugger traces to detect CRA attacks is
that the hardware debugger can be used by an attacker to
circumvent the security of the system. If the attacker can
access the debug interface, he could use it to tamper with code
and data memory, or even disable the hardware monitor by
tampering with the tracing mechanism [12]. Therefore investi-
gating whether another line of defense can detect ROP attacks
on ARM accurately and precisely with low performance and
storage overhead is advisable.
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The ARM processor provides hundreds of hardware events
related to instructions that can be monitored during process
execution using hardware performance counters (HPC) [10].
On x86 there exist research that tries to detect ROP attacks by
investigating the characteristics of hardware events during an
attack using HPCs and machine learning [29], [13]. However,
to the best of our knowledge there is no corresponding research
for ARM. Hence it is important to investigate whether such
a technique can detect code reuse attacks, such as ROP and
JOP, on ARM-based applications.

In this paper, we evaluate the suitability of a combination of
HPC and machine learning techniques to detect and prevent
ROP and JOP attacks on the ARM platform. Note that the
myriad of HPC events on ARM differ from x86, as well
as the execution model (e.g., there is no dedicated return
opcode on ARM). The HPCs count the occurrence of certain
hardware events on the ARM processor when executing a
program, but it has not been investigated whether the events
for normal and ROP attack executions differ significantly
enough to enable automatic detection. In this paper, we create
a machine learning model of the behavior on ARM-based
Raspberry Pi machines to address this question empirically.

Our machine learning approach computes models for run-
time monitoring. The offline training examines several ma-
chine learning techniques and generates a set of classifica-
tion models from HPC training data collected during benign
executions and attacks. To that end, we developed a novel
tracer that commences recording of HPC events in executions
with ROP attacks only when this attack actually starts (i.e.,
the first gadget of the exploit executes), which improves the
classifier’s accuracy by 12% over recording the program’s
complete execution as previous work. The runtime monitor
contains a modified program loader, a kernel module and
a classifier. The program loader configures the CPU using
the tool perf as to track the set of HPCs required for the
trained classifier, the kernel module computes the delta of
these HPCs each time an interrupt occurs and feeds these
values to the machine learning-based classifier, which labels
the recent program execution as an attack or benign.

To obtain an optimal classification model our approach
trains models using multiple machine learning approaches.
Of eight machine learning techniques examined, the optimal
classification model trained – SVM with a RBF kernel –
displays a 92% and 91% accuracy for Raspberry Pi 4 and Pi
3, respectively. Leveraging this optimal classifier we evaluate
ROP attack detection via runtime monitoring on Raspberry Pi
using 15 exploits (based on four ROP attack variants) of real-
world vulnerable applications. The detection of these attacks
at runtime provides 75% accuracy, and we will elaborate on
possible technical reasons for this difference.

Finally, we compared the detection accuracy of ROP vs
JOP as well as Raspberry Pi 3 vs. Pi 4 (using dedicated
models for each processor), which only yield insignificant
differences when using dedicated models for each type. The
latter is in sync with x86, where even switching inside the
same processor family resulted in a significant decline of the

detection rate [29].
In summary, the major contributions of this paper revolve

around investigating how well a promising line of defense
against code-reuse attacks on the x86 platform transfers to
the ARM platform:

• In order to evaluate how well control-flow attacks can
be detected on the ARM platform using HPCs and
machine learning techniques we implemented a runtime
monitor containing a modified program loader, kernel
module and a classifier implemented in the kernel space
to synchronize with the unmaskable kernel interrupts that
trigger HPC reading.

• A novel debugger (tracer) that selectively records the
actual attack section of a program subject to a control
flow attack, in order to improve the classification model
during the offline training.

• Compilation of a benchmark of 15 exploits (of four ROP
variants) for the ARM platform (i.e., Raspberry Pi) from
8 real-world vulnerable applications. This benchmark
is leveraged for offline training and online monitoring.
Given existing ROP exploits are predominantly for x86
processors generating exploits for ARM processors is a
complex, mostly manual task.

• A comparison of eight machine learning techniques to
identify the optimal classification model.

• An evaluation of the ROP attack detection’s accuracy
and performance overhead considering various evaluation
criteria.

II. BACKGROUND

A. Return-Oriented Programming on ARM

A ROP2 attack is a code-reuse attack in which an adversary
generally leverages a buffer overflow to overwrite parts of the
stack in order to divert the program’s control flow to existing
executable code sections of the program. The core idea of ROP
on ARM is to exploit the presence of gadgets (small instruction
sequences) that induce some well-defined behavior, such as
returning using POP or branching using BLX instructions [11].
Figure 1 presents two gadgets, one ending in POP and another
ending in BLX. In the first gadget the first instruction moves
the value in register r4 to register r0 (which is used as the first
argument of a function call), subsequently the values on the
top of the stack are popped to registers r4 and pc, which alters
control flow depending on the value loaded to pc. Similarly,
the instruction blx r3 in the second gadget changes the flow of
the program to the address in r3. Selecting such gadgets (e.g.,
with the help of gadget discovery tools such as ROPgadget3)
and chaining them together properly, an adversary can build
complex exploits to induce arbitrary behavior in the target
program to a malicious end.

2In the sequel we will use the term ROP for all gadget-based code-reuse
attacks.

3https://github.com/JonathanSalwan/ROPgadget



mov r0 , r4 ;
pop { r4 , pc } ;

(a) pop based gadget

mov r0 , r7 ;
b l x r3 ;

(b) branch based gadget

Fig. 1: Gadget examples on the ARM platform

1) ROP variants on ARM: According to the differences in
the (control-flow manipulating) last instruction, ROP attacks
can be classified into ret-based ROP and jmp-based ROP
or jump-oriented programming (JOP). Since ARM does not
provide a ret opcode, the POP instruction, which moves a
return address from the stack into the pc is used instead,
i.e., gadgets ending in pop(...,pc) can be used to perform a
ROP attack. Conversely, JOP uses gadgets ending in a blx r
instruction, where r represents a general-purpose register that
stores a gadget’s address. Figure 1 contains POP-based and
branch (BLX) based gadgets for ROP and JOP attack variants,
respectively. The comparison of ROP and JOP attacks on the
x86 platform was initially presented by Bletsch et al. [5]. For
the ARM platform, we have designed our own model, which
is presented in Section III-A

B. Hardware Performance Counters (HPCs)

HPCs, which have been available in modern processors
(such as ARM, AMD, and Intel) for more than a decade [10],
monitor and measure events that occur at the CPU level
during process execution related to instructions. In order to
obtain HPC information, initially the HPCs must be configured
according to the events of interest. Then, polling or sampling
can be used to read the HPC values at runtime [10]. When
polling is used the HPCs can be read at any instant whereas for
event-based sampling the occurrence of events triggers reading
HPCs.

Though the initial purpose of HPCs was for debugging,
they have also been used in several other applications, such
as vulnerability research [29]. Profiling tools, such as Linux’s
perf4, allow HPC data to be obtained using several methods,
but that flexibility comes at the expense of yielding different
counter values for the same application due to the multi-
process environment and the non-determinism of HPCs [10].

C. Machine Learning

Machine learning is a collection of methods to automate
data-driven model building and programming through a sys-
tematic discovery of statistically significant patterns in avail-
able data [2]. Machine learning algorithms build a mathemat-
ical model based on sample data, known as “training data”, in
order to make predictions or decisions without being explicitly
programmed to do so. Machine learning algorithms are used in
a wide variety of applications, such as email filtering, malware
detection and other similar tasks that cannot be easily solved
using conventional algorithms. A selection of these algorithms
is presented in Appendix A

4https://en.wikipedia.org/wiki/Perf_(Linux)

Fig. 2: Our approach to detect and prevent ROP attacks

III. APPROACH

The approach we use to detect and prevent ROP attacks on
ARM platforms is based on learning the behavior of micro-
architectural events in the CPU, combining HPC readings and
machine learning techniques. Figure 2 shows our approach
to detect and prevent ROP attacks. It starts with creating
exploits for different real-world vulnerable applications on the
ARM platform. Subsequently, we collect and pre-process the
required training data by profiling both ROP attack and benign
executions and reading the HPC values using the kernel’s perf
event profiler. Next, we apply machine learning techniques to
train a set of models that detect and prevent ROP attacks in
terms of binary classification of the programs’ executions into
benign or under attack/ROP based on the data collected from
the HPCs. The offline training phase determines a combination
of events that characterize ROP and, benign executions. After
finding the model that provides the best combination of HPC
events for attack detection, we use our online monitoring
technique to detect and prevent the ROP attacks in a real-time
execution setting.

At a high level we re-evaluate the approach of HadROP [29]
and EigenROP [13] in the sense that we also leverage HPCs
and machine learning to detect ROP attacks. However, we
are investigating this approach’s applicability to the ARM
platform (with its growing prevalence) due to its peculiar
instruction set (no explicit ret instruction) and dedicated set
of HPC events. Moreover, we are training several machine
learning classifiers and choosing the optimal algorithm based
on its performance. In addition, we selectively record the
actual micro-architectural events of the ROP attack section
only, rather than of the entire ROP attack execution, which
increases our classifier’s accuracy from 80% to 92%. Finally,
unlike EigenROP our machine learning approach follows su-
pervised learning and the online monitoring section also differs
from HadROP’s approach in its program loader and classier
implementation. All the steps of our approach are explained
in detail below.

https://en.wikipedia.org/wiki/Perf%5f(Linux)


A. ROP exploit creation on ARM

In this section, we present how to create ROP exploits for
vulnerable real-world applications on the ARM platform, as a
sufficient set of ROP-affected malicious executions is required
to train a stable classifier. Although ROP attacks on ARM are
not a new idea, exploits of real-world vulnerable applications
are hard to find. The first challenge entails installing and
compiling vulnerable applications originally developed for x86
on the ARM platform and reproducing exploits known from
x86, i.e. finding proper ARM gadgets and chaining these
gadgets together into an ARM-specific exploit. The existing
ROP detection approaches [21], [22], [23], [25], [24] for ARM
use not more than five (3 ROP and 2 JOP) simple example
attacks based on shellcodes provided by shell-storm5, which
exploit programs that are by no means real-world.

In general, the exploit creation process for ARM is chal-
lenging as we need to customize an available ROP attack
for a different platform. Hence, we first need to locate the
vulnerable code in the program, i.e., the size of the buffer
vulnerable to buffer overflow which determines the position
of the return address on the stack succeeding the buffer.
Then, we use ROPgadget to identify gadgets that can be
chained to perform the ROP attack types we need. Finally,
we create the ROP exploit (payload) by exhausting the buffer
with random values (e.g., "AAA...") until we reach the return
address and overwriting the return address with the address
of the first gadget. The subsequent values (usually return
addresses of further gadgets) must be carefully selected such
that the gadgets are chained in the order given by ROPgadget
to accomplish the intended attack.

Moreover, to increase the diversity of the training and
testing data set, we implemented several ROP attack variants
(Ret2ZP [18], JOP [4], Ret2mP [35] and Stack pivoting [30]),
which, based on the types of gadgets used to create gadgets
chains, can be generalized into ROP (gadget chains ending in
POP) and JOP (gadget chains ending in BLX) attacks. More
generally, Figure 3 shows how we modeled the ROP and JOP
attack exploits creation on ARM platforms using pop-based
and blx-based gadgets. In ROP, gadget addresses are loaded
into the program counter (PC) register using POP. In JOP,
control flow (CF) is driven using a special dispatcher gadget
that executes the gadget chain. A register that points into the
gadget address list is used as the virtual program counter. In
both variants, to provide arguments to a function, the contents
of function argument registers (i.e., r0-r3) must be assigned
before CF is redirected to the desired function. For instance,
if we want to open the system’s shell the register r0 must
point to the address of “/bin/sh” before CF is directed to
the address of the system function. Overall, we developed 15
exploits (8 ROP and 7 JOP) attacking 8 real-world vulnerable
applications, which we have made publicly available for
research on Github6.

5http://www.shell-storm.org/
6https://github.com/ghiwet/ARM-ROP-exploits-benchmark

B. Data Collection on Arm using HPCs

Data collection on the ARM processor is a most challenging
process since there is no tool available that can directly and
continuously collect and store the relevant data separately from
the program to be executed. So we had to modify existing
profiling tools such as perf and the Linux kernel module
on ARM to enable recording of HPC data. Furthermore,
we developed a program that traces the ROP program and
records only the actual ROP section, i.e., starts just before the
execution of the first ROP gadget.

To record HPC data via perf the interrupt handlers of the
performance monitoring unit (PMU) in the ARM processor
must be modified. The interrupt handlers then regularly poll
the HPC counters, which contain the frequencies of the
hardware events since the previous interrupt, as attributes for
model training. We leverage the kernel message log (printk())
to store that data for offline training.

1) Tracer tool to record only the ROP part: During a ROP
attack, the stack is overwritten by the adversary with a chain of
gadgets pointing to existing executable binary code. However,
the program execution exhibits regular behavior until the first
gadget is invoked, as the actual ROP attack, which manipulates
the program’s control flow, starts at that time. To gather HPC
data only for the actual ROP process, we implemented a tracer
tool that reads configuration data from a file, including the
first gadget’s address (to set a breakpoint), the path to the
vulnerable application and the ROP attack’s payload.

The tracer acts like a debugger, injecting a trap instruction
via the ptrace API, which suspends the target process at the
beginning of a ROP chain. In summary, the tracer performs
the following steps to exclusively record the ROP behavior:
First, it suspends the program and replaces it with a forked
child process. Then, it injects the trap (i.e., a synchronous
interrupt caused by an exceptional condition, in our case a
breakpoint) and runs the vulnerable program until the break-
point is reached, indicating that the actual ROP execution is
about to begin. Thus perf record is triggered to record the
HPC data for the remainder of the program’s execution.

In order to virtualize the HPC readings to each process
and thus remove noise from concurrently executing processes
we apply the -p option to perf record. However since only a
certain number of HPC events can be recorded at any time, we
sample them in smaller batches and train the machine learning
algorithms with the combined data in order to select the most
relevant HPC event types (features) for ROP detection.

C. Offline learning using HPC data

The offline model learning phase on a high level follows
the approach of HadROP [29]. Apart from considering ARM
instead of x86, we are also evaluating a number of machine
learning techniques beyond a SVM. Training data is gathered
by recording the HPC features based on a given set of ROP
attacks and benign program executions. Using feature selection
techniques we derive the best classification model for online
ROP attack detection via the learned classifiers. To determine
the models, we use several machine learning (ML) techniques



(a) ROP model (b) JOP model

Fig. 3: ROP vs JOP

that classify the feature vectors into malicious (ROP attack)
and benign. The feature vectors comprise the deltas of the
HPC counts per sampling period of a particular program run.
The sampling period needs to be fixed before collection of the
training data starts and cannot be changed subsequently.

The model generated using the offline training is expected
to contain a small subset of the large number of available HPC
events by applying feature selection techniques that select the
most meaningful HPC events for ROP detection. The problem
with feature selection is that the measurements of HPC events
during the data collection phase are noisy for several reasons:
The complexity of the CPU and non-determinism of the HPC
specification renders reproducing HPC events across multiple
sub-sampling runs difficult. Moreover, context switching might
trigger additional events since HPCs are saved to the process
control block.

Despite this problem, the feature selection technique helps
determine a small subset of HPC event types supported by
Raspberry Pi that best matches the expected results from an
in principle large number of events (in our case 51). Note
that feature selection is imperative as the selected number
of event types must also adhere to the constraints of the
target CPU. For instance, on Raspberry Pi, perf cannot sample
more than 8 event types simultaneously. To resolve this issue
we sample using subset batches of the events and combine
them (synchronized according to time) for offline learning
and feature selection in order to determine the most suitable
combination of HPC events.

Model Selection Methods: We train eight ML classifiers
by providing two sets of feature vectors, collected from ROP
and benign program runs. Moreover, parameters like an error
penalty C, which allows more or fewer mis-classifications,
are given as input parameters. Choosing the appropriate pa-
rameters that result in an optimal model is not trivial. Hence,
we select the optimal parameters through dynamic oscillating
search [34].

Our model selection approach uses k-fold cross-validation
to optimize the selection. Cross-validation is a statistical
method re-sampling procedure to evaluate and compare ma-
chine learning algorithms by splitting data into two segments:
one segment for training the machine learning model, and

the other segment to validate it. Typically, the training and
validation data sets must cross-over in successive rounds such
that each data point can be validated against. These evaluation
results guide the dynamic oscillating search, which determines
the next set of potentially optimal features and parameters.
Iterating this process results in optimal parameters, e.g., for
SVM in an error penalty and optimal hyper-plane, based on a
subset of HPC event types of appropriate size. Considering the
bias-variance trade-off in k-fold cross-validation, we choose
k = 10 as the model selection method as recommended by
Kohavi et al. [20].

D. Online Kernel Monitor

Figure 4 presents our online monitoring process using the
machine learning model, which consists of a modified program
loader, a kernel module and a classifier. The program loader
configures the CPU using Linux’s perf tool to track the set
of HPCs that are relevant for the trained model to classify an
execution as ROP or benign. Moreover, it notifies the CPU to
raise an interrupt every N clock cycles. At each interrupt the
kernel module computes the deltas of the HPC count values
and feeds those to the classifier, which is implemented in the
kernel space to synchronize with the readings of the HPCs
during each interrupt. Whenever the classifier determines that
a ROP attack behavior occurred, the process can be suspended
or other defensive actions, such as notifying security person-
nel, can be taken. As HPCs are updated in hardware, the
performance overhead of online monitoring stems only from
handling the interrupt, reading the counters, and evaluating the
classifier.

1) Program Loader: We modified the routine that starts
a program (program loader). Concretely, we modified the
_libc_start_main function, which calls the main function of
a program, to configure the HPCs selected for classifica-
tion. In particular, we are adding the perf record command,
which samples these HPC events, before the call to the main
function of the program. The perf record command uses the
frequency N and selected features (HPC events) of the optimal
classification model as input in addition to the target pro-
gram to be runtime monitored. To use this modified program
loader we leverage the environmental variable LD_PRELOAD.



Fig. 4: Our online monitoring approach to detect and prevent
ROP attacks

LD_PRELOAD contains one or more paths to shared libraries,
or shared objects, that will be loaded before any other shared
library including the C runtime library (libc.so). However, in
order not to end up calling the modified loader recursively we
need to unset LD_PRELOAD after configuring the HPCs.

2) Kernel module: The kernel module contains a modifica-
tion of perf’s interrupt handler to recognize the configuration
specific to the classifier. Note that interrupts produced by
HPCs are recognized as non-maskable interrupts, which must
be handled by the kernel and cannot be ignored (masked). The
interrupt handler extracts the delta (change of counts) readings
of the selected7 HPC events at each interrupt and passes it as
an array to the monitor that contains the classifier, which in
turn performs the classification and redacts the execution based
on the output of the classifier.

3) The classifier: During offline training, several machine
learning techniques are evaluated (see section IV). Given
that the SVM provides the best classification model we use
that model for online monitoring. LibSVM determined the
best HPC events that characterize ROP attacks during offline
training. However, we cannot directly use LibSVM for online
monitoring since the kernel module, which extracts the HPC
readings during the interrupt, is not correctly synchronized
with user space, which would call LibSVM’s svm-predict
function. Due to the lacking synchronization most of the HPC
readings would be missed due to delays in the user space
actions such as extracting the model file and performing the
SVM prediction calculations. Hence, we decided to implement
the SVM prediction (classifier) directly in kernel space. Yet,
there are two problems with implementing the SVM’s predic-
tion in the kernel module.

1) Reading the SVM model file in the non-maskable inter-
rupt context

2) Using floating point arithmetic in the kernel module

7HPC events selected by feature selection to provide the optimal classifi-
cation model

The kernel space does not support reading files in the inter-
rupt context. Hence we cannot read the relevant classification
inputs directly from the optimal classification model file. Since
this data is static, we extract the relevant data from the model
file and store it into arrays and/or variables before online
monitoring.

Moreover, the kernel module is unable to support floating
point arithmetics [3, ch. 5], which prohibits implementing the
SVM prediction formula directly. Hence, we opted for solving
this problem using fixed-point arithmetic8. For instance, con-
sidering the SVM prediction formula for the RBF kernel given
below, we need to use fixed-point arithmetic to represent e,
γ and the support vector coefficients (ai), which usually have
floating point values. The bound nSV in the formula represents
the number of support vectors.

y =

nSV∑
1

ai ∗ e−γ∗|X−Xi| + b

With both of these issues solved the classifier can now
receive HPC readings from the interrupt handler and predict
the class of the program execution. Based on the output of
the classifier the online monitor can then decide what to do
with the running application. If the behavior of a ROP attack
is detected the monitor can suspend the process or notify the
responsible body (e.g. security personnel) about the issue.

IV. EVALUATION

Our evaluation environment consists of Raspberry Pi 4
Model B and Raspberry Pi 3 Model B with kernel version
5.4. The evaluation comprises multiple experiments to obtain
the parameters that provide an optimal model of ROP attack
classification, to measure the accuracy of ROP attack detection
and of the performance overhead of online monitoring.

A. Optimal model selection and accuracy of offline training

To find the optimal model during offline training, we
perform many experiments with varying sampling frequencies,
several machine learning techniques and their classification
parameters on both Raspberry Pi 3 and Pi 4.

1) Accuracy evaluation with respect to different frequen-
cies: In order to reduce the space for the sampling rate we con-
ducted initial experiments with only one ML technique [29].
Table I shows the classification accuracy of SVM models for
different frequencies. The cost (C) and gamma (γ) parameters
that provide the best accuracy for their respective frequencies
are also provided. The experiments use the crossover value
k = 10. The result of this evaluation shows that data collected
by HPC recording with frequency 4,000 Hz on Raspberry Pi
3 provides the best accuracy, which is 91%, and on Raspberry
Pi 4 data collected by recording with frequency 9,000 Hz
provides the best, which is 92%, but the recording with
4,000 Hz on Raspberry Pi 4 also provides similar results, i.e.,
it is 91%. However, this does not mean we always get the
same results each time we collect data with these frequencies

8https://en.wikipedia.org/wiki/Fixed-point_arithmetic



TABLE I: Accuracy evaluation of ROP attacks using different frequencies on both Raspberry Pi 3 and Pi 4. We also show the
optimal C and γ that provide the best accuracy for each frequency.

Frequencies Pi 3 model B Pi 4 Model B
Cost (C) Gamma (γ) Accuracy Cost (C) Gamma (γ) Accuracy

3000 4 0.000031 0.89 4 0.000031 0.87
4000 64 0.000488 0.91 256 0.000488 0.91
5000 4 0.000122 0.85 256 0.000488 0.89
6000 4 0.000031 0.80 256 0.000488 0.88
7000 16 0.000031 0.82 64 0.000488 0.87
8000 256 0.000031 0.82 256 0.000122 0.84
9000 4 0.000031 0.82 256 0.000031 0.92

TABLE II: Precision, recall and accuracy evaluation of ROP attacks using different machine learning techniques for both
Raspberry Pi 3 and Pi 4.

Model Name Pi 3 model B (4000Hz) Pi 4 Model B (4000Hz) Pi 4 Model B (9000Hz)
Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

KNeighbors 0.89 0.87 0.89 0.72 0.81 0.78 0.87 0.95 0.91
AdaBoost 0.85 0.96 0.90 0.80 0.97 0.89 0.84 0.90 0.88

GradientBoosting 0.88 0.96 0.92 0.88 0.97 0.92 0.86 0.93 0.90
DecisionTree 0.82 0.96 0.88 0.85 0.97 0.91 0.87 0.83 0.85

RandomForest 0.83 0.96 0.89 0.85 0.94 0.90 0.88 0.90 0.90
ExtraTrees 0.85 0.96 0.90 0.85 0.97 0.92 0.87 0.96 0.92

LinearDiscriminant 0.70 0.98 0.79 0.72 0.98 0.84 0.85 0.98 0.92
SVM RBF 0.87 0.98 0.91 0.82 0.98 0.90 0.85 0.98 0.92

due to the non-deterministic behavior of HPC readings. The
HPC readings vary at each execution for the same application
even with the same frequency. Although the frequencies that
provide the best model vary, we observe that there is no
significant difference between Raspberry Pi 3 and Pi 4 in the
offline classification accuracy.

2) Accuracy evaluation with respect to different machine
learning techniques: With the reduced set of sampling rates,
we then evaluate our offline training with respect to multiple
machine learning techniques, the result of which is provided
in Table II. In addition to the accuracy, we also evaluate recall
and precision of the models obtained using the frequencies
4,000 Hz on Raspberry Pi 3, and 4,000 Hz and 9,000 Hz
on Raspberry Pi 4. Note that recall indicates the percentage
of feature vectors (FV) correctly classified as ROP attack
of all FVs of ROP attacks. Similarly precision indicates the
percentage of the FVs correctly predicted as ROP attack in
all FVs classified as ROP. So both the recall and precision
provided in Table II are with respect to the ROP attacks. In
contrast, accuracy measures the overall classification accuracy
for both ROP and benign executions. The training data used in
all experiments is also balanced, i.e., we use the same number
of ROP and normal feature instances as input to the machine
learning techniques.

As we observe from the result, our evaluation indicates that
the detection accuracy of the optimal model using an SVM
kernel is at least in the top two. For instance, considering
the Raspberry Pi 4 ExtraTrees, LinearDiscriminant and SVM
RBF kernel provide the best accuracy which is 92%. However
if we also take the recall both LinearDiscriminant and SVM
RBF kernel have a higher value than ExtraTrees though
somehow less in precision. Similarly if we consider Raspberry
Pi 3 GradientBoosting provides the best accuracy of 92%

whereas SVM RBF kernel provides 91%. However, the SVM
RBF kernel provides better recall than GradientBoosting with
almost similar precision. From these results on both Raspberry
Pi 3 and Pi 4 we conclude that the model obtained using
the SVM RBF kernel is optimal for online monitoring. All
subsequent experiments are thus based on a SVM with RBF
kernel only.

3) Accuracy evaluation with respect to ROP and JOP: We
further evaluated the classification accuracy between ROP and
JOP attacks to understand how different attack types affect the
behavior of the HPC values. Table III provides the accuracy of
both ROP and JOP attacks using different frequencies on both
Raspberry Pi 3 and Pi 4. On Raspberry Pi 3 the models from
ROP attacks yield a higher accuracy than from JOP attacks for
frequencies 3 kHz and 5 kHz. In contrast, considering 8 kHz
and 6 kHz the model from JOP attacks has higher accuracy
than from ROP attacks. For the other frequencies, the accuracy
is similar for both variants. Similarly, on Raspberry Pi 4 the
model from ROP attack provides higher accuracy than from
JOP attacks for 4 kHz but for 3 kHz and 6 kHz frequencies,
the model from JOP provided higher accuracy than the model
from ROP attacks. For the other frequencies, there is not much
difference. These results indicate that we can not generalize
that one attack type is more detectable than the other, i.e., it
depends on the frequencies and even may vary when recording
it again even with the same frequency.

4) HPC events providing the best classification model:
As we observe from the offline training evaluation, we got a
classification accuracy of 92% on Pi 4 and 91% on Pi 3. The
selected HPC events that provide these results for the Pi 4
are: branch-misses, branch-load-misses, ld_spec. Similarly, the
selected HPC events for Pi 3 are: cache-misses, branch-misses,
cid_write_retired/. It is interesting to note that the occurrence



TABLE III: Accuracy evaluation of ROP vs JOP attacks using
for difference frequencies on both Pi3 and Pi4.

Frequency Pi3 model B Pi4 Model B
ROP JOP ROP JOP

3000 0.89 0.85 0.85 0.90
4000 0.86 0.87 0.89 0.82
5000 0.84 0.81 0.85 0.84
6000 0.83 0.87 0.80 0.85
7000 0.81 0.82 0.83 0.82
8000 0.81 0.85 0.82 0.84
9000 0.85 0.85 0.85 0.87

of ROP attacks impact the count of these three HPC events
but significantly of the others, as our feature selection process
could have chosen up to eight HPCs for simultaneous tracking.
These HPC events will also be used for online monitoring, i.e.,
to detect and prevent the ROP attacks.

B. Accuracy of online monitoring

To evaluate the detection and prevention accuracy of our
online monitoring, we used three real-world vulnerable ap-
plications (php, dnstracer, mcrypt), which were not used for
training the model. Since we have benign as well as both ROP
and JOP attacks for these applications, we have a total of 9
tests, out of which 7 are consistently detected correctly, i.e.,
the ROP and JOP attacks in mcrypt go undetected more often
than not. Note that since HPC values are nondeterministic
those detected at one time may not be detected another time
and vice-versa. Moreover, since the HPC recording during an
execution of a program provides many feature instances there
is a high possibility that instances are predicted wrongly during
the attack and benign executions. To minimize this, we have
to look for the optimal maximum number that instances are
predicted 1 (ROP attack) consecutively to determine that a
real attack has started. In our case we used 10, i.e, if 10
consecutive instances are predicted as 1 we assume there is an
attack and the program execution will be suspended, otherwise
we assume that a false prediction of the instances has occurred
and consider the execution as benign. Hence the ROP and JOP
attacks of mcrypt are being mostly undetected probably since
their exploit has small gadget chains relative to the others. In
general, we have also tested our online monitoring with small
hand-crafted ROP attack examples and the detection accuracy
of our online monitoring is around 75%, on average.

C. Performance Overhead of the Online Monitoring

The performance overhead of runtime monitoring is mea-
sured by comparing the time of execution for the ROP attacks
with and without the usage of the runtime monitor. Table IV
shows the performance overhead (slowdown in %) of 8 real-
world vulnerable applications on Raspberry Pi 3 and Pi 4.
For most of them, the slowdown is higher on Raspberry Pi
3 than in Pi 4 but for Php 5.3.5 and Netperf 2.6.0 we got
a higher overhead on Raspberry Pi 4 than on Raspberry Pi
3. However, the execution time of both applications is still
smaller in the Raspberry Pi 4 than on Raspberry Pi 3 if we
consider it separately even with the application of the online

TABLE IV: Performance overhead evaluation of real-world
applications on both Pi 3 and Pi 4.

Application vulnerability slowdown Pi 3 slowdown Pi 4
Crashmail 1.6 8.7% 4.6%
Pms 0.42 11% 9%
Php 5.3.5 CVE-2011-1938 4% 11%
Netperf 2.6.0 7.6% 9%
Wifirix 5.4% 5%
Dnstracer 1.8.1 CVE-2017-9430 5% 4%
Mcrypt 2.6.8 CVE-2012-4409 3% 2.6%
Nethack 3.4.0 CVE-2012-4409 5.6% 4.3%

monitor. For instance, the execution time for Php 5.3.5 on
Raspberry Pi 3 is 1.5s whereas on Raspberry Pi 4 it is 0.5s
with the application of the runtime monitor. In general, the
overhead evaluation using these 8 applications shows that our
implementation of the online monitoring provides a slowdown
in the range of 2.6% –11%. On average the slowdown is 6.3%,
on Raspberry Pi 3, and 6.2% on Raspberry Pi 4, indicating that
the performance overhead is almost identical on both.

V. RELATED WORK

Recently, several hardware-based ROP defense tools such as
HDROP [39], SIGDROP [37], HadROP [29], ROPSentry [9]
were proposed for x86. They use heuristics or machine learn-
ing models which leverage branch misprediction events that
occur at return instructions. HDROP utilizes HPCs such as
mispredicted return events to defend against ROP exploits.
However, it requires the instrumentation of source code to
insert checkpoints and provides substantially high overhead.
Later on, SIGDROP was proposed, which has strict policies to
leverage HPC to efficiently capture and extract the signatures
to detect ROP attacks. However, the policies can be bypassed
by a determined adversary, for example, by inserting one
redundant call-ret paired gadget without causing any mispre-
diction at the return instruction.

The most closely related solution to our work, HadROP [29]
was proposed by Pfaff et al., which uses machine learning
techniques to generate a kernel module that detects and
prevents ROP attacks at runtime using HPC as input data.
However, our solution focuses on the more challenging ARM
architecture, which is leading the market and capable of out-
performing x86 [14]. We also feed much larger data sets from
real-world applications into the offline learning technique than
HadROP. Unlike HadROP, we also evaluated our SVM model
with respect to seven other machine learning techniques.

Das et al. proposed ROPSentry [9], a defense framework,
which can detect ROP by analyzing the ROP exploits and
spraying attacks using hardware events and reduces the per-
formance overhead by an adaptive and a return miss-based
sampling technique, i.e., fetching HPC values at every return
miss. But similar to HadROP, ROPSentry is only available for
x86, not for ARM.

More recently Omotosho et. al [26] provided a primary
investigation on the Xtensa processor architecture to detect
ROP attacks on firmware-only embedded devices using hard-
ware performance counters. However, as a primary work it



does not include online monitoring and the evaluation lacks
consideration of real-world vulnerable applications.

ROP attack detection on ARM. As explained earlier, most
ROP detection approaches are based on x86. However, there
are also initial results on the ARM platform. The work of
Huage et. al. [17] is one of the earlier ROP attack detection ap-
proaches using dynamic binary instrumentation (DBI), which,
however, induces a high performance overhead. To overcome
this limitation Lee et. al. [21] proposed a meta-data driven
approach that uses the ARM CoreSight traces supplemented
with offline binary analysis to generate meta-data information
missed in the debug traces. Then using the information from
the meta-data and the debug traces they apply the shadow call
stack (SCS) [27] approach to verify the integrity of the direct
and indirect call/jump instructions and detect ROP attacks.
However, since this needs high memory/storage overhead
they tried to improve it in their later papers [22], [23] by
instrumenting the binary in the way CoreSight debugger traces
provide full information required for the control flow verifi-
cation. These papers support ROP attack detection using the
SCS [27] approach and JOP attack detection using the Branch
Regulation (BR) [19] approach. More recently CFVerifier [24]
was proposed to overcome the storage overhead caused by the
meta-data in [21] by maintaining table entries only for branch
instructions instead of every instruction. Moreover, CFVerifier
extends CRAs detection on a multiprocessor system where a
number of programs run concurrently across multiple CPUs.

Unfortunately, it has been shown [12] that these detec-
tion approaches can be circumvented via advanced attacks
such as print-oriented programming [7] attacks, counterfeit
object-oriented programming [32], or data-oriented program-
ming [16], which are not directly related to the branch
integrity. Besides, most of the approaches use the ARM
CoreSight debugger based hardware monitor which could drop
traces given a sufficiently high branch rate since the monitor
requires more time to process a trace than the rate at which
branches occur on the target processor [12]. Another limitation
of using debugger traces to detect CRA attacks is that the
hardware debugger can be used by an attacker to circumvent
the security of the system. If the attacker can access the debug
interface, he could use it to tamper with the code and data
memory, or even disable the hardware monitor by tampering
with the tracing mechanism [12]. Moreover, most of these
papers use Branch Regulation (BR) analysis, which provides
only partial indirect branch protection since indirect branches
to any address within the current function are allowed. This
leaves BR somewhat vulnerable to unintended branches since
it allows CRAs which do not cross function boundaries. In
contrast, the HPC and machine learning-based approach does
not use an external hardware debugger and cannot drop traces
during the monitoring. Besides, it does not use any meta-data
that leads to storage overhead. Moreover, since it is using
machine learning it is not specific to a set of given attack
types or branch regulations. To the best of our knowledge we
are the first to investigate ROP attack detection via HPCs and
machine learning on the ARM platform.

VI. LIMITATIONS AND FUTURE WORK

A. Limitations
Even though we have found good detection accuracy in the

offline training, the online detection accuracy has somehow
decreased, potentially due to the fixed-point arithmetics we
resorted to [3], and the lack of preprocessing of the data
since we want to detect attacks at real-time. The following
limitations of our work could also have affected this.

• Data Size: The machine learning classifier was trained
based on data collected from 10 exploits from 5 real-
world vulnerable applications and this might not be
representative of all possible exploits, even though the
data count of the HPCs gathered is sufficient to apply
machine learning.

• Data Quality: As Weaver et al. [38] investigated, the
non-determinism and over-counting characteristic of HPC
readings for hardware events deviates from the expected
result for identical runs.

Moreover, even though the ARM processor architecture
supports Cortex-A (for OS-based applications), Cortex-M (for
microcontrollers) and Cortex-R (for real-time applications),
our implementation targets only the Cortex-A, i.e., our ap-
proach is implemented on Raspberry Pi machines, which are
OS-based Cortex-A ARM processors. Most Cortex-M and
Cortex-R do not provide HPCs yet.

VII. CONCLUSION

This paper addresses the practicability of detecting and pre-
venting ROP attacks using HPCs and machine learning on the
ARM processor, which is getting high attention since it sup-
ports low power consumption with considerable performance,
an attractive combination for mobile technologies and IoT.
First, we crafted several real-life exploits using ROP attacks
from selected vulnerable programs, which provided HPC data
about the execution behavior of these vulnerable programs.
For the ROP attack executions, a small debugger tool called
“tracer” was implemented to record only the real ROP attack
execution part, i.e., after the first ROP gadget starts execution.
The SVM RBF kernel is used for offline training and online
monitoring of our ROP attack detection approach, as when
the detection accuracy of the offline training is evaluated
with respect to 7 additional machine learning techniques, it
is consistently in the very top, i.e., it provides 92% detection
accuracy and no one provides more than that. The detection
accuracy and performance overhead of the online monitoring is
also evaluated and it provides around 75% detection accuracy
with an average 6.2% slowdown overhead. Last but not least
our ROP attack detection and prevention approach using
HPC and machine learning techniques demonstrates that the
characteristics of the hardware events on ARM processors can
be used to investigate whether or not an attack is in progress.
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APPENDIX

A. Machine learning types

Some of the machine learning algorithms that are used in
our evaluation.

• Support Vector Machine (SVM): Constructs a (set of)
hyperplane(s) for classification, regression, or other tasks.
In handling a binary classification task, a SVM provides

https://en.wikipedia.org/wiki/W%5EX


higher accuracy in predictive modeling compared to other
techniques such as Discriminant Analysis [36].

• K-neighbors: It is an algorithm that stores all available
cases and classifies new cases by a majority vote of k-
neighbors.

• Boosting: a family of machine learning algorithms that
convert weak learners to strong ones.

• Decision trees: uses a tree-like model of decisions and
their possible consequences. Decision trees often perform
well on imbalanced data sets because their hierarchical
structure allows them to learn signals from both classes.

• Naïve Bayes: It is a classification technique based on
Bayes theorem with an assumption of independence be-
tween predictors, i.e., the presence of a particular feature
in a class is unrelated to the presence of any other feature.
It is frequently used in imbalanced dataset problems.
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