
Int J Software Informatics, Volume 5, Issue 1–2 (2011), Part II, pp. 231–244 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2011 by ISCAS. All rights reserved. Tel: +86-10-62661040

Feature-Oriented System Design and Engineering

Christian Lengauer and Sven Apel

(University of Passau, Germany)

Abstract This is a personal appreciation and snapshot view of Manfred Broy’s contribu-

tions to the research area of feature-oriented system design and engineering. We sketch the

algebraic approach to the area and relate Broy’s work to it. To give it a concrete context, we

compare it with our own work on feature orientation. There are a number of correspondences

and some differences: Broy works at a higher level of abstraction, the specification level, we

at a level closer to the software structure, the programming level. We put more emphasis

on the concept of program similarity than Broy does.

Key words: component; feature; program algebra; service; software product line; system

specification

Lengauer C, Apel S. Feature-Oriented system design and engineering. Int J Soft-

ware Informatics, Vol.5, No.1-2 (2011), Part II: 231–244. http://www.ijsi.org/1673-

7288/5/i82.htm

1 System Design and Engineering

Early in computing, in the 1950s and 1960s, computer programs were monolithic,
individual entities. As their size and functionality grew, the need for a modular
structure arose and concepts such as abstract data types, objects, and processes were
invented. Different components could be developed by different systems engineers
and, if their interfaces were specified cleanly, the collection of all components would
work together correctly as a system. The paradigm of object orientation, also coined
early on (in the mid-Sixties) with the invention of the programming language Simula,
facilitated the reuse of previously constructed specifications in the extension of system
functionality.

The concept of a component was initially quite implementation-bound. As, in
the Nineties, systems became yet more complex, modularity was required at a higher
level of abstraction, closer to the application domain. There are several names for
this notion – prevalently it has been called a service or a feature. There is no common
agreement on what precisely a service or a feature is and in how the two differ. We
will speak here of features, although Broy speaks mainly of services. For the purposes
of this paper, we mean roughly the same thing.

This project is funded by the Deutsche Forschungsgemeinschaft (DFG).

Corresponding author: Christian Lengauer, Email: lengauer@fim.uni-passau.de

Received 2010-09-09; Accepted 2011-01-03; Final revised version 2011-02-09.

232 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part II

2 Feature Orientation

2.1 Features

A feature is a unit of functionality as observed by the user or stakeholder. In
an automobile, features could be, for instance, the wipers or brakes or the naviga-
tion system (i.e., their respective functionality), in a database system the memory
management or the transaction management. In a phone system, they could be dif-
ferent ways of handling a call when another call is being conducted (e.g., forwarding,
waiting, or cancelling), in a video recorder the option of preprogrammed recording,
etc. The important issue –and one major complication of feature-oriented system
design– is that what appears as a unit to the user does not necessarily translate to
a component in the implementation – often not even to a collection of components.
The general situation is as follows.

A system is viewed as a collection of features (and nothing else!). The addition
of a new feature to the system may cause:

• the addition of new components to the implementation or

• the extension or modification of components that have already been introduced
by previously added features.

In the latter case, one says that the feature is crosscutting the modular structure
of the implementation. This crosscutting nature poses a serious challenge to reliable
feature-oriented system design.

Another serious challenge arises from the influences that different features can
have on each other. It may be that a feature (e.g., of a Web browser) can only
exist in the presence of some other feature (e.g., safe data transmission requires an
encryption protocol) or that two features exclude each other (e.g., only one of a choice
of available rendering engines can be present). Such conditions can be specified by a
feature model. It may also be that the presence of one feature alters the behaviour of
another, possibly, inadvertently. This phenomenon is called a feature interaction. If
the feature interaction is desired, we speak of a feature cooperation, if not, of feature
interference. As an example of feature interference, in a phone system, there are
usually two alternative ways of handling an incoming call when the line is busy: either
enqueue the call in a wait queue or forward the call to another number. Selecting
both features simultaneously may impair the system’s state and integrity.

2.2 Feature composition

In feature-oriented system design, a system is developed by composing features;
composition is the central –if not only– operation needed. It must address all the
challenges mentioned previously: it must respect the feature model and handle cross-
cutting and feature interaction. We use the bullet (•) to denote feature composition.

One way of modelling feature composition formally is as a mapping that takes a
system and a feature to be added and returns the system with the feature added:

• : S × F −→ S

Christian Lengauer, et al.: Feature-Oriented system design and engineering 233

A system with any number of features, f1 to fn, is built by starting with the empty
system, denoted ∅, and adding features one at a time, i.e., by applying feature com-
position repeatedly. Here, we choose to develop sequences of compositions from left
to right1):

(· · · ((∅ • f1) • f2) • · · · fn)

2.3 Feature algebra

The formal approach to system design and engineering has been at the heart
of Broy’s work from the start. His quest has been not only to drive this approach
forward academically but also to convince industry and commerce that the use of
formal models has significant benefits right now and to help cushion and support the
use of formal models with design tools.

Feature-oriented system design can only succeed with a formal approach. In large
systems, the challenges of crosscutting and feature interaction cannot be seriously
addressed informally.

Both Broy and we take an algebraic approach. An algebra comprises sets of
data, the operations on the data, and laws which the operations must satisfy. In
feature-oriented system design, features and the systems they make up are the data,
composition is the central operation. Composition has certain algebraic properties.
Additional properties, not imposed by the algebra, may be imposed by the feature
model; e.g., it may forbid the composition of certain features.

One can adapt the feature algebra as needed. For example, when one views a
system, i.e., a composition of features, again as a feature, the composition operator
must map two source features to the composed target feature:

• : F × F −→ F

and can be made associative:

(f1 • f2) • f3 = f1 • (f2 • f3)

That is, the order in which features are being added can be varied. Note that, in
general, feature composition will not be commutative:

f1 • f2 6= f2 • f1

That is, the positioning of the features in the chain of compositions will not be
variable. But, in special cases, it can be.

An algebra is a wonderful mathematical device for the precise study of varying
properties of features and feature composition and for the comparison of their effects
on system design. In addition, there is the potential of automated support.

2.4 Automated support

A formal model has two major benefits: it provides a precise reference and it can
be implemented. The implementation can be used to derive instances of the model
automatically.

1) Elsewhere, we go from right to left[1].

234 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part II

In system design, automated support has become a major requirement. One has
been realizing increasingly that support tools not based on formal models are difficult
to implement, maintain, and trust.

The use of a feature algebra has three benefits for automated system generation:

• The generator can handle the issues of crosscutting and feature interaction re-
liably.

• By varying the algebra, a variety of generators can be produced easily.

• Based on domain knowledge and the algebraic laws, the generator can exploit
feature-algebraic equations to optimize the corresponding system design.

2.5 Product lines

With feature orientation, the similarity of systems can be exploited conveniently.
The set of all systems that can be composed from a given set of features is called a
product line; the systems are its members or products. The more features two systems
have in common, the more similar they are. One can derive one system from another
by removing certain features and adding others[2].

The concept of a product line is particularly useful when one would like to offer
a system in a, possibly large, number of variations. A product line consists of a set
of features and a feature model. The feature model describes the valid combinations
of features that define products. A by now classic example is the production line of
a car assembly, on which hardly ever two identical products are assembled. Another
example familiar to most of us is an operating system, which varies according to the
platform on which it is being installed and, possibly, according to the needs of the
applications and customers.

2.6 Feature interaction

One main issue of quality assurance in feature orientation is the problem of
feature interaction[3]. Typical questions are:

• Feature referencing : Does the presence of a feature require the presence of some
other feature?

• Feature exclusion: Are two features alternatives in the sense that at most one
of them can be present?

• Feature interference: Does the presence of one feature alter the behaviour of
some other feature in an undesirable way?

• Feature cooperation: Do two features that work well in isolation require addi-
tional functionality to work correctly together?

These questions must be addressed whether one wants to produce just one system or
several similar ones, whether one is interested in product lines or not.

The four issues just mentioned are of primary interest to the stakeholder. Two
other issues are of interest to the feature engineer, the one who develops a feature set
or product line:

Christian Lengauer, et al.: Feature-Oriented system design and engineering 235

• Feature refinement : Can the specification of features be developed by adding
detail step by step? Is there an abstraction hierarchy to reveal or hide details
of features?

• Feature modularity : Can features be specified in isolation? If two features
interfere, can features be added which repair the interference?

Complete feature modularity entails that a system or product line can be specified
by only a set of features and nothing else. This is ultimate feature orientation.

3 Broy’s Approach

Broy and his group have been developing a set of formal methods, called Fo-

cus[4]. Focus can be used for the specification and refinement of the components
of a system and their interactions. The various components communicate via data
streams, which they exchange along interconnecting channels. The behaviour of a
component is specified as a stream-processing function, the entire system as a compo-
sition of stream-processing functions. An independent, in-depth appreciation of the
goals and benefits of Focus can be found in another paper in this special issue[5].

Broy models a service as a partial stream-processing function. That is, it may be
undefined on some inputs. The concept of a subservice is used to decompose a larger
service into parts. One calls this a hierarchical decomposition. S′ is a subservice of
S if it exhibits a subset of the behaviours of S. S′ cannot do more than S; typically,
it does less. This is in contrast to the subtype concept in object orientation, where a
subtype S′ provides additional functionality compared to its supertype S.

The decomposition can violate the property of self-containedness of a subservice.
That is, it may be that a subservice requires input or produces output that is not
captured by its interface. One might consider this input or output interference. A
subservice that exhibits no interference in its input and output is called faithful.

To deal with unfaithful subservices, Broy introduces the concept of a mode[6]. A
mode is an additional interface that captures the nasty inputs and outputs to make
the subservice non-interfering. When composing two subservices, one first captures
their interference in modes and then composes the resulting, self-contained subservices
with a benign operator that expects non-interfering operands.

The introduction of modes is a way to increase feature modularity. The imposi-
tion of modes can make a feature modular, i.e., fully specified by the behaviour via
its interface, which otherwise would not be.

One interest of Broy has been the specification of automotive products[7,8]. Of
course, Focus can be applied not only to automotive systems but also to other
systems with similar requirements, such as telecommunication systems, enterprise
management systems, and what have you.

The most powerful tool for the support of Focus is called AutoFOCUS[9]. A
specification can be entered conveniently via a graph editor. A stream-processing
function is represented by a box, a stream-carrying channel by an arrow. Semantics
is added by defining –also GUI-supported– an automaton in a tabular form. The
automaton can be displayed graphically. Other forms of more partial semantic spec-
ifications are also provided, e.g., sets of communication sequences.

236 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part II

The formal specification in Focus facilitates a check of desirable properties of
the system’s behaviour such as the absence of deadlocks or the strong causality of
all components, i.e., the fact that any component’s output is influenced only by the
input which the component received strictly before the output is produced. The
use of AutoFOCUS makes this check easy for finite-state systems: via automatic
model checking. For other applications, there is a connection to the proof assistant
Isabelle[10].

One common way of adding structure to a system is by refinement, and Broy has
addressed this concept in depth[4]. A refinement adds requirements to a specification.
The purpose of a refinement is to reduce non-determinism and partiality on the way
to an implementation. The ideal endpoint of a refinement chain is a deterministic,
efficient implementation that exhibits the expected behaviour on all possible inputs.
AutoFOCUS offers a mechanism to check the validity of a refinement.

If fully and correctly specified, the behaviour of the system can be simulated by its
automaton in AutoFOCUS. In some cases (e.g., software systems), the automaton
may serve as the actual implementation, in others (e.g., automobiles), it may serve
as a reference and as a platform for experiments.

4 Our Approach

Like Broy, we take a language-independent approach. However, while he refers to
a fixed specification model, stream-processing functions, we allow a variety of models.
In fact, one of our central goals is to make our approach model-extensible, i.e., to
enable the addition of new models and languages as the need arises. A language
which qualifies for addition must be what we call feature-ready, i.e., it must provide a
sufficient amount of structure to facilitate the definition and manipulation of features.
One central requirement is that each component be identifiable by a unique name.
But neither object orientation, nor an imperative semantics, nor even an executable
semantics are required.

To reiterate: Broy takes the view of a feature engineer whose goal is to specify
an individual system interactively and use software tools to check its correctness and
simulate its behaviour. Our goal is to exploit the similarity of the members of a soft-
ware product line and be able to generate arbitrary individual members automatically.
One might observe that the former is a preqrequisite of the latter, and this is cor-
rect. Our goal will only be attained on well delineated software product lines, whose
members have many similarities and whose variabilities can be captured precisely and
reasonably simply. Broy’s approach applies to a wider range of problems. However,
we believe that some of the examples favoured by him, such as telecommunication
systems or automobiles, qualify to be made into product lines.

Broy concentrates on the design of a system as a composition of services. His main
design concepts are the refinement and hierarchical decomposition of specifications[4].
We concentrate on the implementation and its use. We start at the point at which
the development of the structure of a set of features has come to a successful end, i.e.,
we assume a set of features that has been specified textually, either in a specification
language or in a programming language. Our model is a syntax tree representing the
text describing a feature, a so-called feature structure tree.

Our tool suite FeatureHouse[11] can handle, for instance, the languages Java,

Christian Lengauer, et al.: Feature-Oriented system design and engineering 237

C#, C, Haskell, JavaCC, Python, and Alloy. The example of Alloy[12] shows that
FeatureHouse can also handle specification languages, not only programming langu-
ages[3]. We have also looked at the integration of UML into FeatureHouse[13].

The process of adding a language is light-weight. It may take an afternoon if the
model is already present (e.g., for adding the functional language F# to our present
collection, which contains already the functional language Haskell). Essentially one
has to make the language’s grammar available to FeatureHouse. The grammar of
a language contains almost all information on how software artifacts written in that
language can be composed. The only missing information is which syntactic elements
of the language represent the modular structure (e.g., packages, namespaces, classes,
interfaces, and methods) and which represent the terms of the language (e.g., method
bodies and field initializations). The developer provides this information in the form
of annotations added to the language’s grammar. Based on an annotated grammar,
FeatureHouse is able to compose artifacts of the corresponding language. Fea-

tureHouse has been used to compose systems in a number of application domains
including database systems, compilers, file systems, and network clients2).

Our interest in the exploration of the similarity of systems makes us want to
navigate between different members of a product line and ensure that all members
are correct in the strongest sense possible. To this end, we have made a first step by
being able to guarantee the type safety of all members of a product line in a Java-
like language, without checking the members individually[14]. In the future, we plan
to extend existing work on language-independent type systems for feature-oriented
programs to feature-oriented product lines[15].

We have also been working on tools to assess the quality of features. The static
checker which we have been developing, called FeatureTweezer[16], addresses the first
two questions raised in Sect. 2.6. It processes dependences and incompatibilities be-
tween structural elements of any language to create a feature model, which reflects the
feature references and mutual exclusions of features. The generated model contains
precisely all combinations of features that a compiler will accept. A feature model
supplied by the user (which captures the intended variability and domain knowledge)
can be compared to the generated one, indicating both combinations that break fea-
ture references, but are allowed in the given model, and combinations not allowed by
the given model that may be desirable to increase product line variability.

Furthermore, we have developed a feature-oriented specification language, called
FeatureAlloy, that enables us to detect feature interactions at a semantic level[3],
which cannot be detected by our static and structure-driven checker FeatureTweezer.
That is, by specifying pre- and postconditions, we can detect situations in which
features violate the expectations of other features, which leads often to undesired
feature interactions.

To address the third and fourth issue listed in Sect. 2.6, there is the concept
of a derivative[17]. If two features interfere, their derivative is an additional feature
that captures the functionality necessary to make them interact correctly. Our aim
is to identify the need for derivatives and generate them automatically, but we need
a behavioural specification to do this. In some cases, specifying the behaviour of the
two interfering features suffices, in other cases, the behaviour of the derivative must

2) http://www.fosd.de/fh/

238 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part II

be specified as well. We are still at the beginning of our exploration of this issue. We
expect the automatic generation of derivatives to be practical only in cases of tightly
knit software product lines that require only simple derivatives.

5 An Example: A Switchable Software Store

Let us take a very small example offered by Broy[6] to illustrate and compare the
two approaches. Consider a simple software store which has only two features:

• Feature Access provides the functionality of the store: reading and updating
natural numbers.

• Feature Switch has the functionality of turning the store on or off. In off mode,
input to the store is ignored.

5.1 The software store as stream-processing functions

Broy specifies the two features as stream-processing functions. Let us do so first
in isolation. We depict the features and also give their semantics as transition tables.
A column of a transition table lists the values on a fixed input or output channel
or the initial values, or the final values, of a fixed attribute. (For final values, the
attribute’s name is primed). A dash as table entry denotes the lack of value on a
channel, a question mark denotes a wild card (any value).

• Feature Access (Fig.1): A local variable v –Broy calls it an attribute– holds a
natural number. Input channel cz carries control signals, read and set(n), which
tell to read out the buffered value or update it with parameter value n. Output
channel cr carries a mixture of naturals that are read out and the control signal
done that acknowledges an update.

Access

v cz v’ cr

j read j j

j set(n) n done

j – j –

cz

cr

Access

v: Nat initial 0

Figure 1. Feature Access in isolation

• Feature Switch (Fig.2): Its attribute m holds a control signal telling the position
of the switch: on or off. Input channel cx carries a stream of the control signal
flip; every occurrence of the signal tells the component to flip the state m. If
there is no signal, the value s of attribute m remains. Output channel cy carries
a stream of switch positions (on or off).

Christian Lengauer, et al.: Feature-Oriented system design and engineering 239

Switch

m cx m’ cy

off flip on on

on flip

s – s –

cx

cy

Switch

m: State initial off

off off

Figure 2. Feature Switch in isolation

To make the store switchable, one must compose the two features and give feature
Access a way to react to the output of feature Switch. Broy does so by introducing a
new channel cm, which carries switch positions. He refines features Access to Access’

by adding cm as input channel, and feature Switch to Switch’ by adding cm as output
channel. Being a mode channel, cm is depicted by a dashed arrow; see Fig.3 and
Fig.4.

Access’

v cm cz v’ cr

j on read j j

j on set(n) n done

j on – j –

j off ? j –

Access'

cz

cr

cm

v: Nat initial 0

Figure 3. Feature Access’ with mode channel

Switch’

m cx m’ cm cy

off flip on on on

on flip off off

s – s s –

cx

Switch'

cy

cm

m: State initial off

off

Figure 4. Feature Switch’ with mode channel

The extended features are combined by using cm as a common internal channel,
not visible to the outside. The semantics of the combined features is derived by
putting the two transition tables together with a non-standard join-like operation
explained in detail by Broy. The result is depicted in Fig.5.

Switch’ • Access’

m cx m’ cm cy v cm cz v’ cr

off – off off – j off ? j –

off flip on on on j on – j –

off flip on on on j on read j j

off flip on on on j on set(n) n done

on – on on – j on read j j

on – on on – j on set(n) n done

on flip off off off j off ? j –

on – on on – j on – j –

Figure 5. Combination of the transition tables of features Switch’ and Access’

240 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part II

If we omit the columns for internal channels, in this case for cm, and sort the
remaining columns by input (to the left) and output (to the right), we arrive at the
description of the software store; see Fig.6.

SwStore

v m cz cx v’ m’ cr cy

j off ? – j off – –

j off – flip j on – on

j off read flip j on j on

j off set(n) flip n on done on

j on read – j on j –

j on set(n) – n on done –

j on ? flip j off – off

j on – – j on – –

cx

cm

Switch'

Access'

cz cr

cy

SwStore

v: Nat initial 0

m: State initial off

Figure 6. SwStore as the composition of features Switch’ and Access’

5.2 The software store as feature structure trees

Next, we model the features of the software store as feature structure trees in the
syntax of Java. Our objective is to mimick Broy’s specification, but some differences
arise due to the model. Also, working at the level of Java code, we show some
implementational detail that Broy leaves unaddressed. In the following, consider Fig.7
top to bottom. The left side shows the Java code, the right side the corresponding
feature structure trees.

Our first feature, Access, introduces the class SwStore, which models the software
store. Feature Access gives it the capability of reading and updating a buffer variable
v. Thus, we adopt Broy’s attribute but, in the Java programming model, control
signals are unnatural. We exert control by method call. The control signals read and
set(n) become methods of class SwStore. The control signal done is represented by
the return from method set. While Broy communicates the value of the attribute on
channel cr, we let our method read return it.

Our next feature, Switch, extends class SwStore by adding a new enumeration
type State, a field m for storing the switch’s state, and a method that flips the state.
Broy communicates the flip of the switch by outputting a control signal on channel
cy which tells the switch’s new position (Fig.2); as long as there is no flip, cy carries
no signal. We have no need for such a communication and do not model it.

Christian Lengauer, et al.: Feature-Oriented system design and engineering 241

In isolation, feature Access is unaware of feature Switch, just as in Broy’s ap-
proach. To make it aware, we must add a derivative feature that provides the con-
nection. Look at the bottom of Fig.7. The derivative, named SwitchAccess, extends
class SwStore by overriding the two methods read and set. Keyword original calls the
overridden method and is like Java’s super.

In Broy’s model, a failed read generally goes unnoticed (unless the switch has
just been flipped, in which case channel cy carries an off signal). We cannot let a
failed read go unnoticed because method read must return a value. We return an
error code of –1, which the caller may or may not pay attention to.

Feature Access

1 class SwStore {

 private int v = 0;

 public int read () { return v; }

 public void set(int n) { v = n; }

}

2

3

4

5

Feature Switch

1 class SwStore {

 private enum State { ON, OFF }

 private State m = State.OFF;

 public void flip () {

 m = (m == State.ON ? State.OFF : State.ON);

 }

}

2

3

4

5

6

7

Derivative SwitchAccess

1 class SwStore {

 public int read () {

 if (m == State.ON) { return original (); }

 else { return −1; }

 }

 public void set (int n) {

 if (m == State.ON) { original (n); }

 }

}

2

3

4

5

6

7

8

9

v read set

SwStore

State

O F FO N

m

SwStore

flip

read set

SwStore

Figure 7. Feature structure trees and Java code of features Access, Switch, and their derivative

We compose two features by superimposing their feature structure trees. In the
resulting tree, nodes that appear in both operand trees are identified and nodes that
appear in just one of the two are adopted as are[18]. Conceptually, superimposition is a
form of graph amalgamation that is applied to the roots of two trees and that proceeds
recursively toward their leaves[19]. The switchable store is derived by superimposing
the trees of the three features Access, Switch and SwitchAccess. Consider Fig.8.

242 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part II

Access Switch SwitchAccess

1 class SwStore {

 private int v = 0;

 public int read () {

 if (m == State.ON) { return v; }

 else { return −1; }

 }

 public void set (int n) {

 if (m == State.ON) { v = n; }

 }

 private enum State { ON, OFF }

 private State m = State.OFF;

 public void flip () {

 m = (m == State.ON ? State.OFF : State.ON);

 }

}

2

3

4

5

6

7

8

9

10

11

12

13

14

15

State msetread

OFF

v

SwStore

ON

flip

Figure 8. The superimposition of the three feature structure trees of the software store

6 A Comparison

There are correspondences between Broy’s and our concept of a feature and of
feature composition, but there are also major conceptual differences.

6.1 Features

Broy specifies a feature by stating syntactic and semantic conditions of its in-
terface. He does not require an implementation; if he provides one, it is a finite
automaton. We specify a feature by text in a programming or specification language.
For executable languages, this corresponds to an implementation, which need not be
a finite automaton.

6.2 Composition

Broy’s composition operation is hierarchical. Two stream-processing functions,
each with its interface, become one function with the two interfaces combined. Seman-
tically, their transition tables are merged. The composition operator is in harmony
with the modular structure of the system: it is the decomposition which imposes this
structure. Crosscutting occurs, e.g., in the form of added mode channels which extend
and connect several features.

Our composition operation is superimposing. It merges the identical structures
of two feature structure trees and adds the structures unique to each of the two trees
to the result tree. This affects the modular structure of the system, i.e., is crosscut-
ting. Superimposition allows us to decompose a system along multiple dimensions,
not only along a single dominant decomposition as in the case of Broy hierarchical
decomposition into services and subservices.

6.3 Interaction

Controlling the interaction between components is a multi-faceted and still in-
sufficiently well understood problem. In Broy’s approach, interaction is controlled
via the specification of channel communication. Unexpected communication may be

Christian Lengauer, et al.: Feature-Oriented system design and engineering 243

captured via additional mode channels.
Our counterpart to Broy’s mode is the derivative. If something else but the two

features is needed to make the composition work correctly, we condense it in one or
more derivatives, i.e., additional features that take part in the superimposition. At
present, we have to do this manually – just like Broy has to add his modes manually.

6.4 Algebra

The algebraic properties of composition are important to both Broy[6] and us[1].
However, we put a different emphasis on this aspect because we are more interested
in exploiting the similarity of systems. Both Broy and our composition operator
are associative but not commutative. But, other than Broy, we leave the option of
giving up the associativity of feature composition when involving more expressive
composition mechanisms such as advice weaving. Broy works at levels of abstraction
at which the associativity of composition is not in question.

7 Conclusions

Broy and we address similar problems but offer different solutions. The main
difference lies in the nature of the model and the composition operator. A language
of stream-processing functions could be integrated into FeatureHouse. However,
if nothing else is done but to teach FeatureHouse the grammar, it will apply
superimposing composition. If one requires hierarchical composition, one should use
AutoFOCUS rather than FeatureHouse. Ultimately, an integration of the two
approaches would combine their strengths.

In any feature-oriented approach, including Broy’s and ours, the main future
challenge lies in the treatment of feature interaction. How is it to be specified? In
what situations can it be detected automatically? Can it be repaired automatically?
Does the (de)composition operator foster or hinder feature interaction? Researchers
are only beginning to chart the many facets and challenges of this phenomenon.

Acknowledgements

We are grateful to Bernhard Möller, Wolfgang Scholz and Tobias Schüle for
readings and discussions. We thank the anonymous referee for constructive com-
ments. Ingolf Krüger and Bernhard Rumpe gave us helpful comments on Focus at
the Dagstuhl Seminar 11021 on Feature-Oriented Software Development. We also
had an informative exchange on AutoFOCUS with Bernhard Schätz.

The first author expresses heart-felt thanks to Manfred Broy (and also to Martin
Wirsing) for 25 years of cheerful and supportive friendship.

References

[1] Apel S, Lengauer C, Möller B, Kästner C. An algebraic foundation for automatic feature-based

program synthesis. Science of Computer Programming, 2010, 75(11): 1022–1047.

[2] Apel S, Kästner C. An overview of feature-oriented software development. J. Object Technology,

2009, 8(5): 49–84.

[3] Apel S, Scholz W, Lengauer C, Kästner C. Detecting dependences and interactions in feature-

oriented design. Proc. IEEE Int. Symp. on Software Reliability Engineering (ISSRE). IEEE

Computer Society, 2010. 161–170.

244 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part II

[4] Broy M, Stølen K. Specification and Development of Interactive Systems: Focus on Streams,

Interfaces, and Refinement. Monographs in Computer Science, Springer-Verlag, 2001.

[5] Ringert JO, Rumpe B. A little synopsis on streams, stream processing functions, and state-based

stream processing. Int. J. Software Informatics, 2011. In this special issue.

[6] Broy M. Multifunctional software systems: Structured modeling and specification of functional

requirements. Science of Computer Programming, 2010, 75(12): 1193–1214.

[7] Broy M, Krüger IH, Meisinger M, eds. Model-Driven Development of Reliable Automotive

Services. LNCS 4992, Springer-Verlag, 2008.

[8] Botaschanjan J, Broy M, Gruler A, Harhurin A, Knapp S, Kof L, Paul W, Spichkova M. On the

correctness of upper layers of automotive systems. Formal Aspects of Computing, 2008, 20(6):

637–662.

[9] Broy M, Fox J, Hölzl F, Koss D, Kuhrmann M, Meisinger M, Penzenstadler B, Rittmann

S, Schätz B, Spichkova M, Wild D. Modeling CoCoME with Focus/AutoFocus. In Rausch

A, Reussner R, Mirandola R, Plasil F, eds. The Common Component Modeling Example.

Comparing Software Component Models. LNCS 5153, Springer-Verlag. 2007. 177–206.

[10] Spichkova M. Specification and Seamless Verification of Embedded Real-Time Systems: FOCUS

on Isabelle. VDM Verlag Dr. Müller, 2008.

[11] Apel S, Kästner C, Lengauer C. FeatureHouse: language independent, automated software

composition. Proc. of the ACM/IEEE Int. Conf. on Software Engineering (ICSE), IEEE

Computer Society. 2009. 221–231.

[12] Jackson D. Alloy: A lightweight object modelling notation. ACM Trans. on Software Engineer-

ing and Methodology (TOSEM), 2002, 11(2): 259–290.

[13] Apel S, Janda F, Trujillo S, Kästner C. Model superimposition in software product lines. Proc.

of the Int. Conf. on Model Transformation (ICMT). LNCS 5563, Springer-Verlag, 2009. 4–19.

[14] Apel S, Kästner C, Größlinger A, Lengauer C. Type safety for feature-oriented product lines.

Automated Software Engineering, 2010, 17(3): 251–300.

[15] Apel S, Hutchins D. A calculus for uniform feature composition. ACM Trans. on Programming

Languages and Systems (TOPLAS), 2010, 32(5): Article 19.

[16] Apel S, Scholz W, Lengauer C, Kästner C. Language-independent reference checking in software

product lines. Second Int. Workshop on Feature-Oriented Software Development (FOSD). ACM

Press, 2010. 65–71.

[17] Liu J, Batory D, Lengauer C. Feature oriented refactoring of legacy applications. Proc. of the

ACM/IEEE Int. Conf. on Software Engineering (ICSE). ACM Press, 2006. 112–121.

[18] Apel S, Lengauer C. Superimposition: A language-independent approach to software composi-

tion. Proc. of the ETAPS Int. Symp. on Software Composition (SC). LNCS 4954, Springer-

Verlag. 2008. 20–35.

[19] Böcker S, Bryant D, Dress A, Steel M. Algorithmic aspects of tree amalgamation. Journal of

Algorithms, 2000, 37(2): 522–537.

