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ABSTRACT
Mobile apps process increasing amounts of private data, giv-
ing rise to privacy concerns. Such concerns do not only arise
from single apps, which might—accidentally or intentionally—
leak private information to untrusted parties, but also from
multiple apps communicating with each other. Certain com-
binations of apps can create critical data flows not detectable
by analyzing single apps individually. While sophisticated
tools exist to analyze data flows inside and across apps, none
of these scale to large numbers of apps, given the combinato-
rial explosion of possible (inter-app) data flows. We present a
scalable approach to analyze data flows across Android apps.
At the heart of our approach is a graph-based data structure
that represents inter-app flows Following ideas from product-
line analysis, the structure exploits redundancies among flows
and thereby prevents the combinatorial explosion. Instead
of focusing on specific installations of app sets on mobile
devices, we lift traditional data-flow analysis approaches to
analyze and represent data flows of all possible combina-
tions of apps. We developed the tool Sifta and applied it
to several existing app benchmarks and real-word app sets,
demonstrating its scalability while maintaining reasonable
accuracy.

1. INTRODUCTION
The growing popularity and adoption of mobile devices—

such as smartphones and tablets—has led to a tremendous
rise of mobile apps. By January 2014, Apple’s app store
offered more than one million apps [2] and had a yearly
revenue of $10 billion. Other app-store providers, including
Google and Microsoft, experienced a similar growth. The
large number of apps available and the increasing diversity
of mobile devices lead to very different sets of apps installed
on mobile devices today.
Privacy of data is an increasing concern. While apps often

process private data, such as passwords, device identifiers, or
position data, they also commonly possess unlimited access to
communication channels, which may not be trustworthy. To
prevent privacy escalation, mobile operating systems employ
a range of methods, such as encapsulation of apps, dedicated
communication mechanisms (e.g., Android Intents), and a
permission system for accessing sensitive data. Additionally,
various analysis techniques have been developed to detect so-
called tainted data flows—flows of data from private sources
to untrusted public sinks inside an app [4, 17].
Yet, as apps are allowed to communicate with each other, a

combination of apps can create a privacy leak even if individ-

ual apps are considered safe [8, 28, 29]. For instance, an app
could obtain the current location and send it—accidentally
or maliciously—to a second app, which then forwards it via
the Internet to an untrusted party. Such scenarios are hard
to detect as they could in principle involve a chain of many
apps [16]. Malicious apps can even intercept or eavesdrop
on unsecured communication between apps.
The presence of critical inter-app data flows depends on

the set of apps installed on a device. Consider an accidental
privacy leak, where an app sends private information (e.g., a
picture) to apps that can display it. If multiple target apps
are installed, most systems display a choice dialog, possibly
creating awareness for a potential privacy leak. When only
one alternative, potentially malicious app is present, commu-
nication occurs without user interaction. Consequently, all
possible combinations of apps of a given set would need to
be verified to detect inter-app leaks, whether accidental or
malicious. Even without finding actual leaks, detecting apps
or app combinations that forward data is important, as such
high-risk apps could be exploited for realizing data leaks.
Unfortunately, inter-app data-flow analysis is expensive

and difficult to scale to larger app sets or even to a whole
app store. First, the communication between apps is often
redundant, since many apps send similar messages, leading
to substantial numbers of flows (many apps are also cloned
or use common code [31, 21]). Second, the representation of
flows is prone to a combinatorial explosion in the number
of apps when flows arise from apps that may communicate.
So, installing a new app may double the number of inter-app
flows. Recent taint-analysis tools for Android are reasonably
precise in detecting critical data flows, tackling all the pe-
culiarities of Android apps (e.g., permissions, Android API,
intents), but they do not scale well to large sets of apps.
We argue that the limitation mainly lies in the current

representation of inter-app data flows, which does not exploit
redundancies between and inside apps. More importantly, ex-
isting approaches do not explicitly consider variability [5]—an
app can be installed or not, thereby contributing to the global
data flows that exist. Instead of duplicating detected flows,
variability inside flows should be modeled explicitly. Recog-
nizing synergies, we adopt concepts known from product-line
analysis [30, 32, 18, 15, 23], which incorporate variability, to
reduce redundancies and avoid a combinatorial explosion.
We present a variability-aware approach to analyze inter-

app data flows. It relies on a graph-based data structure rep-
resenting flows annotated with presence conditions—Boolean
expressions over the presence and absence of apps. Further-
more, we lifted an analysis approach that analyzes data flows
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inside individual apps to whole app sets by extending and
combining existing tools; we use and aggregate their results in
a graph that efficiently represents inter-app communication.
We demonstrate the scalability of our variability-aware

approach by means of two third-party community bench-
marks and a set of 51 935 analyzed real-world apps that we
mined from the Google Play app store. At the same time,
our tool maintains an accuracy that is similar to existing
tools focusing on intra-app analysis, likewise evaluated with
two third-party benchmarks and with our own benchmark.
As a further feature, our approach supports an incremental
generation of the inter-app communication graph: When
new apps are added or changed, the graph can be updated
with information for such apps, instead of generating a new
graph. Finally, we implemented a standard analysis that
traverses the lifted graph and reports tainted inter-app data
flows. We use it to show that we can identify high-risk apps
or combinations of them that enable inter-app data-flows
and could be exploited for privacy leaks. We contribute:
• An efficient variability-aware, graph-based representa-
tion of inter-app data flows, which captures Android-
specific information (sources and sinks of potentially
private data, and inter-app communication metadata).
The graph benefits from redundancies between data
flows and from optionality of apps (variability).
• An algorithm implemented in our tool Sifta to effi-
ciently build (i.e., merge results from lower-level tools)
and condense the variability-aware graph.
• A standard taint-propagation analysis based on the
graph (reporting malicious flows). We evaluated its
accuracy in one experiment with three benchmarks,
and its scalability in three experiments using three
other, larger-scale benchmarks, comparing Sifta to
other state-of-the-art tools if possible.
• Two new benchmarks: IACBench with nine apps (to
evaluate accuracy) and a large-scale benchmark with
51 935 real-world apps (to evaluate scalability).

Sifta, links to all other tools in our evaluation, and infor-
mation on how to replicate our results are available on a
supplementary website: http://www.fosd.net/siftaeval/.
In summary, our approach lifts a single-app data-flow

analysis to a scalable analysis of large app sets by introducing
a variability-aware data structure to efficiently represent
inter-app flows. It can be used to analyze communication in
large numbers of apps early, before concrete combinations
of apps are requested by a customer. The long-term vision
is to move analysis from the mobile device to the app store,
checking all possible combinations of apps.

2. BACKGROUND AND MOTIVATION
We introduce app communication mechanisms in Android

and discuss existing analysis strategies and their limitations.
We distinguish between intra-app communication (when com-
ponents inside one app communicate) and inter-app commu-
nication (when components of different apps communicate).

2.1 Android Apps and the Intent Mechanism
Android apps are delivered in Android application packages

(APKs) and consist of multiple components that communi-
cate with each other. Components can be GUI elements
(activities) shown to the user, or non-visible elements that
process or store information (services, broadcast receivers, and
content providers). Components have a dedicated lifecycle

and are encapsulated. They communicate via dedicated mes-
sages called intents1, both for intra-app (inter-component)
and inter-app communication. Intents contain various pieces
of data, such as routing and payload information.
Intents can be explicit or implicit. The former identify

the target component directly using its fully qualified name.
The latter describe the minimal capabilities a target com-
ponent needs to fulfill, which are then matched against the
maximal capabilities of components defined in intent filters.
Such capabilities could be the ability to show a URL or to
display an image of a certain type. If multiple components of
installed apps qualify, Android displays a choice dialog and
lets the user select. Usually, intents pass information to other
components. However, they can also query information (e.g.,
user information from a data-storage component), initiating
an information flow back to the sender.

2.2 Intra-App Communication
Intent-based communication is the primary mechanism

for data exchange between components inside an app. For
example, an activity could send data entered by the user to
a service that processes the data. Here, an explicit intent is
typically used to unambiguously identify the receiver.
Analysis of inter-component communication inside an app

is important to detect data flows that leak private data by
accident. For example, a developer of a popular Android app
might want to analyze her own app to confirm that private
user data are not passed to third-party components used in
the app. In this scenario, the set of components is known.
Several analysis tools address this scenario. One compar-

atively precise tool is IccTA [17], which relies on Flow-
Droid [4] and Epicc [25]. IccTA composes all components
of an app into one “super” component encoding all the flows.
A challenge is to connect components—that is, mapping
intent calls of one component to incoming intents of another
component. Therefore, the parameters of an intent object,
which is instantiated at run time, need to be known and
matched to intent filters. For this purpose, Epicc performs
a static analysis to retrieve the intent parameters. Once
the “super” component is created, it is analyzed with Flow-
Droid, a precise inter-procedural data-flow–analysis tool.
The intra-component data flows reported by FlowDroid
connect sources and sinks, which are Android API methods,
intent calls, or incoming intents.

2.3 Inter-App Communication
Communication between apps is realized using the same

intent-based mechanism as for intra-app communication. The
main difference is that the set of installed apps is not pre-
determined. An implicit intent can be processed by different
apps (e.g., different e-mail clients) in different mobile-device
configurations, with different implications for data privacy.
Fig. 1 shows a simple inter-app communication. The app

LocationReaderApp reads the current location from the GPS
device and sends it via an intent (Loc). If installed, each
of the two apps FitnessApp and MaliciousApp can receive
the intent (determined by their intent filters, shown as little
rectangles). If the latter obtains the data, they are forwarded
over the Internet to an untrusted third party.
Similar scenarios have been reported in the literature [6,

29, 8, 28, 16]. In principle, Android’s permission system
1Other means of communication (e.g., shared files, native
code) exist, but are outside the scope of this paper.

2

http://www.fosd.net/siftaeval/


GPS Location
Reader

Malicious

Loc

Untrusted
Party

FitnessApp

Intent with 
GPS location

User choice

Figure 1: Inter-app communication example, where GPS
location information is forwarded to untrusted receivers

should prevent apps from accessing private data without
user consent. However, Android permissions are not suffi-
cient as commonly stated in the literature (see Sec. 7). In
our scenario of Fig. 1, MaliciousApp might lack permission
to read GPS data from the Android API, but can get it
by interacting with LocationReaderApp. It does not matter
whether LocationReaderApp sends the data out via an intent,
or has a component that is accessible via an intent, and
whether both happens accidentally or whether the app was
maliciously developed to enable this scenario. This prob-
lem is generally known as permission re-delegation [28, 8]
(a.k.a. confused-deputy problem [14]).

Analyzing inter-app communication is important for main-
tainers of app stores or pools. It is desirable to ensure that
each possible combination of apps respects privacy of user
data and that no inter-app data-flow leak exists. Even with-
out actual leaks, it is desirable to identify high-risk apps that
forward data, which in combination could be exploited for pri-
vacy leaks in the future. This scenario is more complex than
intra-app communication, since apps can be present or absent
(resulting in different global flows—this is why we pursue
a variability-aware approach). Furthermore, apps are regu-
larly added, removed, and updated. Thus, analysis results
of inter-app communication should be kept updated after
each change in the pool, without the need of re-analyzing the
entire pool (this is why we pursue an incremental approach).
To analyze inter-app communication, one could, in princi-

ple, use tools that have been developed for intra-app analysis,
since both kinds of communication rely on intents. Such an
approach is taken by DidFail [16], which, like IccTA, relies
on FlowDroid and Epicc. DidFail runs FlowDroid to
obtain data flows within each component in each app. Based
on the intent parameters obtained with Epicc, DidFail con-
nects the possible outgoing intents to intent receivers and
builds a global communication graph involving all apps.

2.4 Limitations of Existing Tools
Both IccTA and DidFail rely on the assumption that

the set of components is known, invariable, and rather
small. IccTA’s approach would cause scalability problems
when inter-app communication is analyzed, as the gener-
ated “super”-component easily becomes large, with many
(often redundant) flows. But the IccTA developers focus on
intra-app communication in their experiments anyway [17].
Unlike IccTA, DidFail addresses inter-app communication
explicitly. Yet, it stores detected flows in a list-like data
structure without exploiting redundancies between the flows,
harming scalability.
To understand how a larger app set can influence the num-

ber of flows, consider the following thought experiment, illus-
trated in Fig. 2. We build a scenario based on the three apps
of Fig. 1: LocationReaderApp obtains private data, sending

implicit intent
action: send

category: default

implicit intent
action: send

category: default

explicit intent

implicit intent
action: send

category: default

Figure 2: Example of inter-app communication

them with a valid intent to FitnessApp. However, Mali-
ciousApp can also receive the intent—its presence establishes
a data flow to an untrusted network receiver outside the
phone. MaliciousApp has the permission to access the Inter-
net, but not to obtain GPS data. Furthermore, we extend
the scenario slightly, adding a typical internal data flow in-
side FitnessApp and another accidental leak from FitnessApp
to MaliciousApp, so that we have two leaks from a private
source to a public sink.
Now, consider a larger scenario, where we have an ad-

ditional alternative app for each of the three apps. The
alternative apps have roughly the same functionality (the
same data sources and sinks, and the same intents), but they
are implemented by different developers. In this scenario,
the number of flows increases: for example, both variants of
LocationReaderApp can send information to both variants of
MaliciousApp. Now, there are 12 leaks in total. In general,
the number of flows has a cubic growth in the number of apps
of each kind, which shows that an efficient inter-app analysis
has to exploit redundancies between flows. Even though
this example is extreme, our experiments (Sec. 5.2) showed
similar results for DidFail’s scalability. A key insight is
that the problem lies in the representation of the underlying
graph and of the flows. DidFail does not address sharing
between apps or redundancies between flows.
The limitations of existing tools motivated us to develop

our own tool, called Sifta, that addresses these challenges
when analyzing inter-app communication. We reused parts
of DidFail’s code, but completely re-implemented the graph
synthesis and the identification of tainted data flows.

2.5 Variability-Aware Data Structures
We assume that significant redundancies in the communica-

tion paths between apps exist. There are many reasons that
back this assumption, such as commonly used intents (e.g.,
ACTION_VIEW, which requests that data is displayed to the
user) or duplicated code [31, 21]. Consequently, exploiting
redundancy using a dedicated data structure should have
considerable influence on the size of inter-app flow graphs
and their analysis time.
Technically, we use ideas from variability-aware product-

line analysis [30]. In particular, we use the concept of presence
conditions: Boolean expressions denoting which apps need
to be present to enable a given data flow. Using presence
conditions, we can compress the data-flow graph such that
its generation and analysis scales much better than in the
original DidFail implementation.
We borrow the presence-condition idea and its efficient

encoding from other variability-aware approaches, such as
variability-aware data structures [32, 10], static analysis [18,
7], parsing, type-checking [15, 23], and model checking [1].
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3. REPRESENTING INTER-APP FLOWS
The communication between Android components is typ-

ically analyzed in two steps. First, information about in-
dividual apps (e.g., using static code analysis) is collected
and stored in a suitable data structure. Second, the stored
data is analyzed for interesting facts. This two-phase pro-
cess avoids the need to deal with app internals (e.g., source
code) in the second step. The key factor is how to abstract
from app internals and how to store the abstracted data.
In Sec. 3.1, we discuss our core design considerations. In
Sec. 3.2, we present a basic data structure that reflects the
one used by DidFail [16]. In Sec. 3.3, we introduce our lifted,
variability-aware representation.

3.1 Design Considerations
To represent app communication in the graph, we need

to keep the information necessary to determine whether an
intent can be accepted by a given component. Android
makes this decision based on an intent’s metadata and on
a component’s intent filter. An intent is defined by its sen-
der component, an action key, a list of categories, and a
mime type. An intent filter is defined by the component for
which it controls incoming intents, by a list of action keys,
a list of categories, and a list of mime types. Based on this
information, Android matches intents with intent filters to
deliver the intent to a component [11].
In Android, private data originate either from system API

calls (e.g., location data) or from the user (e.g., a password
entered in a text field). Likewise, to send data to untrusted
receivers (private sinks), API functions are used (e.g., to
send SMS, open network connections, or write into log files).
To identify such private sources and public sinks, we rely on
lists with API function signatures from previous work [3].
Based on these definitions, we can build an inter-app data-

flow graph. We chose a directed graph as representation,
in which a node represents either a start or end point of a
potentially critical data flow, that is, from a private source to
a public sink, or an intent that forwards information. In this
graph, we already abstract from many implementation details
of the apps. For example, we do not consider sources of non-
private data (e.g., the current time). Edges represent apps
that receive and process intents, receive data from private
sources or/and forward data to public sinks. We chose this
node–edge mapping to avoid dangling edges and because
intents are the central entities of inter-app communication.
We denote the set of all components with Comp, the set

of all intents with Int, the set of all private source with Priv,
and the set of all public sinks with Pub.

3.2 DidFail’s Representation
Next, we present a graph data structure that is not variability-

aware. It is similar to the data structure used internally in
DidFail. The graph is defined as a set VDF of nodes with
VDF ⊆ Int ∪ Priv ∪ Pub and a set EDF of directed edges
with EDF ⊆ VDF × VDF × Comp. VDF contains all intents,
private sources, and public sinks. For each component comp
that receives data from a private source or intent src and
that delivers data to an intent or public sink sink, the set of
edges contains the triple (src, sink, comp). A path through
the graph represents a potential data flow from a private
source through a number of components (possibly across

GPS Loc.

Intent1

Intent2

Internet

CompA

CompC

CompE

Private Key

Intent1

Intent2

Internet

CompB

CompD

CompE

(a) basic (DidFail)

GPS Loc.

Intent1

Intent2

Internet

CompA

CompC ∨ CompD

CompE

Private Key

CompB

(b) variability-aware (Sifta)

Figure 3: Example of a lifted, inter-app flow representation

multiple apps) to a public sink.2
Recall our thought experiment from Sec. 2.4: With an

increasing number of apps, the graph quickly becomes very
large and its generation expensive. The reason is that often
different apps have (partly) similar functionality. For exam-
ple, they receive data from the same sources (Int or Priv)
and send data to the same sinks (Int or Pub). Thus, the
graph has many edges that differ only in the app component,
such as (a, b, c1) and (a, b, c2). Fig. 3a shows an example with
two flows of private data (GPS location and private key) to
a public sink (Internet). The second edges of the flows have
the same source (Intent1 ) and the same sink (Intent2 ), and
only differ by the inner component (middle edge).

3.3 Variability-Aware Representation
In Sifta, we represent flows in and across apps in a

variability-aware fashion. The difference is that each edge in
the graph is annotated with the condition when it is present
in the system. This presence condition (cf. Sec. 2.5) is a pred-
icate over the (optional) apps in the pool. Each path in the
graph represents a variational flow corresponding to multiple
concrete flows (e.g., flows in the DidFail representation).

We define the set of edges such that each holds a set comps
of components (or, equivalently, a predicate over Comp):
EVA ⊆ VDF × VDF × P(Comp). Instead of mapping each
edge to a component, we now map each edge to a set of
components (or, equivalently a predicate over component
identifiers). The semantics is that an edge (a, b, comps) is
present in the graph (or on the mobile device) iff one of the
components in comps is installed. Finally, since a component
is automatically present when its app is installed, we only
store app names on edges (instead of component names).
Fig. 3b shows the same scenario as Fig. 3a, but using our

lifted representation. The two edges from Intent1 to Intent2
are replaced by one, which has a presence condition denoting
which components need to be installed to enable the flow.

This lifted representation is efficient when app sets contain
many inter-app flows that share common parts (intents or
partial flows). Such sharing can be caused by common
intents used by many apps (e.g., ACTION_VIEW) or by code
in differently named components that process information in
the same way (e.g., through code duplication [31, 21]).

4. IMPLEMENTATION
We implemented our approach in the tool Sifta. It is

based on and reuses code from DidFail. Sifta implements
2The flow is only a potential flow, as our analysis is static
and can produce false positives (as taint analysis in general).

4



Phase 1
(FlowDroid/Epicc)

Phase 2
(Sifta)

AppA

AppB

IA

IB

IC

ID

Old graph with
presence conditions

New graph with
presence conditions

Source1 → Sink2
in apps A ∨ C

Source2 → Intent1 → Sink2
in apps D ∧ (C ∨ B)

. . .

Figure 4: Sifta’s inter-app analysis. IA, IB , IC and ID

represent intermediary results generated by the first phase.
IC and ID are reused from a previous run of the analysis.
The intermediary results are added to the old graph, which
is also reused from a previous analysis run.

all concepts discussed in Sec. 3.3 and additionally introduces
handling of services and broadcast receivers, which are types
of Android components that are not covered in DidFail.
Two-Phase Approach. Like DidFail, Sifta uses a two-
phase approach. In the first phase, it uses FlowDroid and
Epicc to analyze one app at a time. FlowDroid generates
information on (i) which intents contain private information
and (ii) which information from intents is sent to public
sinks of an app. Epicc provides detailed information on the
data of the intents, which is necessary to match them to
intent filters of other apps (cf. Sec. 3.1). In the second phase,
Sifta performs intent-matching procedures as described in
the Android API and generates the inter-app data-flow graph
(cf. Sec. 3.3). It uses the FlowDroid and Epicc output from
the first phase and the manifest files (containing details of
intent filters) of the apps. Based on this information Sifta
(and DidFail) determine which intent is matched by which
component’s intent filter. In addition to DidFail’s mat-
ching criteria, Sifta implements matching of mime types
as specified in the Android API. Finally, note that the first
phase may fail (cf. Sec. 5.2) on real-world apps. In such cases,
FlowDroid or Epicc usually hit timeouts. Improving these
third-party tools is well beyond the scope of this paper, and
some failures are to be expected as we use static-analysis
tools on real-world apps that might actively prevent analysis
by code obfuscation. Still, our two-phase design allows to
easily use results from other tools in the first phase.
Recall that paths in the graph correspond to potential

private-data leaks, or to multiple concrete ones when edges
have alternative apps (i.e., a presence conditions which more
than one app). In contrast to product-line analysis [30],
presence conditions in the graph are simple (disjunctions),
such that we do not need SAT queries to generate the graph
or to derive feasible flows from it.
Incremental Generation. Furthermore, we implemented
an incremental graph-generation procedure—a feature that
we needed for our largest experiment (Sec. 5.2). Since the
main computation effort lies in the first phase, we support
reuse of already computed partial results. This includes
two types of intermediate results, as illustrated in Fig. 4.

The apps AppA and AppB are analyzed for the first time.
Two other apps were analyzed before (results from phase 1
are reused), and an old graph with information about more
apps exists already. In the first phase, AppA and AppB are
analyzed by FlowDroid/Epicc. In the second phase, Sifta
uses the newly generated results and the reused results and
integrates them into the existing graph. In the end, Sifta
produces an updated graph containing all the edges of the
old graph and the new edges introduced by the new apps.
This persistence and reuse of results enables Sifta to

analyze large-scale, evolving sets of apps in short time. If
only few apps change, Sifta does not need to analyze the
entire app set from scratch, but can reuse old results if they
are still valid (when apps have not changed). We would
first remove all updated apps from the graph (delete the
app from all presence conditions), and then integrate the
FlowDroid/Epicc results for the updated apps.
Taint Propagation. Once the communication graph has
been generated, it can be used in various ways. An example
is a standard taint analysis: We simply report all paths from
sources to sinks in the graph. These paths correspond to
potentially malicious data flows. This is a taint-propagation
analysis as the private (tainted) data is forwarded along the
path until it reaches a sink. The apps on edges along the
path constitute the presence condition of the data flow.

5. EVALUATION
In a series of experiments, we evaluated the accuracy and

scalability of our approach, comparing it to the other state-
of-the-art tools DidFail and IccTA. In Sec. 5.1, we discuss
our evaluation of the accuracy of Sifta on benchmark sets
comprising a total of 44 test cases with inter-component and
inter-app leaks. Yet, accuracy is only a necessary condition
and highly relies on the underlying data-flow–analysis tools
we use. Since our main contribution is a scalable approach
for inter-app scenarios, we present our analysis of large sets
of real-world apps in Sec. 5.2 where we measured to what
extent our approach is able to exploit redundancies in app
communication.
The potential leaks we detected in real-world apps can be

used to inspect and fix apps. While this issue is orthogonal
to our approach, we demonstrate in Sec. 5.3 that it can be
used to identify high-risk apps that enable many flows.

5.1 Experiment 1: Accuracy
In the first experiment, E1, we measured the accuracy of

our approach by calculating precision and recall of detected
privacy leaks using a ground truth of established, third-
party community benchmarks and our own hand-crafted
benchmark. To understand the accuracy that is currently
achievable with state-of-the-art tools, we compare our results
to those obtained by IccTA and DidFail. Overall, we
analyzed three different sets of apps:
• IACBench contains 9 app sets (two apps per set)
created by us to cover basic (intents with and without
results, comprising activities, services, and broadcast
receivers) and advanced (e.g., loops, intent chains) inter-
app flows.
• ICC-Bench3 contains 9 apps developed by the authors
of Amandroid [33] with intra-app flows.

3Obtained from the authors of Amandroid.
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• DroidBench4 comprises 23 apps testing inter-component
communication (provided by the IccTA authors [17])
and 3 sets of apps testing inter-app communication
(provided by the DidFail authors [16]) among many
more apps not relevant for our approach.

Our own benchmark IACBench contains test cases with
undesired data flows via implicit intents across apps from
the source TelephonyManager.getDeviceId to the sink Log.i.
Details on IACBench are provided in Table 2. For the third-
party benchmarks ICC-Bench and the parts of Droid-
Bench that we used for our evaluation, we refer to the
literature: Amandroid [33], DidFail [16], and IccTA [17].
All benchmarks comprise apps developed to test whether

analysis tools capture the specific means of communication.
The apps are much smaller and cleaner than real apps and
are, thus, ideal to compare the accuracy of different tools.
Methodology and Setup. We ran Sifta and DidFail on
all benchmarks and measured precision and recall. While
Sifta focuses on inter-app communication, it can still analyze
intra-app flows. Thus, we do not only compare against Did-
Fail, but also against IccTA, which is specialized on inter-
component, intra-app communication. Consequently, we can
run IccTA only on the ICC-Bench and DroidBench-ICC
benchmarks, not on IACBench.
We ran experiment E1 on a Ubuntu 14.04 workstation

with four cores (Intel Xeon Processor X3470 @ 2.93GHz).
Timeouts and memory consumptions were not an issue for
these rather small test cases.
Results. Table 1 shows precision and recall of E1. We dis-
cuss the different benchmarks, emphasizing test cases where
Sifta produced worse results than DidFail or IccTA.

IACBench focuses on inter-app communication. Thus, we
could not evaluate IccTA on this benchmark. Sifta solved
all tests correctly. DidFail could not solve four test cases,
because it lacks support for services and broadcast receivers.
On some apps from ICC-Bench, Sifta failed to report

privacy leaks. In particular, in the test cases Implicit5 and
Implicit6, Sifta reported no flows as opposed to DidFail.
The reason is a limitation of the underlying tool Epicc and
of DidFail, which ignores the faulty Epicc output. In both
cases, the flows are enabled by mime types set on the intent
objects in the code (Intent.setDataAndType). Apparently,
Epicc does not handle this function as it does not include the
mime type in its output. Based on this output, Sifta assumes
that no mime type is given and the intent does not match the
intent filter in the test case. DidFail does not test for mime
types and therefore correctly reports a flow. Furthermore,
in the test cases DynRegister1 and DynRegister2, intent
filters are registered dynamically and not declared in the
manifest file. Epicc does not find such intent filters, which
are therefore not visible to Sifta or DidFail. IccTA fails to
detect the leak in DynRegister2 because the app uses string
operations, which cannot be parsed by IccTA [17].

DroidBench is a much larger benchmark that tests many
possible communication paths. Table 1 shows that Sifta
reports correct results much more often than DidFail, but
not as often as IccTA. The test startActivity4 has an intent
that uses an URI scheme (http:) that is not listed in the
test’s intent filter. Therefore, the intent does not match
the filter. Sifta does not test for URI schemes, because
this information is not provided by Epicc and FlowDroid.

4http://github.com/secure-software-engineering/DroidBench

Table 2: IACBench test cases

test case description

ba
si

c

startActivity intent from Activity to Activity via startActivity
startService intent from Activity to Service via startService
bindService intent from Activity to Service via bindService
sendBroadcast intent from Activity to BroadcastReceiver via sendBroadcast
sendOrderedBroadcast intent from Activity to BroadcastReceiver via sendOrdered-

Broadcast

ad
va

nc
ed

multipleIntents two identical intents from the same source to the same sink
loop intent from Activity to Activity, but the first Activity can also

receive its own intent, creating a loop
intentChain intent from Activity1 to Service, to Activity2, to Activity3,

back to Activity2 (result), to BroadcastReceiver
identicalIntentFilter intent sent to three different components (Activity, Service,

BroadcastReceiver), each of which has the same intent filter

The tests startActivity6 and startActivity7 check whether
information retrieval from an intent is handled correctly. In
these, an intent with private information is accepted by an
intent filter, but instead of the private information, other
information is retrieved from the intent. The information
available to Sifta contains no details on which information
is retrieved from an intent. As long as the intent with private
information is accepted and information from that intent is
sent to a public sink, Sifta reports a flow. The bindService
tests transfer private data via an intent to a service that logs
the data. In bindService2 and bindService3, FlowDroid
did not report that an intent is sent, therefore the flow is
invisible to Sifta. The tests startActivityForResult2 and
3 failed because Sifta cannot handle some aspects of the
return communication in startActivityForResult intents. We
intentionally omitted these aspects for scalability reasons
(see Sec. 5.2). Finally, the inter-app communication tests
(IAC) of DroidBench were all solved correctly by Sifta.

These results demonstrate that our variability-aware tool
Sifta produces more accurate results than DidFail. Yet, it
is less accurate than IccTA, which was to be expected as
IccTA combines all components of each test and analyzes
them in one run. Sifta has to rely on the necessarily filtered
information gained in separate per-component analyses, but
this is exactly the lever that enables inter-app analysis.
Surprisingly, Sifta has some wrong results where Did-

Fail’s results are correct. This is not caused by Sifta’s
graph reduction (which does not influence the set of reported
flows), but by additional matching criteria (for the mime
types, cf. Sec. 4) we implemented.

5.2 Experiments 2–4: Scalability
To evaluate the scalability of Sifta and DidFail, we used

three sets of apps:
• Experiment E2 : IccRE is a set of 523 real apps coming
with IccTA. These apps leak private user data through
inter-component communication [17].
• Experiment E3 : MalGenome is a set of 1260 real apps

published by the Android Malware Genome Project [34].
They are known to be malicious, 51.1% harvest user
data, not necessarily using inter-app communication.
• Experiment E4 : GooglePlaySet is a set of 172 779
apps that we randomly downloaded from Google Play,
covering various categories and developers. We sought
to obtain popular apps that are likely to communicate
(see Sec. 6, for details about the download process).

Methodology and Setup. In E2, we compared Sifta
against DidFail, however, given DidFail’s scalability limi-
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Table 1: Results of Experiment E1 : accuracy evaluation (IccTA results according to [17])

benchmark test case DidFail Sifta IccTA

IACBench startActivity + + n/a
(basic) startService n/i + n/a

bindService n/i + n/a
sendBroadcast n/i + n/a
sendOrderedBroadcast n/i + n/a

(advanced) multipleIntents + + n/a
loop + + n/a
intentChain 	 + n/a
identicalIntentFilter + + n/a

ICC-Bench Explicit1 	 + +
Implicit1 + + +
Implicit2 + + +
Implicit3 + + +
Implicit4 + + +
Implicit5 + 	 +
Implicit6 + 	 +
DynRegister1 	 	 +
DynRegister2 	 	 	

DroidBench sendBroadcast1 n/i + n/a
(IAC) startActivity1 + + n/a

startService1 n/i + n/a

benchmark test case DidFail Sifta IccTA

DroidBench startActivity1 	 + +
(ICC) startActivity2 	 + +

startActivity3 	 + +
startActivity4 ⊕ ⊕ −
startActivity5 ⊕ − −
startActivity6 − ⊕ −
startActivity7 − ⊕ ⊕
startActivityForResult1 	 + +
startActivityForResult2 	 	 +
startActivityForResult3 	 	 +
startActivityForResult4 	 + +
startService1 n/i + +
startService2 n/i + +
bindService1 n/i + +
bindService2 n/i 	 +
bindService3 n/i 	 +
bindService4 n/i + +
sendBroadcast1 n/i + +
stickyBroadcast1 n/i + +
insert1 	 + +
delete1 	 + +
update1 	 + +
query1 	 + +

true positive: + (analysis reported an existing leak) false positive: ⊕ (a reported leak does not exist)
true negative: − (no leak and no leak reported) false negative: 	 (analysis misses an existing leak)
not applicable: n/a (intra-app tool on inter-app scenario) not implemented: n/i (DidFail on services or broadcasts)
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Figure 5: Results for Sifta and DidFail on IccRE. Both
axes have a logarithmic scale.

tations, we were not able to use it in E3 and E4.
We ran E2 on a Ubuntu machine with 32 Cores (AMD

Opteron 6386 SE @ 2,8 GHz) and 100GB reserved RAM.
Because DidFail and Sifta are both based on the data-flow
information generated by FlowDroid and Epicc, we ran
this pre-analysis separately. First, FlowDroid and Epicc
analyzed all IccRE apps with a timeout of 10 minutes. This
pre-analysis generated results for 324 of the 523 apps. We
excluded uninteresting flows that have no influence on other
apps. Then, we let DidFail and Sifta build the data-flow
graphs based on this output. For both tools, we measured
the time needed both to generate the graphs and to report
detected critical flows. To evaluate the scalability of DidFail
and Sifta, we generated subsets of increasing size from the
IccRE app set. We ran DidFail and Sifta on each subset
(without reusing results from smaller subsets).

For E3 and E4 (MalGenome and GooglePlaySet),
given their size, we switched to a cluster of 17 nodes, each
with an Intel Xeon E-5 2690v2 CPU @ 3,0GHz, 10 cores
and 2 hyperthreads per core. We allowed 6GB RAM and 20
minutes each for FlowDroid and Epicc.

Experiment E2 (IccRE). Fig. 5 shows the result of the
scalability experiment on IccRE. Even for only five apps,
Sifta generates the graph faster than DidFail. For larger
app sets, the difference between the tools gets larger (speedup
of up to 7620). We stopped the experiment for DidFail after
analyzing the app set with size 100, as the effect was clear.
A closer look at the output of DidFail and Sifta reveals

the reason for this difference in scalability. For the app set
with size 100, DidFail generates a data-flow graph with 1610
nodes and 51 709 edges. Sifta’s graph has only 51 nodes and
96 edges—illustrating the effectiveness of our compressed
variability-aware representation. Even for the largest app
set with 324 apps, Sifta’s graph has only 66 nodes. This
result shows that there is large potential for storing inter-app
data-flow graphs more compact without losing information.
Our variability-aware approach achieves this compression
and enables efficient analysis of inter-app communication on
large app sets.
Experiment E3 (MalGenome). We analyzed the Mal-
Genome benchmark set only with Sifta (DidFail does not
scale to this size). The analysis ran in two phases: In the first
phase, FlowDroid and Epicc ran on each of the 1260 apps.
This phase is computationally very expensive. It took about
50 hours (sum across all cluster cores). This phase failed
on 421 of the 1260 apps due to the 20-minutes timeouts or
other errors outside Sifta. In the second phase, we applied
Sifta to generate a global graph of inter-app and intra-app
communication. This generation took only 31 seconds. We
had to drop 9 further apps due to parsing errors on the
FlowDroid or Epicc output.
The resulting graph contained 285 flows representing 839

apps. 250 flows are intra-app flows that go directly from
a private source to a public sink. These would also be
found by other tools that focus on intra-app communication.
However, we also found 35 flows that involve two or more
apps and therefore cannot be found with intra-app analysis.
The maximum number of apps annotated on an edge is 220
(average is 10), which means that we have a high degree of
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Phase 1
(FlowDroid/Epicc)

Phase 2
(Sifta)
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Figure 6: Incremental setup for E4. We chose this setup
due to memory limitations when building the graph from
all apps at once. In our experiment, each partition had a
quarter of the 51 935 apps.

sharing in the graph. If we would use a tool like DidFail,
which is not variability aware, it would produce 220 clones of
this edge instead of a single edge. This shows the benefit of
our representation even if there are no inter-app data leaks.
Experiment E4 (GooglePlaySet). To evaluate the scal-
ability of Sifta on even larger app sets, we downloaded
172 779 apps from the Google Play store. We then used
Sifta to analyze inter-app communication and to build the
data-flow graph. Next, we report on the time needed to
execute Sifta and on characteristics of the generated graph.
The first phase of Sifta (running FlowDroid and Epicc)

was executed on the AMD Opteron Cluster that we also used
for E2. This phase generated results for 51 935 of the initial
172 779 apps. The others mainly failed due to FlowDroid
timeouts. This phase of the analysis took 1704 days (4.6
years) in total (sum of times consumed by cluster nodes).
We set a timeout of 20 minutes each for FlowDroid and for
Epicc. The rather low yield of this phase can be explained by
the fact that we rely on research tools on a very diverse set of
real apps. Although FlowDroid is one of the most precise
tools for data-flow analysis of Android apps [4], improving it
to an industrial strength is an effort that was not taken yet.
Next, we allocated the results generated by the first phase

and ran the second phase of Sifta, to generate the global
variability-aware data-flow graph. We executed this phase
on the previously described Intel Xeon workstation, because
it has not been parallelized so far. We first tried running the
graph generation for all apps at once, however the machine’s
main memory was not sufficient. After loading less than
half of the apps, the process already used more than 5.7GB.
Instead, we used the incremental graph-generation feature
of Sifta (cf. Sec. 4): We partitioned the results of the first
phase into four sets and generated the graph in four steps,
as shown in Fig. 6. The graph generation took 13 minutes,
and each step used less than 3.5GB RAM.
Overall, the graph contains 126 205 potential, variational

flows from a private source to a public sink. The graph has
1387 nodes and 5848 edges. The maximum flow length is 8:
5154 of the flows pass through 8 apps before leaking private
information. The edge’s presence conditions contain an aver-
age of 31 (median 3) apps. The maximum of 14 164 apps has
an edge that represents a set of intra-app data flows from
Bundle.getBoolean to Bundle.putBoolean. This makes sense as
these very common API methods can be used to read/write
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Figure 7: Frequencies of presence-condition sizes illustrating
the reason for sharing in inter-app flows. The graph shows
how often different numbers of apps on edges in the graph
occur. Both axes have a logarithmic scale.
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Figure 8: Cumulative Density Function (CDF) of the number
of flows in which apps participate. The left plot shows all
apps, the right plot only apps that are part of >5000 flows.

data from/to Bundle objects, which are the payload of in-
tents. Fig. 7 shows the frequency of presence condition sizes
(number of unique apps) in the graph. It shows that these
sizes lie between 10 and 200 apps for many edges. That is,
each of these edges would be repeated 10 to 200 times in a
graph that does not tap into this sharing potential. For such
large app sets, it would be infeasible to generate and store
such a graph without variability awareness.

5.3 Identification of High-Risk Apps
Despite detecting actual leaks, our approach can be used to

identify high-risk apps or app combinations. To demonstrate
this potential, we provide insights obtained from analyzing
the GooglePlaySet. Specifically, our approach allows to
reason about the positions of apps in flows originating from
app combinations, which is novel for large app sets.
Let us first look at how often apps occur in the flows’ pres-

ence conditions. Apps that enable many flows have a larger
potential for being exploited maliciously—it is certainly de-
sirable to further analyze them. Fig. 8 shows cumulative
density plots illustrating how often apps occur in flows. The
plots show which fraction of the apps (y axis) participates
in at most x flows. The left diagram shows the data from all
apps, the right focuses on apps participating in more than
5000 flows. Both show that a very large fraction of apps
participates only in few flows and that few apps participate
in very many flows (right-hand side of the right plot). These
apps are of special interest, as securing their inter-app com-
munication might have significant impact. Table 3 shows the
top five of these apps (our supplementary website lists all).
Let us now take a look at the most frequent app, which
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is called “Mild Tap Fashion-5” and belongs to the category
“Communication” in Google Play. It was very rarely down-
loaded (10–50 downloads), asks for many permissions (e.g.,
phone-book access), and can receive a wide range of intents
through a broad intent filter. It belongs to a series of apps
from the same developer, all of which have similarly few
downloads, have been almost never rated, and have been
updated last in Sep. 2012. They also look very similar, essen-
tially consisting of text fields for entering information which
is then shared with contacts. We can safely conclude that
these apps are relatively useless, abandoned apps in Google
Play, but pose a risk for being exploited for privacy leaks.
Let us now specifically look at apps that forward data

between apps (i.e., occur in the middle of a flow). These
are particularly high-risk apps that can be exploited for
constructing data leaks, with or without knowledge of the
app author. We identified 23 “forwarder” apps (including
all apps from Table 3), which receive data from an intent
and deliver it to another intent. We provide the list of all
“forwarder” apps on our supplementary website.

We analyzed one “forwarder” app manually by decompil-
ing and inspecting it. This app, called “Tentacle” (category
“Business” in Google Play) provides telemarketing support
(e.g., sales, customer service) for small companies. It inte-
grates deeply with Android’s call management. We found
that its component BrowserCallActivity has a fairly broad
intent filter, which can receive many intents (e.g., any intent
with an Android VIEW or CALL action key). Once received,
the app obtains a phone number from the intent, which is
then internally passed to another intent (trying to make a
phone call) sent by the component CallActivity. The app
could in principle be used to forward private data (a number)
by appending it to an attacker’s phone number and causing
“Tentacle” to call this number. Also, the Call intent sent
by “Tentacle” could be intercepted by another app, using
“Tentacle” as a forwarder, which would allow an arbitrary
string to be leaked (with “Tentacle” in the middle of a flow).
In summary, it is surprising that only 23 “forwarder” apps

cause the large number of data flows in our graph. Yet, we
can assume that in any realistic app pool, a certain number
of such apps exist that highly complicate inter-app data-flow
analysis. This empirical result again motivates our lifted,
variability-aware approach to tame such complexity; it also
shows that it might be fairly simple to reduce the risk for
inter-app data leaks by securing or removing these apps.

6. THREATS TO VALIDITY
External Validity. The external validity of our evaluation
depends on the choice of (i) the app benchmark sets and on
(ii) the tools we compare Sifta with.

ICC-Bench and DroidBench are established third-party
benchmarks used also in other studies. To evaluate accuracy,
we also created IACBench to include test cases not cov-
ered by ICC-Bench and DroidBench, especially advanced
communication scenarios, such as loops, intent chains, and
recognition of multiple identical intents. IACBench is pub-
licy available at our supplementary website. To evaluate
scalability, we go beyond existing benchmarks in this area
(IccRE with 523 and MalGenome with 1260 apps) by ana-
lyzing 51 935 real-world apps from Google Play.
Empirical studies on real-world apps are commonly prone

to the app-sampling problem [20]. In fact, obtaining a truly
random sample of apps of an app store is almost impossible.

Table 3: Top five apps occurring in flow presence conditions

rank app flows

1 com.rekonsult.MTFashionAlert 115370
2 air.com.doitflash.ar.atelier 109743
3 com.krm.fbm 97888
4 com.merunetworks.IdentityWifi 92090
5 dk.southbound.instapaper 91538

However, this problem does not apply to our evaluation,
since we do not aim at such a representative sample. Instead,
we sought to obtain apps that are likely to communicate.
Our strategy was to start with one of the most popular apps,
facebook, to scan its website, following links to apps listed
under “similar” and “more from developer”. This process was
continued, allowing us to download apps across various app
categories. Yet, the strategy targeted apps that are likely
to communicate, leading to a dataset suitable to evaluate
Sifta’s scalability. The mining script and the list of apps
are available on our supplementary website.
In our accuracy and scalability experiments, we compared

Sifta to two state-of-the-art tools for intra-app (IccTA)
and inter-app communication analysis (DidFail). Further
tools exist for intra-app analysis (e.g., PermissionFlow [29],
CHEX [19]), but we chose the most recent and mature
tool IccTA, focusing specifically on analyzing data flows.
Although IccTA is more precise than Sifta, this limitation
is acceptable, given that our focus is on Sifta’s scalability.
Achieving more precision is possible, but requires significant
effort for creating an industry-strength tool. For scalability,
our comparison is limited to DidFail, as the only other tool
supporting inter-app communication.
Internal Validity. In Sifta, we implemented the matching
of intents to receiving components, which is essentially a
re-implementation of the Android systems’ intent-matching
algorithm. For this purpose, we relied on Android’s documen-
tation. Yet, a threat to validity is that we did not implement
all (possibly undocumented) corner cases of intent matching
or that we mis-interpreted the documentation. However, our
results show that Sifta agrees with IccTA on most ICC
benchmark test cases, which indicates proper matching.
In our experiments, we found that FlowDroid reports

many false-positive flows on real apps (experiments E3 and
E4 ). Usually, these arise from private data being stored in
class fields and intents being instantiated in the same class.
We looked at several of these flows manually: The private
data are visible to the code that generates the intent, but
is not attached to the intent. FlowDroid reports a flow
in these situations. After consulting with a FlowDroid
developer, we implemented a filter that removes such flows
from FlowDroid’s output. For similar reasons, we filter
intent results and intents with empty actions. However, this
introduces a threat of removing too many flows. Still, we
argue that missing a few true positives is better than report-
ing thousands of false-positive privacy leaks, which would
render the analysis useless. We only used this filtering in
experiments E3 and E4, which aimed at scalability anyway.

7. RELATED WORK
Privacy Leaks in Apps. Our variability-aware data-flow
representation and analysis has various applications in soft-
ware engineering (build secure apps, prevent accidental flows)
and security analysis (detect privacy leaks or high-risk apps).
Privacy leaks inside and across mobile apps have been
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extensively studied [6]. Several researchers argue that the
permission system used in Android is insufficient to prevent
tainted data flows. For instance, permissions are too coarse-
grained [24, 26] and surprisingly rarely used in practice [25]
(only 5% of the publicly accessible components are protected).
Furthermore, apps often ask for more permissions than are
actually used [27], giving rise to accidental leaks.
Enck et al. [13] studied 1100 popular Android apps, ana-

lyzing their use of libraries and misuse of private information.
They found that apps often access personal information, such
as the IMEI number, often combined with account informa-
tion. Many apps also heavily use of ad libraries [22], forcing
acquisition of many permissions.
Data-Flow Analysis of Android Apps. To the best of
our knowledge, our approach is the first to effectively scale
inter-app data-flow analysis to large app sets.
Apart from DidFail, many tools focusing on intra-app

communication exist. Yet, most stop at component bound-
aries, such as PermissionFlow [29], which does not incor-
porate intents and their flows, or FlowDroid [4], which
we use for our component analysis. Some tools can track
data flows across components. The most notable intra-app,
but inter-component analysis tools are Amandroid [33] and
IccTA [17]. We explained the difference between Sifta and
IccTA already in Sec. 2. Amandroid is similar in accuracy
to IccTA [17], and also resolves flows across components
(using its own points-to analysis, where we use Epicc). We
considered Amandroid for our accuracy experiments, but
were not able to execute it. However, Amandroid targets
only intra-app analysis (as confirmed by the developers).
All these tools differ in their accuracy and how they handle

the pecularities of Android, such as the main Android library
and native calls. Our approach can use different underlying
tools, and leverage them to create highly compressed data-
flow graphs effective in identifying tainted data flows.
Finally, dynamic analysis tools such as TaintDroid [12]

track data flows across applications at run time. While
these conceptually provide the highest accuracy, they are
limited by the dynamic analysis, not being able to confirm
the absence of tainted flows. Most importantly, they can
only analyze fixed sets of apps.
Analysis of Software Product Lines. Our variability-
aware flow representation is inspired by product-line anal-
ysis [9]. In product-line engineering, typically all possible
products or systems (exponentially many, in the worst case)
need to be described in a compact representation (e.g., code,
models, requirements). From this representation, individual
(variant-specific) representations can be derived, or state-
ments about all possible variants can be made (e.g., all
variants are consistent, safe, structurally consistent) [30]. A
mobile-device setup (a specific combination of apps) can be
seen as a specific variant of a product line, where combi-
nations of selectable options (a.k.a. features)—apps in this
case—constitute a system variant [5].
In software product lines, the notion of presence condition

is central. For model-based representations, Czarnecki and
Antkiewicz [10] were the first to use presence conditions to
annotate the optional parts of a model, from which con-
crete model variants can be derived by configuring the pres-
ence conditions. Walkingshaw et al. [32] provide a broader
perspective on variability-aware data structures, discussing
applications in product-line analysis and beyond.
The analysis of product lines relies on variability awareness,

as analyzing all possible variants is usually intractable. For
instance, in model checking of product lines, presence condi-
tions are used to compactly store a graph of program states
of an entire configurable system [1]. A survey of variability-
aware analyses gives an overview of related techniques [30].

8. CONCLUSION
We presented a variability-aware approach to inter-app

data-flow analysis of mobile apps. It effectively combats the
combinatorial explosion that previous analysis techniques
faced. At its heart is a lifted data-flow graph that explicitly
takes variability—the diversity of apps that can be installed
on a mobile device—into account. Its scalability is superior,
proven on a large benchmark set of 51 935 real-world apps
from Google Play, which is well beyond related work (few
hundreds [16]). At the same time, our approach’s accuracy
can compete with state-of-the art tools, which primarily
focus on intra-app flows. Our tool Sifta and a replication
package are freely available on our supplementary website.
The approach enables a class of analyses that needs to

reason about all possible combinations of apps at once. We
implemented a taint-propagation analysis on top of it, which
identified potentially malicious data flows across a maximum
of eight apps. We also demonstrated that we can now reason
about such communication chains and the position of apps
or app combinations in inter-app flows. We identified a small
set of 23 “forwarder” apps that highly impact the potential
flows in our set of 51 935 real apps. It is surprising that
such a small set of apps is responsible for a large part of
the reported flows. Running more heavyweight and more
accurate analyses (e.g., model checking) on such identified
apps, and potentially securing their communication could
have a high positive impact on data flows and data security.
In future work, we strive for further insights into inter-

app data-flow structures (e.g., conducting a more detailed
network analysis on Sifta’s data flow graph). Specifically,
we want to determine whether clusters of apps or flows exist
and what their characteristics are.
We also aim at improving Sifta. For instance, running a

clone-detection on apps could significantly speed up Sifta’s
first phase by avoiding redundant executions of FlowDroid
and Epicc, while maintaining the current accuracy of Sifta.
Another promising track is to exploit dynamic variability
within apps, which is commonly realized using configuration
parameters or by checking Android API constants. Detect-
ing and including this dynamic variability into our data-flow
graph would allow reasoning about inter-app flows that de-
pend on certain Android versions or app configurations.
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