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Abstract. Project ExaStencils pursues a radically new approach to
stencil-code engineering. Present-day stencil codes are implemented in
general-purpose programming languages, such as Fortran, C, or Java,
or derivates thereof, and harnesses for parallelism, such as OpenMP,
OpenCL or MPI. ExaStencils favors a much more domain-specific ap-
proach with languages at several layers of abstraction, the most abstract
being the mathematical formulation, the most concrete the optimized
target code. At every layer, the corresponding language expresses not
only computational directives but also domain knowledge of the problem
and platform to be leveraged for optimization. This approach will enable
a highly automated code generation at all layers and has been demon-
strated successfully before in the U.S. projects FFTW and SPIRAL for
certain linear transforms.

1 The Challenges of Exascale Computing

The performance of supercomputers is on the way from petascale to exascale.
Software technology for high-performance computing has been struggling to keep
up with the advances in computing power, from terascale in 1996 to petascale in
2009 on to exascale, now being only a factor of 30 away and predicted for the end
of the present decade. So far, traditional host languages, such as Fortran and
C, being equipped with harnesses for parallelism, such as MPI and OpenMP,
have taken most of the burden, and they are being developed further with some
new abstractions, notably the partitioned global address space (PGAS) memory
model [1] in the languages Coarray Fortran [30], Chapel [9], Fortress [38], Unified
Parallel C [8] or X10 [10]. Yet, the sequential host languages remain general-
purpose: Fortran or C or, if object orientation is desired, C++ or Java.

The step from petascale to exascale performance challenges present-day soft-
ware technology much more than the advances from gigascale to terascale and
terascale to petascale have. The reason is the explicit treatment of the massive



parallelism inside one node of a high-performance cluster cannot be avoided any
longer. That is, the cluster nodes must be manycores with high numbers of cores.
The reorientation of the computer market from single cores to multicores and
manycores has been observed with concern [29]. In the high-performance market,
the situation is somewhat alleviated by the fact that the additional cycles that
large numbers of cores provide are actually being yearned for. But, the question
of how to exploit them with efficient and robust software remains.

While the potential for massive parallelism on and off the chip is the single
most serious challenge to exascale software technology, other challenges take on
a high priority and are frequently being mentioned, such as power conservation,
fault tolerance and heterogeneity of the execution platform [2]. At best, one
would strive for performance portability, i.e., the ability to switch the software
with ease from one platform, when it is being decommissioned, to the next, while
maintaining highest performance.

2 ExaStencils Application Domain: Stencil Codes

Stencil codes have extremely high significance and value for a good-sized commu-
nity of scientific-computing experts in academia and industry. They see wide-
spread use in solving the systems arising form a discretization of partial dif-
ferential equations (PDE) and systems composed of such equations. For the
implementation of scalable stencil codes, the foremost requirement is to use of
efficient solution algorithms, i.e., iterative solvers that rely on the application of
a stencil and that provide good convergence properties. Major application areas
are the natural sciences and engineering.

Stencil codes are algorithms with a pleasantly high regularity: the data struc-
tures are higher-dimensional grids, and the computations follow a static, locally
contained dependence pattern and are typically arranged in nested loops with
linearly affine bounds. This invites massive parallelism and raises the hope for
easily achieved high performance. However, serious challenges remain:

– Because of the large numbers and varieties of stencil code implementations,
deriving each of them individually—even if by code modification from one
another—is not practical. Not even the use of program libraries is practical;
instead, a domain-specific metaprogramming approach is needed.

– Efficiency, i.e., a high ratio of speedup to the degree of parallelism, is im-
paired by the low computational intensity, i.e., the low ratio of computation
steps to data transfers of stencil codes.

– An unsuitable use of the execution platform may act as a performance brake.

3 ExaStencils Approach: Domain-Specific Optimization

With project ExaStencils, we propose a radical departure from the traditional
way of developing stencil codes. To this end, we make two major decisions.
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3.1 Domain-Specific Source Languages

The first decision is to liberate ourselves from the traditional, general-purpose
source languages that have historically been dominating high-performance soft-
ware development, and to move to much easier languages that cater to a specific
application domain. This has a serious consequence. The language technology
that ensues has great power but for a, in current thinking, shockingly small
domain of programs. The most striking example is FFTW (the Fastest Fourier
Transform in the West) [17], which is a highly powerful optimizing compiler for
essentially one problem: the fast Fourier transform. An optimizing compiler with
a somewhat larger domain has been SPIRAL [34], which addresses also a number
of (but not all) other linear transforms.

Domain-specific programming has become quite popular recently, and many
languages (DSLs), and their compilers, have been proposed and used for specific
domains [40, 27]. Alone for the domain of stencil computations, there are, e.g.,
Liszt [13] (or the newer DeLite), Pochoir [39], and PATUS [11]. Each one of these
is pursuing specific goals: Liszt adds abstractions to Java to make stencils pro-
gramming easier, also for unstructured problems; Pochoir employs a divide-and-
conquer skeleton on top of the parallel C extension Cilk to make stencil computa-
tions cache-oblivious; PATUS achieves performance by auto-tuning. ExaStencils
seeks highest performance via a second radical decision, which we describe next.

3.2 Domain-Specific Optimization at Every Refinement Step

None of the approaches just mentioned has the explicit goal of reaching exascale
performance. This is our goal for the domain of stencil codes (thus, the name of
our project: ExaStencils). In order to reach it, we insist not only on the freedom
to choose or craft the DSL. Rather, we demand also the freedom to choose one
dedicated language at every one of a small number of refinement steps, from the
first, abstract, executable formulation of the stencil computation down to the
target code actually running on the platform of our choice. With every refinement
step also comes its own, dedicated, highly automated optimization technology,
which exploits the domain-specific knowledge available and useful at this step.

Roughly, the ExaStencils project follows Wirth’s notion of stepwise refine-
ment [42] and Parnas’ approach of program design, which has later been con-
densed in the paradigm of model-driven software development [35], and Parnas’
notion of program families [33]. The idea is to traverse a path of refinement steps
from the mathematical statement of the stencil computation to the target code
to be executed on the platform at hand. In every step, choices are made that
specialize the solution. These choices are governed by the implementation goals
to be reachedD- –different implementation goals, different choices. The overall
goal will be the same: exascale performance! But, for different stencil computa-
tions and different execution platforms, it may be reached by different choices.
By developing a choice tree, we hope to achieve performance portability.

The novel contribution of ExaStencils, beyond the notions of stepwise refine-
ment, model-driven software development, and program families, is the repre-
sentation, aggregation, and employment of a knowledge base of conditions and
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rules concerning stencil codes and the platforms on which they run. ExaStencils
makes choices at different layers of abstraction, which form work areas in the
project. Let us discuss them in turn.

4 ExaStencils Workflow

The workflow of a stencil-code generation à la ExaStencils is illustrated in Fig. 1.
In a first step, a stencil algorithm is engineered by a mathematician. The solution
is put into a first executable form via a cooperation of the mathematician with a
software engineer. In the ExaStencils approach, the software description names a
set of algorithmic and platform choices, each made from a number of options and
alternatives. Then, an implementation is “woven” automatically. The weaving
algorithm is capable of applying optimizations customized for the specific choices
made. One powerful model exploited in ExaStencils is the polyhedron model for
automatic loop parallelization. In a final step, some low-level fine-tuning for
the platform at hand takes place. The target code can be in any language—or,
indeed, mix of languages—that is suitable. In a preliminary code generator, this
is C++ (see Subsect. 4.5). In the following subsections, we expand further on
these development steps.
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Fig. 1. The workflow of the ExaStencils programming paradigm: the ExaStencils com-
piler builds on the combined knowledge of domain experts, mathematicians, and soft-
ware and hardware specialists to generate high-performance target code.

4.1 Algorithmic Engineering

The domain of ExaStencils is multigrid stencil codes on (semi-)structured grids,
see Fig. 5. In many applications, a large, structured, linear system consisting
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of hundreds of millions of unknowns or more must be solved, whose system
matrix can be described compactly, memory-efficiently by one or more stencils.
Multigrid methods are asymptotically optimal solvers for elliptic PDE, i.e. they
belong to the few algorithms that qualify as starting point to implement scalable
parallel solvers. Thus, multigrid methods are widely used on massively parallel
computers, and different parallel implementations are available that scale on cur-
rent supercomputer architectures [3, 21, 4, 5, 14, 15]. Multigrid methods involve
stencil computations on a hierarchy of very fine to successively coarser grids. On
the coarser grids, less processing power is required and communication domi-
nates. A multigrid method is characterized by two strategies: (1) a smoothing
strategy, which is used to smooth the sampling error of the grid at hand, and
(2) a coarsening strategy, which gets one from a grid to the next coarser grid.
Once one arrives at the coarsest level, one refines the grid again via some form of
interpolation. This cycle of coarsening and refining is called a V-cycle (Fig. 2).
A multigrid algorithm consists of a sequence of progressively deeper V-cycles.
Techniques for the efficient implementation and a systematic performance engi-
neering of parallel multigrid methods is a major current research topic [18].

Fig. 2. Depiction of a multigrid algorithm
as a succession of V-cycles

Most of the computational effort
in multigrid methods is spent in the
smoother, which in simple cases can
be a point relaxation, such as Gauss-
Seidel or Jacobi. This results in a
low ratio of computation to memory
load and store operations, limiting the
performance that can be achieved on
modern architectures, as is typical for
applications limited by memory band-
width [24]. Furthermore, scaling to
very high numbers of processors can suffer from a higher number of levels. For
the latter, aggressive coarsening can be a viable option, while the number of com-
putation steps that are necessary can be raised by pipelining of multiple steps
of the iterative smoothing procedure, by using polynomial smoothers or by the
use of block smoothers. These techniques typically result in a better smoothing
factor yielding an overall improved convergence rate.

The performance of multigrid methods depends on the choice of algorithmic
components for discretization, grid transfer, cycling strategy, and smoothing.
They do influence the total run time, on the one hand, by their influence on the
convergence rate, that is the reduction of the error per iteration, and, on the other
hand, by the execution time of the individual components on a given architecture.
While the former is independent of the target architecture, the latter is influenced
strongly by specific hardware properties such as the cache size, the size of the
vector units, if present, etc. The convergence rate can be predicted by Local
Fourier Analysis (LFA), a mathematical tool that analyzes a given iterative
method by freezing coefficients and neglecting boundary conditions. The LFA is
used widely in the multigrid community [28, 41]. We have begun to extend the
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technique to deal with block-smoothers and aggressive coarsening in addition to
the standard LFA techniques [6]. The LFA tool developed will then be used to
determine the convergence rate of a multigrid method in terms of the expected
convergence rate a priori, i.e., without building and running the actual multigrid
method. The combination with a performance model for stencil computations, in
general, and the specific requirements of multigrid methods, in particular, enable
a prediction of the overall run time of the method without actually running it on
the target architecture. This will massively speed up the optimization process
used later in the code-generation workflow.

4.2 Domain-Specific Representation and Modelling

Multigrid solvers come in thousands of variants, which differ in the shape of
the stencil and the grid, the coarsening and smoothing strategy, the bound-
ary conditions, the communication patterns, and many other conceptual and
implementation-level aspects. For example, there are the special strategies nec-
essary to exploit the resources of the execution platform at hand, e.g., caching
and load balancing.

One of the radical departures from tradition in our approach happens at the
layer of the most abstract executable representation of our problem solution,
i.e., our stencil code: We will not consider the code as an individual program
but as a member of a family of codes. That is, our domain-specific language
will pinpoint the commonalities that the code shares with the other codes of the
family and the variabilities in which it departs from the other codes. Each point
of variability comes with a number of options or alternatives.

ExaStencils

Stencil

Pattern

Full Orth

Solution

Skalar Vector System

BoundaryConditions

Periodic Neumann Dirichlet

Grid

Dimension

Two Three

Block

BlockMgmt Coarsening

Reduction Aggregation

LoadBalancing Caching MultiGridAlgorithm

InterGridTransfers

Linear Cubic MatrixDep

Smoother

GaussSeidel Jacobi

CoarseGridOperator

Rediscret Galerkin

Legend:

Mandatory
Optional
Or
Alternative
Abstract
Concrete

Fig. 3. Example variability model for multigrid stencil codes. We distinguish between
Abstract and Concrete configuration options. Concrete introduces variability, Abstract
improves understandability. A configuration option can be either Mandatory, i.e., re-
quired in all variants, or Optional. Configuration options can be grouped in Alternative
or Or groups. Exactly one participant of an Alternative and at least one option of an
Or must be selected in one variant.

Commonalities and variabilities are usually specified in terms of a variability
model. Fig. 3 shows a possible variability model for stencil codes in the form
of a tree, in which each node denotes a configuration option—in our case, the
choice of algorithmic components, alternatives of data structures to be used, and
possible parameter values. A selection of configuration options gives rise to an
executable variant of the stencil code.
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Domain-specific language elements will be our devices for specifying the
choices of individual configuration options and their combinations. A review
of different technologies for the implementation of DSLs [36] led us to choose
Scala [31] as the host language. Actually, we will use four DSLs at decreasingly
abstract layers of abstraction (Fig. 4), all hosted by a common parsing and trans-
formation framework. Layers 1–2 address the concerns of application scientists,
Layers 2–3 those of mathematicians, and Layers 3–4 those of computer scientists.
At present, we are finalizing a prototype generator that will handle input code
written in our DSLs.
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Discrete Domain & Discrete Model

Algorithmic Components & Parameters

Complete Program Specification
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Natural
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maticians

Computer
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Fig. 4. The DSL hierarchy of ExaStencils

4.3 Domain-Specific Optimization and Generation

Which configuration options (i.e., which choices of algorithmic components, al-
ternatives of data structures, and parameter values) contribute to maximal per-
formance is obvious in some cases and very surprising in others. To make matters
worse, certain combinations of options can interfere with each other with respect
to performance in subtle ways (which is an instance of the feature-interaction
problem [7, 37]). To make this problem tractable, ExaStencils will provide a capa-
bility of recommending suitable combinations of configuration option, based on
a machine-learning approach. The objective is to make sufficiently accurate per-
formance predictions on the basis of performance measurements of only a small
number of concrete stencil-code variants. The latest innovation here emerged
from recent work on automated software configuration [37]: The key idea is to
detect and handle explicitly interactions among configurations options—even
among numeric parameters, rather than simply using black-box auto-tuning [12]
or machine-learning approach [22].

We started experiments with the Highly Scalable Multigrid Solver [26]. This
solver tolerates a limited lack of structure in the grid by considering so-called
hierarchical hybrid grids, as depicted in Fig. 5. At the coarsest level, on the left,
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the grid is unstructured, but refinements of each segment (middle and right)
must be homogeneous, though each segment may exhibit a different structure.

Fig. 5. Successive refinement of a hierarchical hybrid grid

The variability model for the Highly Scalable Multigrid Solver is illustrated
in Fig. 6. First experiments have demonstrated already that a machine-learning
approach based on the explicit detection and treatment of configuration-option
interactions can predict the performance of individual stencil-code variants with
a high accuracy [19]. We are only just beginning to exploit domain knowledge
but obtained promising results in a first pass even without it. With domain
knowledge, notably about already-know configuration-option interactions, we
will be able to reduce the number of measurements needed for the prediction
further.

sum (pre-smoothing, post-smoothing) > 0

Legend:
IP_CG = In-Place Conjugate Gradient Jac = Jacobi 
IP_AMG = In-Place Algebraic multigrid GS = Gauss-Seidel
RED_AMG = Algebraic multigrid with data reduction RBGS = Red-Black Gauss-Seidel
GSAC = Gauss-Seidel with additional communication BS = Block-Smoother
RBGSAC = Red-Black Gauss-Seidel with additional communication

HSMGS

post-smoothing
[0..6]

3

pre-smoothing
[0..6]

3

coarse grid solver

IP_CG IP_AMGRED_AMG

smoother

GSACGSJac BSRBGS RBGSAC

Fig. 6. Concrete variability model for the Highly Scalable Multigrid Solver (HSMGS).
In this experiment, we consider the performance contributions and interactions between
three different coarse grid solvers and five different smoothers. Furthermore, we con-
sidered the impact on performance of the number of pre-smoothing and post-smoothing
steps, which we vary from 0 up to 6 with 3 as default value.

In the treatment of values of numerical parameters, we employ a function-
learning approach: We deduce one polynomial function for each pair or binary
option and numerical parameter. Again, so far, we did not exploit domain knowl-
edge, such as the degree of the function that describes the contribution of the
parameter values best. Measurements of 10.2% of all stencil-code variants re-
sulted in performance predictions of an accuracy of 89%, on average.
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4.4 Loop Parallelization

j

i

Fig. 7. Triangular grid

One important issue at Layer 4 is loop parallelization,
since loop nests exhibit the highest potential for a speed
gain. The polyhedron model for automatic loop par-
allelization [16] is a powerful platform for static, i.e.,
compile-time program optimization. However, it comes
with some restrictions that are easily violated by stencil
codes. Most importantly, it requires the linear affinity
of the loop bounds and the array index expressions. For
example, consider the following code for an update of a
linearized triangular grid, as depicted in Figure 7:

for (int i = 0; i < n; ++i)

for (int j = 1; j < i; ++j)

A[(i*i+i)/2+j] = 0.5 * (B[(i*i-i)/2+j] + B[(i*i+i)/2+j-1]);

The linearization avoids a waste of memory that would occur with the use of
a two-dimensional, rectangular array. However, this is relevant only in the final
target code. During the optimization, one can work with the domain-specific
knowledge of the triangularity of the two-dimensional grid and let the poly-
hedron model loose on the corresponding code, whose two-dimensional accesses
are affine:

for (int i = 0; i < n; ++i)

for (int j = 1; j < i; ++j)

A[i][j] = 0.5 * (B[i-1][j] + B[i][j-1]);

Another concern is to optimize reductions in stencil codes effectively. An
iterative reduction via a scalar accumulator leads to flow dependences which
prevent a direct parallelization. But, with the domain-specific knowledge that the
reduction operator is associative and commutative, a corresponding extension to
the polyhedron model makes a multitude of optimizations available, such as loop
splitting, fusing, or blocking.

The restriction to the domain of stencil codes allows us to perform suitable
optimizations, such as temporal or spatial blocking or a combination of both,
according to the target architecture [25]. Here, the use of the polyhedron model
also ensures a correct boundary handling, regardless of its complexity caused by
the combination of different transformations.

4.5 Preliminary Code Generator

The ExaStencils vision that a wide range of stencil codes can be engineered with
the same automatic tool –even only that target code for them can be generated
with the same code generator– has been met with disbelief. For this reason,
we decided to give an immediate proof of concept by developing a preliminary
prototypical code generator in Scala at the start of the project [23]. It is lacking

9



many features that one would expect of a mature code generator, and it is
completely unoptimized. However, it is already able to generate code for a non-
trivial configuration space, as summarized in Table 1. Note that DSL Layer 4
not in the table; it is too concrete to have meaningful variabilities.

Variability Layer Options

Computational domain DSL 1 UnitSquare, UnitCube
Operator DSL 1 Laplacian, ComplexDiffusion
Boundary conditions DSL 1 Dirichlet, Neumann
Location of grid points DSL 2 node-based, cell-centered
Discretization DSL 2 finite differences, finite volumes
Data type DSL 2 single/double accuracy, complex numbers
Multigrid smoother DSL 3 ω-Jacobi, ω-Gauss-Seidel, red-black variants
Multigrid inter-grid transfer DSL 3 constant and linear interpolation and restriction
Multigrid coarsening DSL 3 direct (re-discretization)
Multigrid parameters DSL 3 various
Platform Hardware CPU, GPU
Parallelization Hardware serial, OpenMP

Table 1. A variability model for the preliminary Scala prototype. Variabilities in italics
must be specified by the application expert, all others can be derived from them.

5 Conclusions

The DFG programme SPPEXA contains two tiers of research. The conservative
tier is for incremental research on contemporary technologies. One important
rôle of this tier is to bring legacy software up to speed for exascale. The radi-
cal tier is for completely new ways of treating high-performance software. Exa-
Stencils belongs to the radical tier. The ultimate goal of the project is to provide
proof of the application relevance of the ExaStencils paradigm and to encourage
experts of other suitable domains to take a similar approach.
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