
Systematic Development of an SPMD Implementation Schema
for Mutually Recursive Divide-and-Conquer Specifications

S. Gorlatch and C. Lengauer

Department of Mathematics and Computer Science
University of Passau

D-94030 Passau, GERMANY

Abstract

An SPMD parallel implementation schema for divide-
and-conquer specifications is proposed and derived b y
formal refinement (transformation) of the specifica-
tion. The specification is in the form of a mutually
recursive functional definition. In a first phase, a par-
allel functional program schema is constructed which
consists of a communication tree and a functional pro-
gram that is shared by all nodes of the tree. The fact
that this phase proceeds b y semantics-preserving trans-
formations in the Bird-Meertens formalism of higher-
order junctions guarantees the correctness of the re-
sulting functional implementation. A second phase
yields an imperative distributed SPMD implementa-
tion of this schema. The derivation process is illus-
trated with an example: a two-dimensional numerical
integration algorithm.

1 Introduction

One of the main problems in exploiting modern
multiprocessor systems is how to develop correct and
efficient programs for them. We address this problem
using the approach of formal program transformation.
We take a class of specifications and construct formally
one common SPMD implementation schema that ap-
plies to every member of this class.

We choose the Bird-Meertens formalism for higher-
order functions over lists [3]. The use of higher-
order functions results in clear and concise specifica-
tions that describe usually a class of problems because
the arguments of higher-order functions are functions
themselves. Such classes are called skeletons [6] and
are generally considered as building blocks for com-
posing large application programs. Therefore, peo-
ple have been trying to identify typical skeletons and
to study their parallel implementation. The impor-
tance of divide-and-conquer as one of the widely used
skeletons has been noted repeatedly [l, 191. Several
approaches to its specification and parallel implemen-
tation have been proposed; they are analyzed in Sec-
tion 7.

These are the main features of our parallel imple-

e The class of admitted specifications includes func-
tional mutually recursive definitions.

e A sequence of transformations that does not de-
pend on the particular specification yields a par-
allel functional implementation schema. The
schema consists of a communication tree and a
higher-order functional program that is common
to all nodes of the tree.

e The transformations used in the derivation are
based on the semantics-preserving rules of the
Bird-Meertens formalism and Backus' FP [2].

0 The final implementation is an imperative dis-
tributed SPMD program schema; all communi-
cations are between neighbours in the tree.

e The implementation of a particular specification
is obtained as a specialization of the schema by
supplying specific functions as parameters for the
higher-order program.

e The target program can be tuned to a given num-
ber of processors; it permits also further optimiza-
tions.

We transform the schema in general and, in addi-
tion, illustrate each phase of the transformation with
a specific, realistic example: a two-dimensional nu-
merical integration algorithm. In Section 2, both
the general form of the specification and the exam-
ple are introduced. Section 3 presents briefly the
Bird-Meertens formalism, extended for our purposes,
and describes how the initial specification is expressed
in this higher-order formalism. In the centerpiece of
the paper, Section 4, the higher-order specification is
transformed systematically into a parallel functional
program schema. Section 5 is on the generation of
a more architecture-related imperative program. Ef-
ficiency aspects of this program are discussed in Sec-
tion 6. Section 7 compares our approach with others.
Finally, Section 8 summarizes the results and outlines
problems for further study.

mentation and its construction:

368
0-8186-5602-6/94 0 1994 IEEE

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore. Restrictions apply.

2 Specification
In this section, we present the general format of the

specifications that we admit and the example that we
will come back to throughout the paper.

We consider the following system of n mutually
recursive functions f = (f 1 , . . , f,,). Each function
f; (i = 1 , . . , n) is defined by the equation:

f ; (z) = ifp;(z) then b;(z) else Ei(g; , f , z) A (1)

Here g = (91, . . . , gn) is a collection of what we call
auxiliary functions: g, represents the non-recursive
part of the equation for f i . We suppose that all func-
tions in the systems f , g and b have the same type
r + U. The domain r and the range U are arbitrary
sets; they may be structured but we ignore their struc-
tural properties. Elements of T are called domain pa-
rameters, the p ; basic predicates and the b; basic func-
tions. Expression Ei depends on the value of auxiliary
function g , (z) and on the results of (possibly several)
recursive calls of functions from f . These calls are of
the form fj(cpfj(z)), where functions pij : r + T are
called shifts. Each E, has a fixed set of shifts.

We view the system (1) as a specification for com-
puting one of functions f;, say, f 1 . Our goal is to
generate a parallel program that, given a particular
domain parameter input, computes f l (i n p u t) and, of
course, all values that are necessary for that compu-
tation according to the dependencies in (1).

The general format (1) includes special cases that
have been studied extensively in the literature:

1. Systolic algorithms are often specified in this for-
mat, where r = Z" and the shifts are of the form
cp(i) = i + a, for some fixed a E Z". These and
other restrictions enable the use of linear alge-
bra and linear programming for the synthesis of
a parallel program [12].

2. Conventional divide-and-conquer algorithms cor-
respond to the case of a system with a single func-
tion f 1 and two recursive calls of it. This recur-
sion is sometimes called non-linear [lo]: it reflects
the "divide" aspect of an algorithm.

As a sample specification of the format (l) , we con-
sider an algorithm for numerical two-dimensional non-
adaptive integration 201. The value q of the integral
in the domain [a l , b l f x [az, bz] for a given function U
vanishing on the boundary,

q = J J u(z l ,z2) dz l d ~ 2

can be approximated for a given meshwidth 2-m, m E
N, by.q(") = A (a l , b l , a ~ , b z , m), where A is defined
recursively using functions N and H B as follows:

H B (a i , b i , az, bz) else A (a i , v, a2, b2, m-1)

b i bz

ai az

A (a l , b l , a z , b z , m) = i f (m = l) then

(2)
+ A (- , bl , a27 b2, m-1) + N(a1, b l , a2, b z , m) fi

N (a 1 , b l , az, bz, m) = if (m = 1) then
H B (a i , b i , az, bz) else N (a i , b i , az, 9, m-1)
+ N (a i , b i , ~ , b z , m - l) + H B (a i , b l , a z , b z) fi

Specification (2) is a special case of (1) with two
recursive functions: f 1 = A , fz = N; domain pa-
rameters are from r = W4 x Z; some of shifts
are: (~ : ~ (a l , b l , a 2 , b z , m) = (a, w , a z , b z , m - 1) ,
~p:l (al, bl I a ~ , bz, m) = (v, bl a2, bz , m-1) I =Id
(identity). There is one basic predicate, we shall name
it m.is.1. It is defined by (m . i s . ~) (a l , b l , a z , b z , m) =
(m = 1). There is no auxiliary non-recursive function
in the equation for A , so g1 is an "empty" function.
The auxiliary function for N is HB; H B is also the
basic function for both A and N. Rather than defin-
ing H B precisely, we capture its dependencies in an
expression Expr:

H B (a l , b l , az, b 2) = Expr (a l , h , az, U(-, az) ,
u(a1, a z) , 4 a 1 , bz),+, az),U(b1, b z) , 4 9 , b z) , (3)
b z , u (a l , -) , u (b l , -),U(-, 9))
Our considerations will be made for the general case
(1) and illustrated by the example (2) .

3 Higher-order specification

We use the notation of the Bird-Meertens formalism
(BMF) [18 and Backus' FP 21. Function application

will be enclosed in parentheses to enforce a precedence
or structure a complicated expression. Composition
of functions is denoted by o and has lower precedence
than function application.

From the BMF, we take the following higher-order
functions (also called functionals) on lists:

map applies function h to all elements of a list

is denoted lb y juxtaposition. L ometimes, an argument

[U l , . . . , an]:

map h [a l , . . . , ~ ,] = [hal ; . . ,ha ,]

red (reduction) computes a value of some type
from a list [a l , . . ,a,] of values of that type by
applying an associative binary operation e:

red@ [a l , . . - , a ,] = a l @ . . . @ a , .

In general, we have to deal with more than one func-
tion; therefore, we work with lists of functions and lists
of lists of arguments. This gives rise to the following
generalized versions of BMF functionals.

We define the generalized map, gmap, for a func-
tion h and a list of lists of arguments:

gmap h [Zl, .. . , i n] = [map h 11, .. . , map h I n]

The distributed map, dmap, is the following func-
tional on a list hl, . . , hn] of n functions and a
list [11, . - 9 , I n] o E n lists:

dmap [h1,. .- ,hn] [Z1,. . . , ln] =
[map h14, * . , map h, I n]

369

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore. Restrictions apply.

The generalized reduction, gred, is defined on a
binary associative operation and a list of lists:
g r e d e [l l , . . . , l n] = r e d $ [r e d e l l , ..., redel , ,]

It is easy to prove the following equalities, where func-
tion flat “flattens” a list of lists, i.e., eliminates all
inner brackets in it:

dmap [h, . . . , h] = gmap h (4) i“; gmap h = m a p h o flat
g r e d e = red@

d m a p [h l , . . . , h,,]ogmap h = map[hl o h , . . . , h,oh] 7
We use FP’s construction functional for applying a list
of functions to one argument; we denote it by <>:

The following properties hold:
< h > = h

<hl , .*’ ,h , , > x = [h l X , * . . , h n X]

8

[::I

<hl ,hz> o h = < h i o h , h p ~ h >
For conditional expressions like if p then b else c fl
we use FP’s notation, p + b ; c , with the following
properties for arbitrary predicate p and function h:

(p + b ; c) o h = p o h j b o h ; c o h
To simplify the exposition, we use the notation ~p for
1 o p and f + g for + o / f , g] :

Let us rephrase the specification (1) in our higher-
order notation. Each function Ei in (1) takes a list
of functional calls, which we denote by callsi, applied
via construction <> to the domain parameter. The
higher-order representation of system (1) is then:
f i = Pi -+ b i ; Eio <calls* > (i=l , . . . ,n) (1 2)
Take any i (i = 1, a , n). List calZsi consists of two
elements: the auxiliary function gi and the function
representing recursive function calls in (1) . Any f,
(j = 1 , . - - , n) may be called by f i , possibly more than
once, with specific, “shifted” domain parameters. We
combine all corresponding shifts pij (I = 1, * . , d i j) in
the function splitij : r + l i s t r ; it yields a list of length
d i j containing all domain parameters with which f j is
called in the equation for f i of (1) . The list produced
by splitij is always flat, therefore:

p + h ; h = h

gmap h o splitij = map h o splitij (13)
Using function split, = < splitil, . . . , split,,, > of type
spliti : r + list l i s t r , we can re resent the recursive
calls in callsi by dmap [f 1 , , f,,fo spliti. Substituting
this expression into (12) and flattening the argument
list of E;, we obtain the following higher-order nota-
tion of (1) :
f, = pi + b i ;

Ei 0 f lat 0 <Si , dmap [f l , . . . , f,,] 0 spliti > (1 4)
(i = l , . . . , n)

The higher-order representation of the example (2) is:
A = (m.is.1) +He gred + o dmap [A, N] o split,
N = (m.is.1) + H B gred + o <HB, mapN o spZitzz> (1 5)

4 Functional parallel implement at ion
The presence of higher-order functions <>, map

or dmap in (1 4) points already to divide-and-conquer
parallelism in the specification: all elements of the
corresponding lists can be evaluated simultaneously.
Some of these elements are, again, recursive func-
tions. Unfolding the recursion creates an evaluation
tree whose nodes represent values of functions from f ;
the nodes at one level can be evaluated in parallel.

In this section, we present a systematic way of de-
riving a functional parallel implementation of (1) . In-
formally, we proceed as follows. First we define a new
data type that represents possible evaluation trees for
a given specification; these trees are further used as
structures for parallel computation, with processors
associated to the nodes. Then a correspondence be-
tween this type and the original domain type r is es-
tablished and used for obtaining a parallel program
schema that implements the initial specification.

We introduce n types of trees, Treei (i = 1 , . , n) ,
one for each function f; in (1) . The nodes are taken
from the set {nodei I i = l , . . . , n } . A tree of type
TreG is either a single node, nodei, or it is of the

Deen) , i.e., its root is node, and the number of its
sons that are of type Treej is d;j - the length of the
list produced by splitij. The outdegree of nodei is
di = (C j : 1 5 j 5 n : dij). We use Dijkstra’s quan-
tifier notation [8].

The evaluation graph of function fi in (1) is of type
Treei. Because we want to derive a parallel program
that computes f 1 , we are particularly interested in the
type Treel; it is a partially ordered set: z L y iff x is a
subtree of y. The least upper bound of Tree1 is the infi-
nite tree: tree1 = (U tree : tree€ Tree1 : tree), whose
subtrees are all trees of type Treel.

Tree tree1 is unique for a given specification (1) ; it
represents the communication structure of the parallel
implementation we are aiming at. In our definitions
we use predicates on the node set of treel, V, with the
evident semantics: is.root, is.nodei and is.sonj.

We introduce an abbreviated notation for condi-
tional functions and predicates on V:

([i : lsiln : is.nodei + t i) =

We omit range 1 5 i 5 n if there is no danger of confu-
sion and use the notation (0 i :: is.nodei + ti).

Let us construct an abstraction function [lo] that
maps from the concrete type V (the nodes of treel)
to the abstract type r (the domain parameters). We
call our abstraction function diu : it “divides” the
domain parameters and distributes them among the
nodes. We define div using input - the domain pa-
rameter for which function f 1 must be computed: the
value of diu at the root is defined to be input and, for
the j - th son, wj, of any node V E V:

form nod& (vi’), - - ,U:! : %el, . (n) , 1 ~ ” ‘ ~ v d , , :

is.node1 + t l; . . ; is.node, -+ t ,

diu wj = (0 i :: is.nodei v -+ (16)
(pi o diu v + I ; Pj o flat o spliti o diu v))

370

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore. Restrictions apply.

Here, I stands for the undefined value and Pj is the
projection function yielding the j - th element of a list.

Let us reformulate div in our higher-order notation.
We define function node : r -+ V a s div-l:

node o div = Id (17)

We give special names to some functions on r:

p =
split =

(0 i :: is.node; o node + p,)
(0 i :: is.node, o node + spli t i)

fsplit = f lat o split

Introducing function father on V that yields the father
of a given node, we can reformulate (16) as follows:

diu = isroot + i npu t ; ([j :: (is .sonjA
(18) l p o div o father) + Pj o fsplit o div o f a ther)

Here, the range of j is lijld where d =
(m a x i : l l i s n : d i) .

Using the abstraction function div, we define func-
tion F : V + a as follows:

F = (0 i :: is.nodei -+ f i o d i v) (19)

From (18) and (19), we see immediately that the value
of F a t the root of tree1 is f l (i n p u t) , i.e., we have re-
duced the problem of implementing the specification
to the problem of computing function F at the root
of treel. This function combines functions fi, , fn;
however, it is defined not on the domain r but on the
nodes of treel. We would like to distribute the compu-
tation of F among the nodes of the tree, but run into
two problems. First, tree tree1 is infinite. Second,
the computation of F at the root is not yet paral-
lelized: according to (19), we must compute f l (i n p u t)
as before. Using the introduced functions and their
properties, we can cope with both problems.

First , when dealing with real-life communication
structures, we pick a fixed finite tree tree E Beel
whose number of nodes does not exceed the number
of processors available to us. This tree is determined
by the predicate is.leaf which selects the leaves of the
tree. For each particular finite tree tree, we shall use
the restrictions of all functions originally defined on
V - like F, div, etc. - to the node set of tree, with-
out giving them special names. All properties of these
functions also hold for their restrictions.

We define function sons on V to return all sons of
a given node as a list of n lists: the i-th list contains
the sons of type node,. Function sons is defined for
such v E V that is.Zeaf(v) = false; it has the following
properties:

dmap [hl, . . . , h,,] o sons =

(gmap div) o sons = split o diu

(20)

(21)

gmap ([i :: k n o d e i + hi) o sons

Second, we can now parallelize the expression f i o div
of (19) via transformation:

f i o div

is.leaf + f ; o div; f i o div

isleaf + fi o d iv ; pi o div + b; 0 diu;
E i o f l a t o < g i , dmap[f l , . . . , f , ,] ospl i t ,> o d i v

= { equality (10) }

= { equalities (14), (11) }

The last alternative, which applies in the case of
1is.leaf A pi o div), is transformed further:

= { equality (9) }
E ; o f l a t o < g i , d m a p [f l , . - - , f n] ospl i t ,> od iv

E; o f l a t o <(si o div) ,
(dmap [f l , . . e , f,,] o split* o diu) >

{ equality (21), definition (19) }
Ei o f l a t0 <(g , o div) ,
(dmap [f l , ...;, f n] o gmap div o sons) >

{ equalities (7), (20) }
Ei o f l u t o <(gi o div) ,
(gmap (is.nodei + f i o div) o sons) >

{ definition (19), equality (4) }
E, o f lato <(g, o div) , (gmap F o s o n s) >

=

=

=

The following transformations are applied again to the
entire expression:

= is.leaf + f ; 0 div;pi o div + bi 0 diu;

=

f i o div

Ei o f l a t o < (gi o div) , (gmap F o sons) >

(is.leaf + f i o div ; p i o div + bi o dav; E; o
p a t o <gi o ddv, gmap F o sons>) o node o diu

(is.leaf o node + f ; ; p i + bi ; Ei o f l a t o
< S i , (gmap F o sons o node) >) o diu

{ composition with Id from (17) }

= { equalities (ll), (9) }

The obtained expression is a composition of two func-
tions, the second of which is div. We call the first
one conq, (for “conquer”). Substituting expression for
f i o div into (19), we arrive at the final expression for
F:

F = ([i :: is.nodei + conq, o d iv) (22)
is.root + input; (0 j :: (is.sonj A (23)

conq, = is.leaf o node + f , ; pi + bi ; (24)

div =
~p o div o father) + Pj o fsplit o div o f a ther)

Ei o f lato <g,, (gmap F o sons o node) >
There are three important observations to be made
about (22)-(24). First, for computing function F at
some node of tree, we can use the results of computing
F a t its sons and the result of computing div (which is
a part of F) at its father. Therefore, the computation
of F at the root of tree can be distributed over the
nodes of tree with function F to be computed a t each
node. Second, the computations at different nodes can
be performed in parallel: F i s mapped to the sons, i.e.,
the computations at the sons are independent of each
other. They are also independent of the computation
of auxiliary function g,, because of <>. Third, we
arrived at this parallel implementation from the spec-
ification by calculation using formal rules.

371

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore. Restrictions apply.

Let us summarize the way of implementing a spec-
ification of format (1). Recall that we must generate
a program that, given a particular parameter i npu t ,
computes f 1 (input) . We construct type !&eel, which
captures the communication structure needed by the
specification, and choose a particular tree of this type,
such that each of its nodes can be mapped onto a pro-
cessor. If all processors simultaneously compute func-
tion F according to (22)-(24) and input is available
a t the root processor, then the result obtained at the
root is the desired value f i (i n p u t) .

Expressions (22)-(24) tell us that function F i s com-
puted at each node of tree in two steps:

Apply div. This function computes the corre-
spondin domain parameter for a node. Equa-
tion (237 says that, for the root, this parameter
is input and, for each other node, it is determined
by the result of div at its father. Thus, in the
computation of div, data is flowing from the root
to the leaves of the tree. Note that if the domain
parameter at some node makes predicate p , true,
i.e., the basic case is reached, then the domain
parameters for all descendants of this node are
undefined: no computations at those nodes are
needed. In other words, the number of processors
exceeds in this case the degree of parallelism in
the specification.

Function conq takes the domain parameter re-
turned by div. Equation (24) prescribes that fur-
ther computations depend on the type of the node
(index i) and on its position in the tree. In the
leaf nodes, fi for the domain parameter must be
computed (sequentially). In the non-leaf nodes,
the results from the sons and from computing the
auxiliary function figure into the computation of
Ei. Therefore, at this step, data is flowing from
the leaves to the root.

m

Figure 1: Tree of type Tree1 - example

In our example, type %el corresponds to the func-
tion A to be computed. An example tree of this type
with 12 nodes of two types is shown in Figure 1. The
maximal outdegree of a node is 3, we use concrete
functions sonl , so- and son3 which are the compo-
nents of the general function sons. We denote the
negation of m.is.1 by m.not.1.

Parallel implementation of A is obtained as a spe-
cialization of the general schema (22)-(24):

A = is.nodel + conql o d i v ; conq, o div
diw = is.root + i npu t ; (0 j : 1 < j < 3 : (is.sonj A

m.not.1 o div o father) + Pj o fsplit o div o father)
conql = is.leaf o node + A ; A o son1 0 node

+ A o so% o node + A o son3 o node
conq, = is.leaf o node + N ;

H B + A o sonl o node + A o son^ o node

5 Imperative parallel implementation
In the previous section, we have demonstrated how

the specification of an algorithm can be “refined” into
a higher-order functional parallel implementation that
consists of a communication structure defined by type
Treel, and a function F, defined by (22)-(24), which
is to be computed simultaneously at all nodes of the
structure. In this section, we take this functional im-
plementation and convert it to an imperative program
with explicit message-passing. The target program
prescribes the computation and communication for
processors that are assigned to the nodes of the tree.

According to (22)-(24), F specifies a computation
in the SPMD (single-program-multiple-data) model:
the same function applies to all nodes of the tree. The
variations in computation at the different nodes are
expressed by predicates is.leaf, is.nodei and is.sonj.
In other words, the behaviour depends on the type of
the node and on its position in the tree.

Our imperative target program Node, which is pre-
sented in Figure 2, is therefore executed at every node
of the tree. One implicit parameter of program Node
is the id of the associated processor (variable my-id).

The imperative program uses procedures that ‘im-
plement the functions and predicates of the functional
implementation: I s - root , I s - l e a f , Outdegree,
Father , Son. For brevity, we have not listed the pro-
cedure interfaces in our import list; a strongly typed
language would, of course, have to do so. All proce-
dures take the processor id as a parameter; Son has
an additional parameter k, specifying the (k-th) son
to be computed.

The following functions, used by F, depend on the
type of node nodei: spliti, fi, gi and Ei. They are
defined on the domain parameters. In the imper-
ative program, they are implemented by the corre-
sponding procedures S p l i t , Compute-f , Compute-g
and Compute-E. The first parameter of these proce-
dures is the type, type, of the node and the second is
the domain parameter, param.

Communications between processors include send-
ing and receiving data. They are implemented by
the statements SEND (<data>) TO <par tner> and
RECV (<data>) FROM <par tner> . Here, <par tner>
is the id of the processor with whom the communica-
tion takes place.

Formulae (22)-(24) are implemented in the pro-
gram as follows. The domain parameter input and
the type type of the root node are the input to the

372

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore. Restrictions apply.

PROGRAM Node;
IMPORT Father,Son,Outdegree,Is-leaf,Is-root,

Split,Compute-E,Compute-f,Compute-g;
BEGIN-Node
IF Is-root (my-id)
THEN READ (type,param)
ELSE RECV (type , param) FROM Father (my-id)
END-IF ;
IF Is-leaf (my-id)
THEN

ELSE
result : = Compute-f (type,param)

son-param := Split (type,param) ;
FOR k:=l TO Outdegree(my-id) DO

END-FOR;
res-aux := Compute-g(type!param) ;
FOR k:=l TO Outdegree(my-id) DO
RECV (res[k]) FROM Son(my-id,k)
END-FOR ;
result := Compute-E(type, res-aux,

SEND (son-param[k]) TO Son(my-id,k)

res [I] , . . . , res Cnl)
END- IF ;
IF Is-root (my-id)
THEN WRITE (result)
ELSE SEND (result) TO Father(my-id)
END-IF;

END-Node

Figure 2: SPMD program schema

program. The root receives them by READ (<data>).
According to (23) for div, the domain parameters at
non-root nodes are obtained by applying split to the
domain parameter of the father. In the program, this
is realized by procedure Split, which yields the do-
main parameters and the type values for the sons. For
simplicity of the exposition, our imperative implemen-
tation presumes that there are strictly fewer proces-
sors than are required to realize all parallelism. That
is, the basic case is not reached during the computa-
tion of the domain parameters for the sons.

Having obtained the domain parameter, i.e., having
computed function div, it remains to compute conq. In
the program, there is firstly a conditional statement
corresponding to the FP-condition in (24). For a leaf
node, function f, is computed sequentially by proce-
dure Compute-f. For a non-leaf node, there are differ-
ent ways of implementing the constructions with <>
and gmap. Our node program is sequential; computa-
tion starts with the second component of <> which
has the form gmap F o sons. This means computing
F at all sons of the current node independently. To
this effect, the program computes array son-param by
procedure Split. Each element of son-param is a pair
(type,param) which is then sent to the corresponding
son. This way, the computation of conq at the father
is synchronized with the computations of div at the
sons. After sending the necessary data to all sons,
we compute the first component of <>, the auxiliary

function, by calling procedure Compute-g whose result
is res-aux. We must then receive the results from the
sons; they are used by procedure Compute-E. This pro-
cedure yields the result which, in fact, represents the
value of F a t the current node. This value must either
be sent to the father or, in case of the root node, it is
the output fi(input) of the whole program.

For lack of space, we do not present the special-
ization of this imperative parallel program schema for
the example.

6 Efficiency issues

In this section, we touch briefly on some questions
concerning the efficiency of our parallel imperative
program schema.

There are, in general, various levels of parallelism
that can be detected in a specification, extracted from
it and implemented in a parallel program. Our con-
siderations in this paper have been limited to the
“generic” parallelism which is determined by the de-
pendencies in (1) and which is not influenced by the
properties of particular functions, g and E , and par-
ticular domains T and U. All this parallelism has been
preserved during the development of the functional
implementation (22)-(24). In the development of the
imperative program, this parallelism is converted to
a programming language. The following efficiency as-
pects should be taken into account.

The amount of paral-
lelism is governed by the recursion depth of func-
tion div. In the parallel schema, dividing is addi-
tionally controlled by the predicate is.Ieaf. This
way, the parallelism is matched with the available
number of processors.

In the functional parallel
implementation, there are potentially parallel
threads inside one node: communicating with the
sons and/or computing the auxiliary function. In
the imperative implementation, we execute them
sequentially; on some architectures, however, the
use of multithreading can improve efficiency.

0 Communication structure. The communica-
tion tree may be non-homogeneous. E.g., in our
example, the nodes may vary in outdegree. The
architecture of the multiprocessor must cope with
that. On the other hand, the synthesized struc-
ture does not change during program execution,
and the communications are only between direct
neighbours (father and sons).

0 Processor number. The maximal number of
processors for a given value of input can some-
times be determined analytically, as in our exam-
ple. However, there is an adaptive variant of the
inte ration algorithm where the basic predicate is
Hi?(%, b l , a2, b2, m) < E . In this case, the actual
amount of work is known only at run time, and
good performance must be achieved by dynamic
load- balancing.

Restricted dividing.

0 Sequentialising.

373

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore. Restrictions apply.

Redundant computations. We see from (3)
that the computation of H3 for different argu-
ments uses common values of function U. In the
imperative program, this leads to redundant com-
putations. They can be prevented by introducing
additional communication [9].

Load Balancing. The amount of computational
work in a processor strongly depends on its posi-
tion in the tree. The load balance can be im-
proved using additional transformations at the
functional level that are explained subsequently.

Let us discuss briefly two ways of improving the
imperative program performance.

First, a particular specification may be matched in
different ways with format (1). Another match for
our example (2) to make A the single recursive and
N i t s auxiliary function. In this case, the target pro-
gram has a binary communication tree that can be
efficiently implemented on most multiprocessors. The
node program computes sequentially the correspond-
ing value of N, i.e., the granularity of parallelism be-
comes higher and the load is balanced better.

Second, we can stick to our match of Section 2 -
and, thus, the original communication structure - but
execute one of map’s components in the processor it-
self. E.g., in our example, the processor might not use
the link to the left son and perform the corresponding
computations sequentially. Then, parallelism is also
better balanced, and the outdegree of each node is
reduced by 1.

These and other improvements of the target pro-
gram, can be realized by additional transformations.

Our experiments with a parallel implementation of
the example on a 64-node transputer system yielded
an efficiency (speed up/number of processors) ranging
from 0.6 to 0.9, depending on the input domain pa-
rameter and on the processor number. More on this
in a different paper.

7 Related work

There has been a lot of work on formal paralleliza-
tion of conventional (not mutually recursive) divide-
and-conquer.

There is an algebraic model for describing divide-
and-conquer and a language, Divacon, based on it
14, 161; communication issues in this model have also c, een studied [4]. The approach is based on the the-

ory of pseudomorphisms which has much in common
with the Bird-Meertens formalism. Our approach dif-
fers from this work in three main aspects. First, we
consider a more general case, allowing a specifica-
tion to consist of several, possibly mutually recursive
functions and also non-recursive auxiliary functions.
Second, we propose a systematic, semantically sound
way of deriving a distributed-memory SPMD program
schema for this class of specifications. Third, we ig-
nore the structural properties of the data domain r .
This enables a more general treatment of divide-and-
conquer, since we need not ensure that recursive calls
are applied always to smaller chunks of data as in [16].

In our example, there are no chunks at all! Of course,
this has the drawback that we do not consider the ef-
fect of the data size on communication and parallelism
in our performance analysis.

In [7, lo], the higher-order approach was used for
transforming non-linear recursion, typically divide-
and-conquer, into tail recursion and then pipelining
the latter. Pipelining reduces the parallelism inherent
in divide-and-conquer but is claimed to be more suit-
able for parallel architectures with a static communi-
cation structure (we are not aware of any experimental
results on performance). In contrast, we preserve the
initial tree-like parallelism of divide-and-conquer and
show that it can be realized with static and local com-
munication.

Our paper has much in common with recent work
investigating parallelism with the Bird-Meertens for-
malism [18]. Our extension to BMF consists of gen-
eralized versions of map and red and transformation
rules for them.

The idea of abstract data type transformation that
was used in [lo] for parallelizing linear recursion is
applied here in a broader context. We derive an im-
plementation for both stages of divide-and-conquer
and show that the abstraction function expresses the
essence of the dividing stage in divide-and-conquer.

An approach based on unfolding the recursion is de-
scribed in [ll, 131 for the bitonic sort, which is also a
divide-and-conquer algorithm. The derived parallel al-
gorithm has logarithmic complexity and was proved to
be optimal. The disadvantage of this approach is that
the computational complexity of the derivation pro-
cess depends (quadratically) on the problem size. In
our present approach, the computational complexity
of the derivation process is independent of the prob-
lem size.

The important problem of how to map the paral-
lel program onto particular communication topologies
(3D mesh, hypercube, etc.) is considered, e.g., in [15].
There are development systems, like PARSE [5], that
support parallel program derivation and performance
evaluation We have derived a logical communication
structure and shown how to adapt it to the available
number of processors; the problem of mapping it onto
a physical interconnection topology is a point of fur-
ther research. There is much work on this matter (e.g.,
17]), but we are not aware of any that considers non- h omogeneous trees, as in our example.

8 Conclusions and future work

Our paper takes the approach in which the start-
ing point in the program development is a problem-
oriented, often non-procedural, formal specification of
an algorithm. The specification describes what is to
be done but not how it is to be done. Aspects of
the how - in our case, parallelism - are introduced by
(semi-)automatic formal transformations. Procedural
aspects enter the development when the implementa-
tion is mapped to a language executable on existing
processor net works.

We have presented a parallel implementation of a

374

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore. Restrictions apply.

non-procedural (functional) specification of mutually
recursive divide-and-conquer. First, a parallel func-
tional schema is obtained via transformation of the
specification: its correctness is guaranteed by the se-
mantical soundness of the transformation rules, which
are taken from the Bird-Meertens formalism, extended
for our purposes. The functional schema consists of a
communication tree with processors at the nodes and
a common higher-order function associated with each
node. The communication structure has two impor-
tant properties: it is static, i.e., it does not change
during program execution, and it is local, i.e., each
processor in the tree communicates only with its father
and sons. The functional schema is then transformed
into an imperative SPMD schema with coarse-grained
parallelism. The target program is adapted to the
available number of processors.

Our future work will include detailed performance
studies of parallel divide-and-conquer by means of
both analytical and experimental methods. The goal
is to study the influence of various transformation
rules used in the derivation process on the efficiency
of the resulting parallel program.

Acknowledgements

useful comments.
Thanks to all three anonymous referees for many

References
[l] M. J. Atallah, R. Cole, and M. T. Goodrichs.

Cascading divide-and-conquer: A technique for de-
signing parallel algorithms. SIAM J. Computing,

[2] J. W. Backus. Can programming be liberated from
Communications of the

18(3) :499-532, 1989.

the von Neumann style?
ACM, 21~613-641, 1978.

[3] R. S. Bird. Lectures on constructive functional pro-
gramming. In M. Broy, editor, Constructive Meth-
ods in Computing Science, volume 55 of NATO A S 0
Series F: Computer and Systems Sciences, pages
151-216. Springer Verlag, 1988.

Compile-time trans-
formations and optimizations of parallel divide-
and-conquer algorithms. ACM SIGPLAN Notices,

[5] T. Casavant, H. Dietz, P. Sheu, and H. Siegel. The
PARSE approach to programming non-shared mem-
ory parallel computers. In Int. Conf. Paral. Proc.,
pages 380-389, 1989.

[6] M. I. Cole. A “skeletal” approach to the exploitation
of parallelism. In Proc. CONPAR 88, pages 667-675.
British Computer Society Workshop Series, 1989.

[7] I. P. de Guzman, P. G. Harrison, and E. Medina.
A higher-order approach to parallel algorithms. The
Computer Journal, 36(3):254-268, 1993.

[4] B. Carpentieri and G. Mou.

20(10) :19-28, 1991.

[8] E. W. Dijkstra and C. S. Scholten. Predicate Calculus
and Program Semantics. Texts and Monographs in
Computer Science. Springer-Verlag, 1990.

[9] S. Gorlatch. Parallel program development for a re-
cursive numerical algorithm: A case study. Technical
Report SFB 342/7/92, Institute for Computer Sci-
ence, Technical University of Munich, March 1992.

[lo] P. G. Harrison. A higher-order approach to parallel
algorithms. The Computer Journal, 35(6):555-566,
1992.

[ll] C.-H. Huang and C. Lengauer. The automated proof
of a trace transformation for a bitonic sort. Theoret-
ical Computer Science, 46(2-3):261-284, 1986.

Loop parallelization in the polytope
model. In E. Best, editor, CONCUR ’93, Lec-
ture Notes in Computer Science 715, pages 398-416.
Springer-Verlag, 1993.

(131 C. Lengauer and C.-H. Huang. A mechanically cer-
tified theorem about optimal concurrency of sort-
ing networks. In Pmc. 13th Ann. ACM Symp. on
Principles of Programming Languages (POPL), pages

[14] Z. G. Mou. Divacon: A parallel language for scientific
computing based on divide and conquer. In Proc.
3nI Symposium on the Frontiers of Massively Parallel
Computation, pages 451-461, October 1990.

[15] Z. G. Mou, C. Constantinescu, and T. J. Hickey.
Divide-and-conquer on three-dimensional meshes. In
W. Joosen and E. Milgrom, editors, Parallel Comput-
ing: From Theory to Sound Practice, pages 344-355.
10s Press, 1992.

[16] Z. G. Mou and P. Hudak. An algebraic model
for divide-and-conquer algorithms and its parallelism.
Journal of Supercomputing, 2(3):257-278, 1988.

1171 W. G. Nation, G. Saghi, and H. J. Siegel. Proper-
ties of inteconnection networks for large-scale parallel
processing systems. In ISIPCALA ’93, pages 51-79,
1993.

Architecture-independent parallel
computation. IEEE Computer, 23(12):38-50, 1990.

Supporting divide-and-conquer algo-
rithms for image processing. Journal of Parallel and
Distributed Computing, 4:95-115, 1987.

[20] C. Zenger. Sparse grids. Technical Report SFB-Nr.
342/18/90 A, Techn. Univ. Muenchen, October 1990.

[12] C. Lengauer.

307-317, 1986.

(181 D. B. Skillicorn.

119) Q, F. Stout.

375

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore. Restrictions apply.

