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Abstract 

An SPMD parallel implementation schema for divide- 
and-conquer specifications is proposed and derived b y  
formal refinement (transformation) of the specifica- 
tion. The specification is in the form of a mutually 
recursive functional definition. In a first phase, a par- 
allel functional program schema is constructed which 
consists of a communication tree and a functional pro- 
gram that is shared by  all nodes of the tree. The fact 
that this phase proceeds b y  semantics-preserving trans- 
formations in the Bird-Meertens formalism of higher- 
order junctions guarantees the correctness of the re- 
sulting functional implementation. A second phase 
yields an imperative distributed SPMD implementa- 
tion of this schema. The derivation process is illus- 
trated with an example: a two-dimensional numerical 
integration algorithm. 

1 Introduction 

One of the main problems in exploiting modern 
multiprocessor systems is how to develop correct and 
efficient programs for them. We address this problem 
using the approach of formal program transformation. 
We take a class of specifications and construct formally 
one common SPMD implementation schema that ap- 
plies to  every member of this class. 

We choose the Bird-Meertens formalism for higher- 
order functions over lists [3]. The use of higher- 
order functions results in clear and concise specifica- 
tions that describe usually a class of problems because 
the arguments of higher-order functions are functions 
themselves. Such classes are called skeletons [6] and 
are generally considered as building blocks for com- 
posing large application programs. Therefore, peo- 
ple have been trying to  identify typical skeletons and 
to  study their parallel implementation. The impor- 
tance of divide-and-conquer as one of the widely used 
skeletons has been noted repeatedly [l, 191. Several 
approaches to  its specification and parallel implemen- 
tation have been proposed; they are analyzed in Sec- 
tion 7. 

These are the main features of our parallel imple- 

e The class of admitted specifications includes func- 
tional mutually recursive definitions. 

e A sequence of transformations that does not de- 
pend on the particular specification yields a par- 
allel functional implementation schema. The 
schema consists of a communication tree and a 
higher-order functional program that is common 
to  all nodes of the tree. 

e The transformations used in the derivation are 
based on the semantics-preserving rules of the 
Bird-Meertens formalism and Backus' FP [2]. 

0 The final implementation is an imperative dis- 
tributed SPMD program schema; all communi- 
cations are between neighbours in the tree. 

e The implementation of a particular specification 
is obtained as a specialization of the schema by 
supplying specific functions as parameters for the 
higher-order program. 

e The target program can be tuned to a given num- 
ber of processors; it permits also further optimiza- 
tions. 

We transform the schema in general and, in addi- 
tion, illustrate each phase of the transformation with 
a specific, realistic example: a two-dimensional nu- 
merical integration algorithm. In Section 2, both 
the general form of the specification and the exam- 
ple are introduced. Section 3 presents briefly the 
Bird-Meertens formalism, extended for our purposes, 
and describes how the initial specification is expressed 
in this higher-order formalism. In the centerpiece of 
the paper, Section 4, the higher-order specification is 
transformed systematically into a parallel functional 
program schema. Section 5 is on the generation of 
a more architecture-related imperative program. Ef- 
ficiency aspects of this program are discussed in Sec- 
tion 6. Section 7 compares our approach with others. 
Finally, Section 8 summarizes the results and outlines 
problems for further study. 

mentation and its construction: 
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2 Specification 
In this section, we present the general format of the 

specifications that we admit and the example that we 
will come back to  throughout the paper. 

We consider the following system of n mutually 
recursive functions f = ( f 1 ,  . . , f,,). Each function 
f; (i = 1 , .  . , n) is defined by the equation: 

f ; (z)  = ifp;(z) then b;(z)  else Ei(g; ,  f ,  z) A ( 1 )  

Here g = (91, . . . , gn)  is a collection of what we call 
auxiliary functions: g, represents the non-recursive 
part of the equation for f i .  We suppose that all func- 
tions in the systems f ,  g and b have the same type 
r + U. The domain r and the range U are arbitrary 
sets; they may be structured but we ignore their struc- 
tural properties. Elements of T are called domain pa- 
rameters, the p ;  basic predicates and the b; basic func- 
tions. Expression Ei depends on the value of auxiliary 
function g , ( z )  and on the results of (possibly several) 
recursive calls of functions from f .  These calls are of 
the form fj(cpfj(z)), where functions pij : r + T are 
called shifts. Each E,  has a fixed set of shifts. 

We view the system (1) as a specification for com- 
puting one of functions f;, say, f 1 .  Our goal is to 
generate a parallel program that, given a particular 
domain parameter input,  computes f l ( i n p u t )  and, of 
course, all values that are necessary for that compu- 
tation according to  the dependencies in (1). 

The general format (1) includes special cases that 
have been studied extensively in the literature: 

1. Systolic algorithms are often specified in this for- 
mat, where r = Z" and the shifts are of the form 
cp(i) = i + a, for some fixed a E Z". These and 
other restrictions enable the use of linear alge- 
bra and linear programming for the synthesis of 
a parallel program [12]. 

2. Conventional divide-and-conquer algorithms cor- 
respond to  the case of a system with a single func- 
tion f 1  and two recursive calls of it. This recur- 
sion is sometimes called non-linear [lo]:  it reflects 
the "divide" aspect of an algorithm. 

As a sample specification of the format ( l ) ,  we con- 
sider an algorithm for numerical two-dimensional non- 
adaptive integration 201. The value q of the integral 
in the domain [ a l ,  b l f  x [az, bz] for a given function U 
vanishing on the boundary, 

q = J J u(z l ,z2)  dz l  d ~ 2  

can be approximated for a given meshwidth 2-m,  m E 
N, by.q(") = A ( a l , b l ,  a ~ ,  b z ,  m), where A is defined 
recursively using functions N and H B  as follows: 

H B  ( a i ,  b i ,  az,  bz )  else A ( a i ,  v, a2, b2, m-1)  

b i  bz 

ai az 

A ( a l , b l , a z , b z , m )  = i f ( m = l )  then 

( 2 )  
+ A ( - ,  bl ,  a27 b2, m-1) + N(a1, b l ,  a2, b z ,  m) fi 

N ( a 1 ,  b l ,  az, bz,  m) = if (m = 1 )  then 
H B ( a i ,  b i ,  az, bz )  else N ( a i ,  b i ,  az,  9, m-1) 
+ N ( a i , b i , ~ , b z , m - l ) + H B ( a i , b l , a z , b z )  fi 

Specification (2) is a special case of (1) with two 
recursive functions: f 1  = A ,  fz = N; domain pa- 
rameters are from r = W4 x Z; some of shifts 
are: ( ~ : ~ ( a l , b l , a 2 , b z , m )  = (a, w , a z , b z , m - 1 )  , 
~p:l (al, bl I a ~ ,  bz,  m) = (v, bl a2, bz ,  m-1) I =Id 
(identity). There is one basic predicate, we shall name 
it m.is.1. It is defined by ( m . i s . ~ ) ( a l , b l , a z , b z , m )  = 
(m = 1). There is no auxiliary non-recursive function 
in the equation for A ,  so g1 is an "empty" function. 
The auxiliary function for N is HB; H B  is also the 
basic function for both A and N. Rather than defin- 
ing H B  precisely, we capture its dependencies in an 
expression Expr: 

H B  ( a l ,  b l ,  az, b 2 )  = Expr ( a l ,  h ,  az, U(-, az ) ,  
u(a1,  a z ) ,  4 a 1 ,  bz),+, az),U(b1, b z ) ,  4 9 ,  b z ) ,  (3) 
b z , u ( a l ,  - ) , u (b l ,  -),U(-, 9)) 
Our considerations will be made for the general case 
(1)  and illustrated by the example ( 2 ) .  

3 Higher-order specification 

We use the notation of the Bird-Meertens formalism 
(BMF) [18 and Backus' FP 21. Function application 

will be enclosed in parentheses to  enforce a precedence 
or structure a complicated expression. Composition 
of functions is denoted by o and has lower precedence 
than function application. 

From the BMF, we take the following higher-order 
functions (also called functionals) on lists: 

map applies function h to  all elements of a list 

is denoted lb y juxtaposition. L ometimes, an argument 

[ U l ,  . . . , an]:  

map h [ a l , . . . , ~ , ]  = [hal ; . . ,ha ,]  

red (reduction) computes a value of some type 
from a list [ a l ,  . . ,a,] of values of that type by 
applying an associative binary operation e: 

red@ [a l , . . - , a , ]  = a l @ . . . @ a ,  . 

In general, we have to deal with more than one func- 
tion; therefore, we work with lists of functions and lists 
of lists of arguments. This gives rise to  the following 
generalized versions of BMF functionals. 

We define the generalized map, gmap, for a func- 
tion h and a list of lists of arguments: 

gmap h [Zl, .. . , i n ]  = [map h 11, .. . , map h I n ]  

The distributed map, dmap, is the following func- 
tional on a list hl,  . . , hn] of n functions and a 
list [11, . - 9 , I n ]  o E n lists: 

dmap [h1,. .- ,hn] [Z1,. . . , ln] = 
[map h14,  * . , map h, I n ]  
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The generalized reduction, gred, is defined on a 
binary associative operation and a list of lists: 
g r e d e  [ l l , . . . , l n ]  = r e d $  [ r e d e l l ,  ..., redel , ,]  

It is easy to  prove the following equalities, where func- 
tion flat “flattens” a list of lists, i.e., eliminates all 
inner brackets in it: 

dmap [h, . . . , h] = gmap h ( 4 )  i“; gmap h = m a p h  o flat 
g r e d e  = red@ 

d m a p [ h l , .  . . , h,,]ogmap h = map[hl  o h , .  . . , h,oh] 7 
We use FP’s construction functional for applying a list 
of functions to  one argument; we denote it by <>: 

The following properties hold: 
< h >  = h 

<hl , .*’ ,h , ,  > x = [ h l X , * . . ,  h n X ]  

8 

[::I 

<hl ,hz> o h  = < h i o h ,  h p ~ h >  
For conditional expressions like if p then b else c fl 
we use FP’s notation, p + b ;  c ,  with the following 
properties for arbitrary predicate p and function h: 

( p + b ; c ) o h  = p o h j b o h ;  c o h  
To simplify the exposition, we use the notation ~p for 
1 o p  and f + g  for + o / f , g ] :  

Let us rephrase the specification ( 1 )  in our higher- 
order notation. Each function Ei in ( 1 )  takes a list 
of functional calls, which we denote by callsi, applied 
via construction <> to  the domain parameter. The 
higher-order representation of system ( 1 )  is then: 
f i  = Pi -+ b i ;  Eio <calls* > ( i=l , . . . ,n )  ( 1 2 )  
Take any i (i = 1,  a ,  n). List calZsi consists of two 
elements: the auxiliary function gi and the function 
representing recursive function calls in ( 1 ) .  Any f, 
( j  = 1 , .  - - , n) may be called by f i ,  possibly more than 
once, with specific, “shifted” domain parameters. We 
combine all corresponding shifts pij ( I  = 1, * . , d i j )  in 
the function splitij : r + l i s t r ;  it yields a list of length 
d i j  containing all domain parameters with which f j  is 
called in the equation for f i  of (1 ) .  The list produced 
by splitij is always flat, therefore: 

p + h ; h  = h 

gmap h o splitij = map h o splitij (13)  
Using function split, = < splitil, . . . , split,,, > of type 
spliti : r + list l i s t r ,  we can re resent the recursive 
calls in callsi by dmap [ f 1 ,  , f,,fo spliti. Substituting 
this expression into (12) and flattening the argument 
list of E;,  we obtain the following higher-order nota- 
tion of ( 1 ) :  
f, = pi + b i ;  

Ei 0 f lat  0 <Si , dmap [ f l , .  . . , f,,] 0 spliti > ( 1 4 )  
( i = l , .  . . , n) 

The higher-order representation of the example ( 2 )  is: 
A = (m.is.1) +He gred + o dmap [A, N ]  o split, 
N = (m.is.1) + H B  gred + o <HB, mapN o spZitzz> ( 1 5 )  

4 Functional parallel implement at ion 
The presence of higher-order functions <>, map 

or dmap in ( 1 4 )  points already to  divide-and-conquer 
parallelism in the specification: all elements of the 
corresponding lists can be evaluated simultaneously. 
Some of these elements are, again, recursive func- 
tions. Unfolding the recursion creates an evaluation 
tree whose nodes represent values of functions from f ;  
the nodes at one level can be evaluated in parallel. 

In this section, we present a systematic way of de- 
riving a functional parallel implementation of ( 1 ) .  In- 
formally, we proceed as follows. First we define a new 
data type that represents possible evaluation trees for 
a given specification; these trees are further used as 
structures for parallel computation, with processors 
associated to  the nodes. Then a correspondence be- 
tween this type and the original domain type r is es- 
tablished and used for obtaining a parallel program 
schema that implements the initial specification. 

We introduce n types of trees, Treei ( i  = 1 , .  , n) ,  
one for each function f; in ( 1 ) .  The nodes are taken 
from the set {nodei I i = l , . . . , n }  . A tree of type 
TreG is either a single node, nodei, or it is of the 

Deen) ,  i.e., its root is node, and the number of its 
sons that are of type Treej is d;j - the length of the 
list produced by splitij. The outdegree of nodei is 
di = ( C j : 1 5 j  5 n : dij  ). We use Dijkstra’s quan- 
tifier notation [8].  

The evaluation graph of function fi in ( 1 )  is of type 
Treei. Because we want to  derive a parallel program 
that computes f 1 ,  we are particularly interested in the 
type Treel; it is a partially ordered set: z L y iff x is a 
subtree of y. The least upper bound of Tree1 is the infi- 
nite tree: tree1 = ( U tree : tree€ Tree1 : tree ), whose 
subtrees are all trees of type Treel. 

Tree tree1 is unique for a given specification ( 1 ) ;  it 
represents the communication structure of the parallel 
implementation we are aiming at. In our definitions 
we use predicates on the node set of treel, V, with the 
evident semantics: is.root, is.nodei and is.sonj. 

We introduce an abbreviated notation for condi- 
tional functions and predicates on V: 

( [ i  : lsiln : is.nodei + t i )  = 

We omit range 1 5 i 5 n if there is no danger of confu- 
sion and use the notation ( 0 i :: is.nodei + ti ). 

Let us construct an abstraction function [lo] that 
maps from the concrete type V (the nodes of treel) 
to  the abstract type r (the domain parameters). We 
call our abstraction function diu : it “divides” the 
domain parameters and distributes them among the 
nodes. We define div using input - the domain pa- 
rameter for which function f 1  must be computed: the 
value of diu at the root is defined to be input and, for 
the j - th  son, wj, of any node V E  V: 

form nod& (vi’), - - ,U:! : %el, . (n) , 1 ~ ” ‘ ~ v d , ,  : 

is.node1 + t l;  . . ; is.node, -+ t ,  

diu wj = ( 0 i :: is.nodei v -+ (16)  
(pi o diu v + I ; Pj o flat o spliti o diu v )) 

370 

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore.  Restrictions apply. 



Here, I stands for the undefined value and Pj is the 
projection function yielding the j - th  element of a list. 

Let us reformulate div in our higher-order notation. 
We define function node : r -+ V a s  div-l: 

node o div = Id (17) 

We give special names to  some functions on r: 

p = 
split = 

( 0 i :: is.node; o node + p, ) 
( 0 i :: is.node, o node + spli t i)  

fsplit = f lat  o split 

Introducing function father  on V that yields the father 
of a given node, we can reformulate (16) as follows: 

diu = isroot  + i npu t ;  ( [ j  :: (is .sonjA 
(18) l p  o div o father) + Pj o fsplit o div o f a ther )  

Here, the range of j is lijld where d = 
( m a x  i : l l i s n  : d i ) .  

Using the abstraction function div, we define func- 
tion F : V + a as follows: 

F = (0 i :: is.nodei -+ f i  o d i v )  (19) 

From (18) and (19), we see immediately that the value 
of F a t  the root of tree1 is f l ( i n p u t ) ,  i.e., we have re- 
duced the problem of implementing the specification 
to the problem of computing function F at  the root 
of treel. This function combines functions fi, , fn; 
however, it is defined not on the domain r but on the 
nodes of treel. We would like to  distribute the compu- 
tation of F among the nodes of the tree, but run into 
two problems. First, tree tree1 is infinite. Second, 
the computation of F at the root is not yet paral- 
lelized: according to  (19), we must compute f l ( i n p u t )  
as before. Using the introduced functions and their 
properties, we can cope with both problems. 

First , when dealing with real-life communication 
structures, we pick a fixed finite tree tree E Beel  
whose number of nodes does not exceed the number 
of processors available to  us. This tree is determined 
by the predicate is.leaf which selects the leaves of the 
tree. For each particular finite tree tree, we shall use 
the restrictions of all functions originally defined on 
V - like F, div, etc. - to  the node set of tree, with- 
out giving them special names. All properties of these 
functions also hold for their restrictions. 

We define function sons on V to  return all sons of 
a given node as a list of n lists: the i-th list contains 
the sons of type node,. Function sons is defined for 
such v E  V that is.Zeaf(v) = false; it has the following 
properties: 

dmap [hl, .  . . , h,,] o sons = 

(gmap div) o sons = split o diu 

(20) 

(21) 

gmap ( [ i :: k n o d e i  + hi ) o sons 

Second, we can now parallelize the expression f i  o div 
of (19) via transformation: 

f i  o div 

is.leaf + f ;  o div;  f i  o div 

isleaf + fi o d iv ;  pi  o div + b; 0 diu; 
E i o f l a t o < g i ,  dmap[ f l , . . . , f , , ]  ospl i t ,> o d i v  

= { equality (10) } 

= { equalities (14), (11) } 

The last alternative, which applies in the case of 
1is.leaf A  pi o div),  is transformed further: 

= { equality (9) } 
E ; o f l a t o < g i ,  d m a p [ f l , . - - , f n ]  ospl i t ,> od iv  

E; o f l a t o  <(si o div) , 
(dmap [ f l , .  . e ,  f,,] o split* o diu) > 

{ equality (21), definition (19) } 
Ei o f l a t0  <(g ,  o div) , 
(dmap [ f l ,  ...;, f n ]  o gmap div o sons) > 

{ equalities (7), (20) } 
Ei o f l u t o  <(gi  o div) , 
(gmap (is.nodei + f i  o div) o sons) > 

{ definition (19), equality (4) } 
E, o f lato <(g, o div) , (gmap F o s o n s )  > 

= 

= 

= 

The following transformations are applied again to the 
entire expression: 

= is.leaf + f ;  0 div;pi o div + bi 0 diu; 

= 

f i  o div 

Ei o f l a t o  < (gi o div) , (gmap F o sons )  > 

(is.leaf + f i  o div ; p i  o div + bi o dav; E; o 
p a t o  <gi o ddv, gmap F o sons>) o node o diu 

( is.leaf o node + f ;  ; p i  + bi ; Ei o f l a t o  
< S i ,  (gmap F o sons o node) > ) o diu 

{ composition with Id from (17) } 

= { equalities (ll),  (9) } 

The obtained expression is a composition of two func- 
tions, the second of which is div. We call the first 
one conq, (for “conquer”). Substituting expression for 
f i  o div into (19), we arrive at the final expression for 
F: 

F = ( [ i  :: is.nodei + conq, o d iv )  (22) 
is.root + input; ( 0 j :: (is.sonj A (23) 

conq, = is.leaf o node + f ,  ; pi + bi ; (24) 

div = 
~p o div o father) + Pj o fsplit o div o f a ther )  

Ei o f lato <g,, (gmap F o sons o node) > 
There are three important observations to  be made 
about (22)-(24). First, for computing function F at  
some node of tree, we can use the results of computing 
F a t  its sons and the result of computing div (which is 
a part of F) at  its father. Therefore, the computation 
of F at  the root of tree can be distributed over the 
nodes of tree with function F to be computed a t  each 
node. Second, the computations at  different nodes can 
be performed in parallel: F i s  mapped to the sons, i.e., 
the computations at  the sons are independent of each 
other. They are also independent of the computation 
of auxiliary function g,, because of <>. Third, we 
arrived at  this parallel implementation from the spec- 
ification by calculation using formal rules. 
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Let us summarize the way of implementing a spec- 
ification of format (1). Recall that we must generate 
a program that, given a particular parameter i npu t ,  
computes f 1  ( input) .  We construct type !&eel, which 
captures the communication structure needed by the 
specification, and choose a particular tree of this type, 
such that each of its nodes can be mapped onto a pro- 
cessor. If all processors simultaneously compute func- 
tion F according to (22)-(24) and input is available 
a t  the root processor, then the result obtained at the 
root is the desired value f i ( i n p u t ) .  

Expressions (22)-(24) tell us that function F i s  com- 
puted at each node of tree in two steps: 

Apply div. This function computes the corre- 
spondin domain parameter for a node. Equa- 
tion (237 says that, for the root, this parameter 
is input and, for each other node, it is determined 
by the result of div at its father. Thus, in the 
computation of div, data is flowing from the root 
to  the leaves of the tree. Note that if the domain 
parameter at some node makes predicate p ,  true, 
i.e., the basic case is reached, then the domain 
parameters for all descendants of this node are 
undefined: no computations at those nodes are 
needed. In other words, the number of processors 
exceeds in this case the degree of parallelism in 
the specification. 

Function conq takes the domain parameter re- 
turned by div. Equation (24) prescribes that fur- 
ther computations depend on the type of the node 
(index i) and on its position in the tree. In the 
leaf nodes, fi for the domain parameter must be 
computed (sequentially). In the non-leaf nodes, 
the results from the sons and from computing the 
auxiliary function figure into the computation of 
Ei. Therefore, at this step, data is flowing from 
the leaves to  the root. 

m 

Figure 1: Tree of type Tree1 - example 

In our example, type %el corresponds to  the func- 
tion A to  be computed. An example tree of this type 
with 12 nodes of two types is shown in Figure 1. The 
maximal outdegree of a node is 3, we use concrete 
functions sonl ,  so- and son3 which are the compo- 
nents of the general function sons. We denote the 
negation of m.is.1 by m.not.1. 

Parallel implementation of A is obtained as a spe- 
cialization of the general schema (22)-(24): 

A = is.nodel + conql o d i v ;  conq, o div 
diw = is.root + i npu t ;  ( 0 j : 1 < j  < 3 : (is.sonj A 

m.not.1 o div o father) + Pj o fsplit o div o father)  
conql = is.leaf o node + A ;  A o son1 0 node 

+ A o so% o node + A o son3 o node 
conq, = is.leaf o node + N ;  

H B  + A o sonl o node + A o  son^ o node 

5 Imperative parallel implementation 
In the previous section, we have demonstrated how 

the specification of an algorithm can be “refined” into 
a higher-order functional parallel implementation that 
consists of a communication structure defined by type 
Treel, and a function F, defined by (22)-(24), which 
is to  be computed simultaneously at all nodes of the 
structure. In this section, we take this functional im- 
plementation and convert it to  an imperative program 
with explicit message-passing. The target program 
prescribes the computation and communication for 
processors that are assigned to  the nodes of the tree. 

According to  (22)-(24), F specifies a computation 
in the SPMD (single-program-multiple-data) model: 
the same function applies to  all nodes of the tree. The 
variations in computation at the different nodes are 
expressed by predicates is.leaf, is.nodei and is.sonj. 
In other words, the behaviour depends on the type of 
the node and on its position in the tree. 

Our imperative target program Node, which is pre- 
sented in Figure 2, is therefore executed at  every node 
of the tree. One implicit parameter of program Node 
is the id of the associated processor (variable my-id). 

The imperative program uses procedures that ‘im- 
plement the functions and predicates of the functional 
implementation: I s - root ,  I s - l e a f ,  Outdegree, 
Father ,  Son. For brevity, we have not listed the pro- 
cedure interfaces in our import list; a strongly typed 
language would, of course, have to  do so. All proce- 
dures take the processor id as a parameter; Son has 
an additional parameter k, specifying the (k-th) son 
to be computed. 

The following functions, used by F, depend on the 
type of node nodei: spliti, fi, gi and Ei. They are 
defined on the domain parameters. In the imper- 
ative program, they are implemented by the corre- 
sponding procedures S p l i t ,  Compute-f , Compute-g 
and Compute-E. The first parameter of these proce- 
dures is the type, type,  of the node and the second is 
the domain parameter, param. 

Communications between processors include send- 
ing and receiving data. They are implemented by 
the statements SEND (<data>)  TO <par tner>  and 
RECV (<data>)  FROM <par tner> .  Here, <par tner>  
is the id of the processor with whom the communica- 
tion takes place. 

Formulae (22)-(24) are implemented in the pro- 
gram as follows. The domain parameter input and 
the type type of the root node are the input to  the 
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PROGRAM Node; 
IMPORT Father,Son,Outdegree,Is-leaf,Is-root, 

Split,Compute-E,Compute-f,Compute-g; 
BEGIN-Node 
IF Is-root (my-id) 
THEN READ (type,param) 
ELSE RECV (type , param) FROM Father (my-id) 
END-IF ; 
IF Is-leaf (my-id) 
THEN 

ELSE 
result : = Compute-f (type,param) 

son-param := Split (type,param) ; 
FOR k:=l TO Outdegree(my-id) DO 

END-FOR; 
res-aux := Compute-g(type!param) ; 
FOR k:=l TO Outdegree(my-id) DO 
RECV (res[k]) FROM Son(my-id,k) 
END-FOR ; 
result := Compute-E(type, res-aux, 

SEND (son-param[k]) TO Son(my-id,k) 

res [I] , . . . , res Cnl) 
END- IF ; 
IF Is-root (my-id) 
THEN WRITE (result) 
ELSE SEND (result) TO Father(my-id) 
END-IF; 

END-Node 

Figure 2: SPMD program schema 

program. The root receives them by READ (<data>). 
According to  (23) for div, the domain parameters at 
non-root nodes are obtained by applying split to the 
domain parameter of the father. In the program, this 
is realized by procedure Split, which yields the do- 
main parameters and the type values for the sons. For 
simplicity of the exposition, our imperative implemen- 
tation presumes that there are strictly fewer proces- 
sors than are required to  realize all parallelism. That 
is, the basic case is not reached during the computa- 
tion of the domain parameters for the sons. 

Having obtained the domain parameter, i.e., having 
computed function div, it remains to  compute conq. In 
the program, there is firstly a conditional statement 
corresponding to  the FP-condition in (24). For a leaf 
node, function f, is computed sequentially by proce- 
dure Compute-f. For a non-leaf node, there are differ- 
ent ways of implementing the constructions with <> 
and gmap. Our node program is sequential; computa- 
tion starts with the second component of <> which 
has the form gmap F o sons. This means computing 
F at all sons of the current node independently. To 
this effect, the program computes array son-param by 
procedure Split. Each element of son-param is a pair 
(type,param) which is then sent to  the corresponding 
son. This way, the computation of conq at  the father 
is synchronized with the computations of div at  the 
sons. After sending the necessary data to  all sons, 
we compute the first component of <>, the auxiliary 

function, by calling procedure Compute-g whose result 
is res-aux. We must then receive the results from the 
sons; they are used by procedure Compute-E. This pro- 
cedure yields the result which, in fact, represents the 
value of F a t  the current node. This value must either 
be sent to  the father or, in case of the root node, it is 
the output fi(input) of the whole program. 

For lack of space, we do not present the special- 
ization of this imperative parallel program schema for 
the example. 

6 Efficiency issues 

In this section, we touch briefly on some questions 
concerning the efficiency of our parallel imperative 
program schema. 

There are, in general, various levels of parallelism 
that can be detected in a specification, extracted from 
it and implemented in a parallel program. Our con- 
siderations in this paper have been limited to  the 
“generic” parallelism which is determined by the de- 
pendencies in (1) and which is not influenced by the 
properties of particular functions, g and E ,  and par- 
ticular domains T and U. All this parallelism has been 
preserved during the development of the functional 
implementation (22)-(24). In the development of the 
imperative program, this parallelism is converted to 
a programming language. The following efficiency as- 
pects should be taken into account. 

The amount of paral- 
lelism is governed by the recursion depth of func- 
tion div. In the parallel schema, dividing is addi- 
tionally controlled by the predicate is.Ieaf. This 
way, the parallelism is matched with the available 
number of processors. 

In the functional parallel 
implementation, there are potentially parallel 
threads inside one node: communicating with the 
sons and/or computing the auxiliary function. In 
the imperative implementation, we execute them 
sequentially; on some architectures, however, the 
use of multithreading can improve efficiency. 

0 Communication structure. The communica- 
tion tree may be non-homogeneous. E.g., in our 
example, the nodes may vary in outdegree. The 
architecture of the multiprocessor must cope with 
that. On the other hand, the synthesized struc- 
ture does not change during program execution, 
and the communications are only between direct 
neighbours (father and sons). 

0 Processor number. The maximal number of 
processors for a given value of input can some- 
times be determined analytically, as in our exam- 
ple. However, there is an adaptive variant of the 
inte ration algorithm where the basic predicate is 
Hi?(%, b l ,  a2, b2, m) < E .  In this case, the actual 
amount of work is known only at run time, and 
good performance must be achieved by dynamic 
load- balancing. 

Restricted dividing. 

0 Sequentialising. 
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Redundant computations. We see from (3) 
that the computation of H3 for different argu- 
ments uses common values of function U. In the 
imperative program, this leads to  redundant com- 
putations. They can be prevented by introducing 
additional communication [9]. 

Load Balancing. The amount of computational 
work in a processor strongly depends on its posi- 
tion in the tree. The load balance can be im- 
proved using additional transformations at  the 
functional level that are explained subsequently. 

Let us discuss briefly two ways of improving the 
imperative program performance. 

First, a particular specification may be matched in 
different ways with format (1). Another match for 
our example (2) to  make A the single recursive and 
N i t s  auxiliary function. In this case, the target pro- 
gram has a binary communication tree that can be 
efficiently implemented on most multiprocessors. The 
node program computes sequentially the correspond- 
ing value of N, i.e., the granularity of parallelism be- 
comes higher and the load is balanced better. 

Second, we can stick to  our match of Section 2 - 
and, thus, the original communication structure - but 
execute one of map’s components in the processor it- 
self. E.g., in our example, the processor might not use 
the link to the left son and perform the corresponding 
computations sequentially. Then, parallelism is also 
better balanced, and the outdegree of each node is 
reduced by 1. 

These and other improvements of the target pro- 
gram, can be realized by additional transformations. 

Our experiments with a parallel implementation of 
the example on a 64-node transputer system yielded 
an efficiency (speed up/number of processors) ranging 
from 0.6 to  0.9, depending on the input domain pa- 
rameter and on the processor number. More on this 
in a different paper. 

7 Related work 

There has been a lot of work on formal paralleliza- 
tion of conventional (not mutually recursive) divide- 
and-conquer. 

There is an algebraic model for describing divide- 
and-conquer and a language, Divacon, based on it 
14, 161; communication issues in this model have also c, een studied [4]. The approach is based on the the- 

ory of pseudomorphisms which has much in common 
with the Bird-Meertens formalism. Our approach dif- 
fers from this work in three main aspects. First, we 
consider a more general case, allowing a specifica- 
tion to  consist of several, possibly mutually recursive 
functions and also non-recursive auxiliary functions. 
Second, we propose a systematic, semantically sound 
way of deriving a distributed-memory SPMD program 
schema for this class of specifications. Third, we ig- 
nore the structural properties of the data domain r .  
This enables a more general treatment of divide-and- 
conquer, since we need not ensure that recursive calls 
are applied always to  smaller chunks of data as in [16]. 

In our example, there are no chunks at all! Of course, 
this has the drawback that we do not consider the ef- 
fect of the data size on communication and parallelism 
in our performance analysis. 

In [7, lo], the higher-order approach was used for 
transforming non-linear recursion, typically divide- 
and-conquer, into tail recursion and then pipelining 
the latter. Pipelining reduces the parallelism inherent 
in divide-and-conquer but is claimed to  be more suit- 
able for parallel architectures with a static communi- 
cation structure (we are not aware of any experimental 
results on performance). In contrast, we preserve the 
initial tree-like parallelism of divide-and-conquer and 
show that it can be realized with static and local com- 
munication. 

Our paper has much in common with recent work 
investigating parallelism with the Bird-Meertens for- 
malism [18]. Our extension to  BMF consists of gen- 
eralized versions of map and red and transformation 
rules for them. 

The idea of abstract data  type transformation that 
was used in [lo] for parallelizing linear recursion is 
applied here in a broader context. We derive an im- 
plementation for both stages of divide-and-conquer 
and show that the abstraction function expresses the 
essence of the dividing stage in divide-and-conquer. 

An approach based on unfolding the recursion is de- 
scribed in [ll, 131 for the bitonic sort, which is also a 
divide-and-conquer algorithm. The derived parallel al- 
gorithm has logarithmic complexity and was proved to 
be optimal. The disadvantage of this approach is that 
the computational complexity of the derivation pro- 
cess depends (quadratically) on the problem size. In 
our present approach, the computational complexity 
of the derivation process is independent of the prob- 
lem size. 

The important problem of how to map the paral- 
lel program onto particular communication topologies 
(3D mesh, hypercube, etc.) is considered, e.g., in [15]. 
There are development systems, like PARSE [5], that 
support parallel program derivation and performance 
evaluation We have derived a logical communication 
structure and shown how to adapt it to  the available 
number of processors; the problem of mapping it onto 
a physical interconnection topology is a point of fur- 
ther research. There is much work on this matter (e.g., 
17]), but we are not aware of any that considers non- h omogeneous trees, as in our example. 

8 Conclusions and future work 

Our paper takes the approach in which the start- 
ing point in the program development is a problem- 
oriented, often non-procedural, formal specification of 
an algorithm. The specification describes what is to 
be done but not how it is to  be done. Aspects of 
the how - in our case, parallelism - are introduced by 
(semi-)automatic formal transformations. Procedural 
aspects enter the development when the implementa- 
tion is mapped to  a language executable on existing 
processor net works. 

We have presented a parallel implementation of a 

374 

Authorized licensed use limited to: Universitat Passau. Downloaded on February 25,2010 at 06:11:39 EST from IEEE Xplore.  Restrictions apply. 



non-procedural (functional) specification of mutually 
recursive divide-and-conquer. First, a parallel func- 
tional schema is obtained via transformation of the 
specification: its correctness is guaranteed by the se- 
mantical soundness of the transformation rules, which 
are taken from the Bird-Meertens formalism, extended 
for our purposes. The functional schema consists of a 
communication tree with processors at the nodes and 
a common higher-order function associated with each 
node. The communication structure has two impor- 
tant properties: it is static, i.e., it does not change 
during program execution, and it is local, i.e., each 
processor in the tree communicates only with its father 
and sons. The functional schema is then transformed 
into an imperative SPMD schema with coarse-grained 
parallelism. The target program is adapted to the 
available number of processors. 

Our future work will include detailed performance 
studies of parallel divide-and-conquer by means of 
both analytical and experimental methods. The goal 
is to study the influence of various transformation 
rules used in the derivation process on the efficiency 
of the resulting parallel program. 
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