'I. UNIVERSITAT PASSAU

Fakultat fir Mathematik und Informatik

Parallelization of Loop Nests
with General Bounds

in the Polyhedron Model

/\

A
VLT N

Diplomarbeit am

Lehrstuhl fiir Programmierung
Prof. C. Lengauer, Ph.D.

Autor: Max Geigl
Betreuer: Dr. Martin Griebl

Marz 1997

Abstract

The polytope model is one possible (mathematical) basis for par-
allelizing sequential computer programs automatically. It proved
to be well suited for the parallelization of loop nests containing
only for loops whose bounds satisfy several restrictions. Recent
research efforts propose an extension of the polytope model, the
polyhedron model, and provide an implementation for perfectly
nested while loops.

The first part of this thesis examines the implications of different
loop types for target code generation and integrates the results in
a class hierarchy. The second part extends the polyhedron model
to imperfect loop nests containing general for loops, while loops
and if statements. We provide also one possible implementation.

Acknowledgments

Not surprisingly this diploma thesis has not been developed in a secluded
chamber, shielded from any (good or bad) influences. Now that the work
is done, I would like to say a heart-felt “THANK YOU” to all the people
who have had a positive effect on the thesis itself as well as on the “working
climate”.

In particular, I would like to mention the head of the Lehrstuhl fiir Program-
mierung, Professor C. Lengauer. He gave me the opportunity to write this
thesis in English, which would not have been possible without his thorough
proofreading.

Dr. Martin Griebl was my tutor and is the manager of the LooPo project.
Martin, thank you for waking my interest in “multi-dimensional combs”, for
the discussions, hints, suggestions, encouragements, the “Auto-Card” and
your patience — even when I disturbed in the mornings and although you
had to prepare for your defense. Thank you also for accompanying me (not
only on the way through my study at Passau) like a big brother.

I always felt in good hands with the LooPo team whose members, at that
time, were Sven Anders, Andreas Dischinger, Nils Ellmenreich, Peter Faber,
Robert Giinz, Harald Keimer, Radko Kubias, Wolfgang Meisl, Martina Schu-
mergruber, Sabine Wetzel, Christian Wieninger and Alexander Wiist.
Thanks to Jean-Francois Collard for several discussions, explanations, for
proofreading and for offering his flat during a very inspiring stay in Paris
which was made possible by a DAAD PROCOPE project.

I am very grateful to the members of the Lehrstuhl fiir Programmierung
who often allowed me to use their desks and computers while they were on
a business trip or somewhere else. I greatly appreciate especially the “long-
term asylum” which Ulrike Lechner granted me.

Thanks to my friends in Gern — for not understanding exactly what I was
working on, thus, for getting my mind off work, especially during the pre-
lunch drink on Sundays.

Finally I would like to thank my parents: for making my study possible, for
all kinds of support and for never putting me under pressure.

Contents

0 Preface

1 Basic Definitions
1.1 Mathematical Foundations
1.2 Legal Input Programs
1.3 Spaces and their Transformation.
1.4 Summary of Frequently Used Symbols

2 Classification of Execution Spaces
2.1 A Glance at Sequential Execution Spaces
2.1.1 Sequential for Loops
2.1.2 Sequential while oops
2.2 Static and Dynamic Execution Spaces
2.3 Stateof the Arto
2.4 Loop Classification
2.4.1 Affine for Loops (Class 4 Loops)
2.4.2 Convex Execution Spaces (Class 3 Loops)
2.4.3 Arbitrary for Loops (Class 2 Loops)
2.4.4 Static while Loops (Class 1 Loops)
2.4.5 Dynamic while Loops (Class 0 Loops)
2.5 Consideration of the Transformation
Function Lo
2.6 Additional Consideration of the Target Execution Space
2.6.1 Scannable Target Execution Space
2.6.2 Minimal but not Exactly Scannable Target Execution
SPace ... e
2.6.3 Approximatable Target Execution Space
2.7 Implementation in LooPo

3 Dynamic Approximation of Execution Spaces
3.1 Exampleo

CONTENTS

3.2 Execution Determination . . .

3.2.1 Execution Condition of an if Statement
3.2.2 General Predicate ezecuted for each Statement

3.3 Termination Detection

3.3.1 Scanning Execution Spaces of Dynamic for Loops

3.3.2 Scanning Execution Spaces of while Loops
3.3.3 Bounds and Termination
3.3.4 Different Methods for Termination Detection

3.4 “By-Statement View”
3.5 Implications of Finiteness . .

4 Implementation in LooPo
4.1 Normalization
4.2 Retransformation
4.3 The Size of the New Arrays .

4.3.1 Dynamic boolean Arrays

4.3.2 Dynamic integer Arrays
5 Conclusion

Bibliography

47
48
49
20
20
52
54
63
68
72

74
75
82
96
96
98

101

108

Chapter 0

Preface

This diploma thesis is part of a research project on building automatic par-
allelizers based on the polytope model. It examines methods for deriving
parallel target programs that contain statements with execution spaces that
are known only at run time. We call such spaces dynamic execution spaces
(Chapter 2), in contrast to static execution spaces whose shape and width
are entirely known at compile time. Dynamic execution spaces typically arise
from source programs containing while loops. But there are also special kinds
of for loops causing dynamic execution spaces. Their number of iterations
(usually) cannot be predicted at compile time.

We will examine several classes of loops with their resulting spaces and dis-
cuss their requirements for parallelization.

Parts of the results are implemented as components of the automatic paral-
lelizer for imperative programs, LooPo [13], under development at the Uni-
versitat Passau, Germany.

Figure 0.1 shows the five main parts of LooPo that have to be carried out in
sequence. Note that we depict scheduler and allocator as one module, because
together they yield the transformation function that maps the source index
space to the target index space.

We utilize the polytope model as a mathematical geometrical foundation. Its
roots reach back to the late Sixties [15] and it was discovered for parallelizing
compilers by Leslie Lamport in 1974 [18].

Parallelization in this setting proceeds along the following steps (refer to
Figure 0.1):

e The Parser checks the syntactical correctness of the source program
and computes the parse tree [14].

e During the Dependence Analysis the memory accesses are examined and
the data dependences between operations as well as the index spaces of

CHAPTER 0. PREFACE 4

Target’
/ Code
Source

Program Pro mn
]Depemdemce Schedm]la‘
Amalyss —»{ Target Loops

Figure 0.1: Structure of LooPo

the statements in the source program are calculated [16, 17]. These are
modeled as polytopes resulting from intersections of half spaces given
by the loop bounds. To be able to do so, the source program must only
contain special kinds of loops, which we will discuss later.

e Scheduler and Allocator yield a function, the transformation, that tells
us which operation is to be executed on which processor at what time
[26, 21]. This transformation consists of a time component determined
by the scheduler and a space component determined by the allocator.
It is often also called the space-time mapping.

e TargetLoops takes the source polytopes and the transformation, calcu-
lates the target polytopes and transforms these target polytopes back
to a nest of space and time loops [25]. We call this module also the
target generator.

e The module TargetCode transforms the internal representation deliv-
ered by the target generator to real parallel programs coded in different
parallel programming languages [5].

The polytope model turned out to be very useful for expressing and paral-
lelizing loop programs under certain circumstances:

CHAPTER 0. PREFACE 5

e The space-time mapping has to be a bijective affine function in loop
indices and constant parameters.

e The lower and upper bounds of a loop have to be affine expressions in
indices of enclosing loops and constant parameters. We describe ways
of relaxing this restriction in this thesis.

There are other restrictions, e.g., the form of the dependences, which are not
significant for this paper. We omit them.
The properties described above have some incisive implications:

e The extent of a statement’s execution space is entirely known (param-
eterized) in all dimensions at compile time. This means we have only
static source execution spaces.

e The shape of source execution spaces is a polytope, i.e., it has straight
edges and is finite.

e We have a static target execution space whose shape is a polytope, too.

e The sequence of target loops is arbitrary since the target polytope can
be expressed as a system of linear inequalities that can be solved in
any order. In particular, the time loops can be outermost to get a
synchronous target program or they can be innermost to achieve asyn-
chronous parallelism. In contrast to the target program, the polytope
model does not distinguish between space and time dimensions.

e Existing methods based on the polytope model cannot deal with dy-
namic execution spaces, whose shape and width are not known at com-
pile time. Where we know the end of a for loop before the first operation
of a statement within its body starts, the execution spaces containing
while loops cannot even be supposed to be finite ex ante (at compile
time), but — of course — should turn out to be at run time.

To solve the problems mentioned in the last item, an extension of the polytope
model is necessary, the polyhedron model [10]. Dynamic execution spaces are
modeled as polyhedra (which are infinite in some dimensions).

Our thesis examines ways of implementing the polyhedron model. This im-
plementation should require as few changes of existing methods (that are
shown in Figure 0.1) as possible.

Figure 0.2 shows the logical integration of the results of this paper into the
flow of parallelization steps. They also could be implemented as an integral
component of the respective module to let it appear more as a uniform whole.

CHAPTER 0. PREFACE 6

Source |o
Program .

{ Parallelization of Loop Nes:swmn\
General Bounds

Figure 0.2: Structure of LooPo for handling dynamic execution spaces

Normalization and Retransformation are extensions to the parser and the
target generator, the grey arrow symbolizes requirements which scheduler
and allocator have to meet. More on this in Chapter 3.

Chapter 1 gives some basic definitions of concepts related to the polyhedron
model. In Chapter 2 we consider several types of execution spaces and discuss
their effects on parallelization. We will see that there is a great variety of
execution spaces which cannot yet be treated by the existing methods in the
polytope model. A theory for dealing with these (dynamic) execution spaces
is presented in Chapter 3.

Chapter 4 describes how the theoretical methods introduced in Chapter 3
can be realized in the setting of LooPo. The major concepts here, as shown
in Figure 0.2, are loop normalization and retransformation. The latter is
necessary to restore the original execution spaces that are changed during
normalization.

The last chapter gives a conclusion and some prospects on possible optimiza-
tion and future work.

Chapter 1

Basic Definitions

This chapter gives an overview of some necessary, basic concepts and no-
tation that we will use throughout this thesis. We are proceeding on the
assumption that the reader is familiar with the concepts of linear algebra,
particularly with matrices and their inverses, affine transformations, (sys-
tems of) linear equations and inequalities. We also assume that the principle
of parallelization in the polytope model is known.

1.1 Mathematical Foundations

Definition 1 (Declaration of Functions).
Usually we declare functions in the following way:

f:D—=R:xw— f(x)

where D is the domain and R is the range of the function with name f.
x € D is a value to which f is applied and f(x) is an arithmetic expression
that evaluates to the value (€ R) of f when applied to .

Our notation of quantifications and logical deductions follows Dijkstra [3]:

Definition 2 (Quantification).
Quantification over a variable x is denoted as follows:

(Qz : R(z) : P(z))

where @ € {V,3} is a quantifier, R is a predicate that determines the range
of the values of x and P is any predicate depending on the values of z.

Definition 3 (Formal Logical Deduction).
We denote formal logical deductions in the form:

7

CHAPTER 1. BASIC DEFINITIONS 8

formula,
op { comment explaining the validity of relation op }
formulay

where op € {<, &, =1} is a boolean operator. The boolean values true and
false are denoted by tt and ff, respectively.

Definition 4 (Componentwise Partial Order on Vectors).
Let © = : and r = : be two r-dimensional vectors. Then we

Xy x
define the componentwise orders < and < on vectors as follows:

!

T & (Vk:1<k<r:mz, <)
7 e VEk:1<k<r:z,<uz)

SRR

<
<
‘>" and ‘>’ are defined analogously.

Remark. We use the same componentwise order analogously for r-tuples and
row vectors.

Let us now recall some mathematical concepts that are fundamental for our
topic.

Definition 5 (Halfspace).
Let aq,...,a,,0 € R, n € N. Then a halfspace H of R" is defined as

H={(z1,...,7,) ER" | 121 + -+ + apx, < b}

Definition 6 (Polyhedron).
An n-dimensional polyhedron in R"™ is the intersection of a finite number of
halfspaces of R".

Definition 7 (Polytope).
An n-dimensional polytope in R" is a bounded n-dimensional polyhedron in
R".

Definition 8 (Convex Set).
Let a € R, a € [0,1]. Aset S CR", n € Nis conver, iff:

Vz,y:z,ye S : (ax+ (1 —a)y) €8)

CHAPTER 1. BASIC DEFINITIONS 9

Remark. Every intersection of a finite number of halfspaces is convex. Thus,
every polyhedron and every polytope is convex, too.

The definitions above are all given with respect to R. However, we are only
interested in those points x whose coordinates are integer values, i.e., x}, € Z,
1 < k < n. Only these points are considered, because the code generation
techniques available to us [25] can only process such index spaces (see also
Definition 16).

1.2 Legal Input Programs

From the point of view of this paper, a legal source program may be composed
of elements described in this section.

Definition 9 (Identifier).
There are three possible kinds of identifiers:

e Loop indices or loop variables run from the lower bound of a loop to the
upper bound and are incremented by the stride (see also Definitions 11
and 12). A loop index is only ‘visible’ in the body of its respective loop
but may not be changed by any other statement except for the loop
statement itself (see also Figure 2.2 on Page 23).

e Variables may be changed arbitrarily, in contrast to loop indices. Note
that our method does not exclusively require arrays (possibly 0-dimen-
sional), however, the capabilities of LooPo are restricted to arrays —
so far.

e Structure parameters represent the problem size. They are initialized
during the loading of the program and are only read during run time,
i.e., they are constant throughout the whole execution of the program.
We will also call them constants.

Definition 10 (if Statement).
We allow plain if statements of the form:

if condition then body endif
with all kinds of conditions.

Remark. Although we do not explicitly consider if statements with an else
branch in this thesis, this implies no loss of generality. Every if statement
with an else branch can be split into two plain if statements: the then branch
keeps its original condition and the else branch becomes an if statement with
the negation of the original condition.

CHAPTER 1. BASIC DEFINITIONS 10

Definition 11 (for Loop).

Allowed are for loops with all kinds of loop bounds. For technical reasons we
only allow integer values (€ Z) for loop indices, although the theory would
permit rational values (€ @Q). The stride has to be composed of integer
structure parameters. Thus, it is decidable before run time whether the stride
is positive or negative and this does not change during run time. Notation:

for index := lower_bound to upper_bound step stride do body end

We call lower_bound and upper_bound the bound expressions.

If the stride is not given explicitly, we assume it to be 1.

The values of lower_bound, upper_bound and stride are evaluated before the
execution of the loop. If we reference these fixed values, we use the symbols
LB, UB and ST, respectively.

Definition 12 (while Loop).
A while loop is usually denoted as follows:

while condition do body end

As we have to specify the index space of a body statement of a while loop, we
view while loops — according to [10] — as generalized for loops and provide
them with a new index:

for newindex := 0 while condition step stride do body end

newindex is just a counter for the number of iterations of the respective
while loop. Therefore the stride usually (and in our thesis always) is set to 1.
However, we could permit the same types of strides as are permitted for for
loops.

With “upper bound of a while loop” we mean the number of iterations the
loop actually carries out. This value is only known after the loop’s termina-
tion and therefore is not explicit in the syntax of a while loop.

With this notation we have an explicit lower bound for the respective di-
mension of the execution space and the loop condition, which describes the
upper bound of this dimension in an implicit way.

body is the set of statements whose execution is repeated (in case of a loop
body) or whose execution depends on the truth value of the if condition (in
case of an if body).

Note that one and the same statement can belong to more than one body:
it belongs to all bodies of its enclosing loops and if statements.

CHAPTER 1. BASIC DEFINITIONS 11

Remark. The notation introduced in Definition 12 can easily be translated
to the usual syntax:

newindex := 0
while condition do

body

newindex := newindex + stride
end

The ‘new’ syntax makes the role of the new counter explicit (see also Fig-
ure 2.4 on Page 26) and is therefore more expressive. newindex is treated as
it were the index variable of a usual for loop.

Definition 13 (Statement).
In our context a statement may be an if statement or any conventional state-
ment, usually an assignment, in the source program.

In Chapter 2 we split the head of a for or while loop into several statements,
e.g., the evaluation of the lower bound (see Figures 2.2 and 2.4). To make
clear that we do not view the head of a loop as one single statement, we call
it for instruction, while instruction or just loop instruction throughout this
thesis.

In most cases a statement is an assignment and is uniquely defined by its
left side. For instance, let x := y a statement. Then we call this statement
“statement x” or “x statement”.

Definition 14 (Some Sets).

e The symbol for the set of statements in a source program P is: Sp.
e The symbol for the set of index variables in a source program P is: Lp.
o &, denotes the set of enclosing loop indices of a statement s, i.e., it

contains all indices of loops whose bodies contain s.

The set of enclosing loop indices also identifies the loop nest of a state-
ment s. This loop nest determines the index space of s (see Defini-
tion 16).

A loop nest is said to be perfect if, for all statements, the sets of enclosing
loop indices are equal.

CHAPTER 1. BASIC DEFINITIONS 12

Definition 15 (Dimensionality or Level of a Statement).
Let s € Sp be a statement in program P. The value of the function

dim : Sp — N: s |&]
is called the dimensionality or level of s.

We can associate the level of any a loop instruction with its respective loop
index and use this numbering as a basis for defining an (“outside to inside”)
order on the indices of enclosing loops of a statement.

Remark. A loop is identified by its loop instruction. If the dimensionality of
the loop instruction is r than we often speak of “a loop at level r”.

1.3 Spaces and their Transformation

In this section we describe the essential concepts of the model we use to
represent the loop nests of our source programs. The index and execution
spaces are the interfaces between the programs and the mathematical model.

Definition 16 (Index Space).

Let s € Sp be a statement in the source program P, and d, the dimensionality
of s. Further let i, be the value of the loop index of a loop surrounding s at
level r. Then the index space of statement s is defined as a subset of Z%:

Ty :={(ir,...,iq,) €EZ% | (Vr : 1 <r<d, : (i — IB)%ST, =0 A
LB, <1, <UB, ifi, belongs to a for loop 1
LB, <i, if 7, belongs to a while loop

In the programming language C ‘%’ is the sign for the modulo operator. We
use this notation throughout this thesis.

Remark. Let x = (iy,...,iq,) € Zs. Every position r in the tuple, r €
{1,...,ds}, uniquely identifies the loop index of a surrounding loop at level
r. To express this, we use the function indezof, : {1,...,ds} — &;. We will
also need the three additional predicates is_for(r), is_naf(r) and is_whl(r)
that indicate whether position r identifies a for loop (any type), a non-affine
for loop whose bounds are only non-affine expressions in loop indices and
structure parameters, or a while loop.

CHAPTER 1. BASIC DEFINITIONS 13

Definition 17 (Operation, Instance of a Loop).

One operation is an instance of a statement. A statement in a loop body is
executed several times with different values for the indices of the surrounding
loops. In the program it occurs as one statement; during the execution this
single statement appears as several operations.

Our notation of an operation is (s, z,), where s € Sp and z, € Z,.

We call the loop identified by an operation of a loop instruction an instance
of the loop, given by its loop instruction and the values of the indices of
enclosing loops.

Remark. The substatements of loop instructions have operations, too. Thus,
the value of the lower bound of a loop at level k, [b;, is a function of the
indices of the surrounding loops', Ib;, (1, .. 1k 1). We will use this notation
only if this aspect is of interest in a given context. Otherwise we will simply
write [b,. The same applies for the upper bounds.

The index space of a statement represents the set of possible operations of
this statement.

If some dimension of the index space is determined by a while loop then we
have an infinite index space. Thus, there is a difference between the points in
the index space and the points actually executed, as while loops are supposed
to terminate and not to enumerate infinitely many points.

A similar situation arises when we have an if statement around a statement
s. Then there are also points in the index space that do not contribute to an
operation of s that is actually executed (see Definition 17).

Ezample 1.
Consider the following program:

fori:=0to 5 do
if 2 <> 3 then
s
endif
end

The index space of sis: Z, ={i € Z | 0 <i <5} ={0,1,2,3,4,5}. But now
there is a point 3 € Z; whose respective operation (s,3) is not executed by
the program.

Tt is also a function of other variables occurring in the bound expression, but the values
of these variables also depend on the iteration. So for the loop bounds it is sufficient to
consider only the indices of the surrounding loops.

CHAPTER 1. BASIC DEFINITIONS 14

To distinguish these two different sets of points, we need the concept of the
execution space [11]. At this stage, we only give an informal definition and
leave the formalization up to Chapter 3.

Definition 18 (Source Execution Space).

Let s € Sp be a statement in the source program P. Then the source
execution space of statement s, X, is defined as a subset of Z,. It contains
all points at which an operation of s is actually carried out at run time.
The source execution space of the entire program is X' = Jscg, Xs-

Remark. For a statement that is not in the body of a loop nest with while
loops and that is not guarded by if statements, the source index space is
equal to the source execution space, Z, = X;. Statements that belong to the
same body and have the same dimension have the same index and execution
spaces.

In Chapter 3 the difference between index and execution space will become
important: we will have to change the original index space of a statement
but have to take care not to change its respective execution space.

Another important concept for parallelization is that of the dependences
between operations. They express a necessary execution ordering between
the operations involved.

There are several special kinds of dependences, but for our needs a general
definition is sufficient [26].

Definition 19 (Dependence).
Let s,s" € Sp be two (not necessarily different) statements in program P and
let (s,z,) and (s, xy) be operations of s and s' with =, € X'y and 2y € Xy

e Data dependence: operation (s',xy) is data dependent on operation
(s,2,), denoted (s,x,)0%(s, xy), if:

1. (s,zs) and (', x¢) access the same memory cell and at least one
of them is a write access, and
2. (s,) is executed before (s’ zy) in P.
e Control dependence: operation (s',xzy) is control dependent on opera-
tion (s, x,), denoted (s, x4)d%(s', xg), if:
1. (s,z4) evaluates a predicate and

2. the execution of (', x¢) depends on the value of this predicate.

CHAPTER 1. BASIC DEFINITIONS 15

s is called the source, s’ the target of the dependence.

Both types of dependences impose a temporal order on the involved opera-
tions. If the difference between data and control dependence does not matter
in a given context, we omit the superscripts ¢ and d of ¢.

Sometimes it is sufficient to know which statements are dependent on each
other. In this case we write sds’ instead of (s, 2,)0(s’, x5). Again the refine-
ments 6% and 6¢ are possible.

Remark. A structure parameter is initialized before the actual execution of
the program starts. During run time these values are only read. Thus,
according to Definition 19, structure parameters do not cause any data de-
pendences.

Definition 20 (h-Transformation).

Let (s,24)0(s’,xs). Then ¢ defines a relation between the execution spaces
of " and s. Because up to now only affine dependences can be handled and
the source of a dependence is unique, this relation can be expressed as an
affine function, the h-transformation [7]:

h: Xg =X, 1 g = 2,

Remark. Affine functions can be represented as a matrix. In the case of an h-
transformation, this is a (dsxdy+1)-matrix whose columns correspond to the
dimensions of statement s’ plus the constant portion of the affine function.
The rows correspond to the dimensions of s.

Based on the dependences, each operation is mapped to a special point in
time at which it is to be executed. This time mapping is called the schedule.
To be able to express the requirements a valid schedule must meet, we need
the lexicographical order on an r-dimensional vector space <. Sometimes we
do not need the strict order and use < to denote this.

Note that < and < are different from the < and < operators on vectors (see
Definition 4).

Definition 21 (Schedule).

The function 7, : Z, — Z%, d' € N is called a d-dimensional schedule for
statement s (superscript t stands for time), if it preserves the dependences
between all operations of s and all operations of any other statement in P,
ie.,

Vag,z9 1 25 €Ly N xg €Ty 1 (s,25)0(s,x9) = T5(x5) < To(Ts))

CHAPTER 1. BASIC DEFINITIONS 16

Remark. In our setting the schedule is always an affine function, so it can be
expressed by a (d%xds;+1)-matrix whose columns correspond to the indices
of the surrounding loops and whose rows reflect the various dimensions of
the schedule. The last column represents the constant portion of the affine
function.

Ty assigns every operation of s to a certain instant of time, at which it is to
be executed.

Definition 22 (Allocation).
The function oy : 7, — Zd?, d? € N, defines the place (the virtual processor
coordinates) at which the operations of s are to be carried out.

Just as a schedule, an allocation can also be expressed by a matrix, a (dP x
ds + 1)-matrix.

Definition 23 (Transformation, Transformation Matrix).
The transformation of a statement s is defined by both, the schedule and the
allocation of this statement:

T,: T, — 7% . x5 = (Ts(ws), as(xs)) , where d, = dt + dP

To get the transformation matriz for a statement s, we compose the matrices
for schedule and allocation to a single (d),xds + 1)-matrix by positioning the
matrix for the allocation below the matrix for the schedule.

Remark. Schedule and allocation are often calculated separately. Thus, in
general, the transformation will not be bijective. Wetzel [25], however,
presents methods for dealing with non-bijective and non-unimodular transfor-
mations. Consequently we may (and do) assume to have bijective unimodular
transformations only, as this is no limitation to generality.

Definition 24 (Target Space).
We define the target space or transformed index space of statement s as a
subset of Z%:

TL, = {a' € 2%

(Fas : x5 €I, ¢ al, =Ts(xs))}
d’. is the dimension of the target space for statement s.

Analogously to the source execution space we also have a target execution
space of a statement.

CHAPTER 1. BASIC DEFINITIONS 17

Definition 25 (Target Execution Space).
The target execution space or transformed execution space of a statement s
is defined as a subset of its target space:

TX, = {2, € TL | By : vy € Xy 2y = Ti(a))}

In contrast to the target execution space we will often call the source execu-
tion space just execution space.

Remark. While different statements in the same body have the same index
(execution) spaces, in general, they have different target (execution) spaces.
The reason for this is that every statement can have a different transforma-
tion.

Definition 26 (Scanning and Scannability).

The enumeration of (source and target) execution spaces by a nest of loops
is called scanning.

An execution space is scannable iff it can be scanned precisely by a nest of
loops.

Remark. Scannability holds trivially for source execution spaces, because
they are given by loop nests [9]. So the property of scannability is mainly
interesting for target execution spaces.

On closer inspection we notice that the scannability property of target execu-
tion spaces depends on the transformation and on the shape of the respective
source execution space, as these two determine the appearance of a target
execution space.

In [10] the predicate scannability is defined for space-time mappings. It
ensures that the target execution space is scannable, regardless of the shape
of the source execution space.

We will have a closer look at the implications of scannability in Chapter 2.
With the presence of general loop nests, the transformed execution space
TX of a statement s may be unscannable [11]. In this case it is not possible
to find a set of nested loops that enumerates the target execution space
precisely.

Definition 27 (Scanned Spaces).

The set of actually scanned source (target) points of a statement s, the
scanned source (target) space Sy (TSs), is defined as the set of points that
are enumerated by the source (target) program.

CHAPTER 1. BASIC DEFINITIONS 18

Remark. 1f we have if statements in the source program, then — in general
— the scanned source space of a statement in the body is different from its
execution space.

We will have to prove that our implementation ensures that the target pro-
gram scans a superset of the transformed execution space, i.e., that TX, C
TS, for all s € Sp. Further, we must prevent an operation from being exe-
cuted at a point that does not belong to the transformed execution space of
its respective statement.

1.4 Summary of Frequently Used Symbols

Let us summarize the symbols and notation introduced in this chapter, as
these will often recur throughout this thesis:

Programs:

P :identifier for a (source) program

S . identifier for a statement

Sp . set of statements occurring in a program P

Lp :set of all loop indices occurring in program P

Es : set of indices of enclosing loops of a statement s

Loops:

LB, . fixed value of the lower bound of a loop at level &

UB, . fixed value of the upper bound of a loop at level k

ST, . value of the stride of a loop at level r

iy : value of the index variable (loop index) of a loop at level k,

cond, : boolean value, usually the value of the condition of a
while loop or an if statement

body, : body of a loop at level r

Source spaces:
r : in the current context a fixed bound, but variable in
general, often 1 < r < d,

k index, often 1 < k <r

ds (source) dimension of a statement s

Z, index space of statement s

X execution space of statement s

T : point in the source space Z, of statement s, usually

Ty = (il, .. -;ids)
(s,z5) : operation of statement s

CHAPTER 1. BASIC DEFINITIONS

Transformation:

54 data dependence

0°¢ control dependence

) dependence

<, = lexicographical order (used to describe a temporal order
between operations)

Te schedule of statement s

o allocation of statement s

T transformation of statement s

Target spaces:

dt
&
d.
TL,
TX,
TS,

/
‘/1:5

dimension of the schedule of statement s

dimension of the allocation of statement s

target dimension of a statement s

target index space of statement s

target execution space of statement s

scanned target space of statement s

point in the target space TZ; of statement s, usually

2= (i)

19

Remark. We will omit subscripts if the meaning is clear without them in a

given context.

Chapter 2

Classification of Execution
Spaces

An important step of a parallelization in the polyhedron model is the deter-
mination of the target execution spaces and the identification of a nest of
target loops (space and time loops) which enumerates them. One main con-
tribution of this thesis is an examination of the correlation between different
types of execution spaces and their images under certain transformations.
Note that we restrict ourselves to piecewise affine transformations, since our
schedulers and allocators only yield piecewise affine space-time mappings.
To show the differences between the various target execution spaces, we intro-
duce a classification of source loop types affecting the respective dimension of
the execution space. The examination of the execution spaces and transfor-
mations can be performed with varying precision: a more precise examination
means on the one hand more effort but on the other hand it reveals refined
classes for which better methods of parallelization can be found.

Figure 2.1 shows the different classes we shall define in this chapter. In
general, from left to right the potential for parallelism decreases and the run
time overhead increases. From the top to the bottom the effort of analyzing
the execution spaces (at compile time) increases and the classes get more
precise. The target execution spaces of the classes in the light grey boxes
can theoretically be scanned precisely. For all other classes, in general, we
have to scan a superset of the target execution space and watch out for
operations which must not be carried out at some iteration.

Remark. Our classification is only based on instructions that constitute in-
dex spaces, namely on for and while loops. Thus, it does not consider if
statements. We make remarks on the consequences of if statements at the
appropriate points in the following sections.

20

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 21

instructions for repeated execution (determining one dimension of the execution space)
static execution spaces dynamic execution spaces dynamic execution spaces
with for loops with for loops with while loops
affine
1oops all other loops
affine | convex . static dynamic
loops | loops arbitrary for loops while loops whileloops
affine | convex
loops | loops sT nsT sT nsT sT nsT sT nsT
affine | convex
loops | loops sTX nesTX | aTX
affine dll other for loops are treated like dynamic for loops all while loops are treated
loops with non-scannable Transformations the same way
Abbreviations: sT scannable Transformation sTX scannable target execution space
nsT non-scannable Transformation nesTX not exactly scannable target execution space
dTX approximatable target execution space

Figure 2.1: Different classes of execution spaces

Our aim is to learn as much as possible about the target execution spaces at
compile time. If we knew them exactly, we could enumerate them in parallel
without any run time overhead. In this case the only sequentiality arises
from data dependences between operations of statements in the body — not
from calculating the execution spaces themselves.

We can use the types of loops in the source program, their bounds and the
transformation function to describe the target execution space. The more we
can take into account the better our results will be.

Remark. In this thesis we are only interested in scanning (a superset of) the
target execution space and filtering the points that must not be executed,
because their inverse image does not belong to the execution space. We
consider only dependences that have to do with these problems and do not
take into account further dependences that arise from the program itself.
It is up to the programmer to invent algorithms that impose as few data
dependences as possible or to apply other tools (e.g., [17]) that eliminate
some unnecessary data dependences.

In the following sections we will discuss the classes shown in Figure 2.1 and
present, some examples for illustration. The maximum dimensionality of the
execution spaces of statements in the examples is 2. We use the third di-
mension for depicting operations of different statements; operations with the

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 22

same third coordinate belong to the same statement. If we use transforma-
tion matrices, the first line corresponds to the schedule (¢) and the second
line to the allocation (p). In the examples we consider only target programs
whose outermost loops are time loops (synchronous target programs).

2.1 A Glance at Sequential Execution Spaces

Every for loop and while loop? determines one dimension of the execution
spaces of the statements in its body. All execution spaces are scanned in
sequence and at every point the operations are ordered according to the
textual order of their statements in the source program.

In the next two subsections we take a closer look at for and while instructions.
This may seem somewhat trivial, and usually we do not think about their
logical structure when we use sequential for loops or while loops, but it is
essential for the understanding of why and how loop nests can be parallelized.

2.1.1 Sequential for Loops

The nature of a single for loop is that the bounds and the stride are evaluated
first and do not change during the execution of the body?.

The values of the loop index of a for loop can be described by the following
condition.

Definition 28 (Execution Condition of a for Loop).
The execution condition of a for loop is given by the (usual) semantics of for
loops and is defined as follows:

ex_condf,(iy,...,i,) == LB, <i, <UB, A (i, — LB.)%ST, =0

The body is executed for all 4, which satisfy the execution condition. In all
other cases the loop terminates.

The expressions for LB, and UB, are evaluated once before the respective
body is executed. Only the value ¢, is changing during the execution of the
loop: after each iteration the stride ST, is added to 7,.

2We do not consider repeat loops, they can be easily transformed to while loops.

3The programming language C has a different view of for loops: the bounds and the
stride of a for loop are evaluated before each new iteration. If, e.g., a variable occurring
in a bound expression has changed during the last iteration, this affects the value of the
bound for the next iteration. In C every while loop can be denoted as a for loop.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 23

As the index increases monotonously and all other values in the bound ex-
pressions do not change, the number of iterations is known at the beginning
of the loop’s execution, i.e., the extent of an instance of such a loop is known
before the first operation of a statement in its body is executed.

v

for instruction

LB, :=1b, —_

—(UB, :=ub,

|

> ex_condf (i,....i,) body, |

(i) |
- %

_ o =111 =1
(o) |

v

data dependence control dependence arbitrary dependence

ional
- _ leptiond)

Figure 2.2: Dependences related to a for-instruction

Figure 2.2* shows the dependences caused and made possible by a for in-
struction in a sequential program. The grey rectangle contains all informa-
tion given by the syntax of a for loop. The two assignments LB, := [b. and
UB, := ub, are used to symbolize that the values of the bounds are fixed be-
fore the loop starts. We will call these statements lower bound assignment,
upper bound assignment or bound assignment if we mean one of them. From
now on we will denote them by lb_ass,, ub_ass, and bd_ass,, respectively, if

4The way we show the dependences related to loop instructions and if statements are
inspired by [28].

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 24

they belong to a loop instruction at level r.

The dotted dependences attached to the border of the rectangle can only be
caused by the expressions for (b, and ub,.

The grey arrows represent control dependences to the body and to the induc-
tion (see [22]) whose execution depends on the boolean value of the execution
condition: an operation of a body statement is only executed if the execution
condition evaluates to tt. Control dependences may coincide with data de-
pendences in the same direction, i.e., the control dependences exist definitely
and may make some similar data dependences redundant (we omitted the
data dependences for the sake of clarity). This is always the case for the
dependence of the induction on the condition, as i, has to be read before it
may be incremented if the condition yields #t.

We see that the body of an instance of a for loop that is currently being
executed cannot affect the bounds of its own execution space, but obviously
it can affect the bounds of, e.g., the next instance of the same loop or the
bounds of an inner loop, if there is one. This is expressed by the adornment
(i1,...,ip—1) # (i1,...,ip—1)" for the dependence from the body to the for
instruction and by the possible dependences pointing to and away from the
body.

This observation will become important for parallel execution.

To summarize: we know the extent of an instance of a for loop before the
first operation of its body is carried out. This holds independently from the
appearance of the bound expressions.

2.1.2 Sequential while Loops

In contrast to for loops, the number of iterations of a while loop is not known
before the loop terminates and the value of the condition has to be checked
at the beginning of every new iteration. The body of a while loop may —
and, for getting non-trivial loops, must — change the values occurring in
the condition. In general, not only one “well-chosen index” changes in a
monotone manner, but any value may change and affect the result of the
next evaluation of the while condition.

If we take a look at Figure 2.3, we notice that the syntax of a while loop
provides much less information compared to that of a for loop.

In general, we do not know how the values occurring in the condition will
change before its next evaluation. These changes (the induction [22]) take
place somewhere in the body.

The initialization of the changing values is not given syntactically, either.
We know only the condition and that there are control dependences. One is
directed from the condition to the loop body and another one points to the

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 25

* |

while instruction I

€ v

data dependence control dependence arbitrary dependence

ional
—_ _ (optiona)

Figure 2.3: Dependences related to a while instruction

condition at the next iteration of the same loop instance. We call the latter
one the while dependence [10].

In contrast to for loops, the dependence from the body to the while instruction
is unlabeled. That means that it may be of an arbitrary form® and, especially,
may point to the while instruction of the currently executed instance of the
loop. Thus, a while loop can change the extent of its own execution space.
The facts just mentioned entail that we cannot predict the number of itera-
tions a while loop will carry out. The loop’s termination only becomes known
when the condition evaluates to ff after some iteration.

However, Figure 2.3 only shows what is commonly related to a while loop.
This view is sufficient for considering sequential loops, but for examining the
parallel execution of while loops we have to take a closer look. In Figure 2.4
we present a more general view of while loops and show also the integration
of the iteration counter (see Definition 12).

For while loops we can also define an execution condition, similarly to for
loops. It is defined recursively according to the while dependence and there-
fore is more complicated to calculate.

5Here ‘arbitrary’ means: “all kinds of dependences possible in a sequential program?”.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 26

I
v

new while instruction

S

:
:
:
:
v | :
(ex_cof,(ﬁl,...,i,)> - @:
(=i +1) J'

I
|
I |
v v

data dependence control dependence arbitrary dependence

ional
_— __(021:103])__’

Figure 2.4: Dependences related to a while instruction given by the new
syntax

Definition 29 (Execution Condition of a while Loop).

The execution condition of a while loop at level r is given by the semantics
of while loops and is defined as follows:

ex_condw, (i, ..., i) =
(0 < iy A (ir — 0)%1 = 0) A
(0 =1, A cond,(ir,...,i)) V
(0 < i, A ex_condw, (iy, ..., i, — 1) A cond,.(iy,...,1i.))

The first line describes the index space of the loop. As in our thesis the lower
bounds and the strides of all while loops are always 0 and 1, respectively, we
could also omit this line. However, we want to remember the general case
(arbitrary lower bounds and strides) and choose to keep it. The following
two lines restrict the index space to the actual execution space of the loop:
the first iteration of a while loop is carried out if the loop condition holds,
the following iterations are executed if the previous one was executed and
the condition holds. For i, < 0 the execution condition yields ff.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 27

The definition of ez_conduw, follows the definition of the predicate executed in
[1]. However, we take only the parts that relate to one level of the loop nest,
i.e., here we have a single-dimensional view. In Chapter 3 we combine the
execution conditions of every dimension to one execution condition for every
statement.

Now that we can express the values of the loop indices we can give a formal
definition of an execution space.

Definition 30 (Source Execution Space).

Let s € Sp be a statement in a source program P that does not belong to
the body of an if statement. Then the source execution space of statement s
is defined as a subset of Z; :

Xy ={(iryig) €T, | (VE : 1<k <d,
(ex_condfy,(i1,...,ix) Nis_for(k)) V (ex_condwy(iy,...,ix) Nis_whi(k)))}

The source execution space of the entire program is X' = Jscg, Xs-

After this closer look at sequential loops we shall describe the loop classes.
Each of the following sections corresponds (downward) to a row in Figure 2.1.

2.2 Static and Dynamic Execution Spaces

We distinguish two main kinds of execution spaces, determined by the de-
pendences that point to the loop instructions.

The first one is called static execution space. Its shape and extent is entirely
known at compile time or can at least be approximated by a superset whose
shape and extent is known at compile time. Static execution spaces are
characterized by loop bounds to which no data dependences are ‘pointing’.

Definition 31 (Static Execution Space).

Let s and s’ be two statements in program P, where s’ is not part of a loop
instruction. The dimensionality of s is denoted as d,. Let further bd_ass, be
a bound assignment of a loop surrounding s at level r.

We call the execution space X, of s static if the following holds:

(Vr:1<r<d,: —(s6"bd ass,))

These spaces could be scanned in one time step (i.e., in parallel) by forall
loops. However, dependences between the body statements may spoil this
parallel execution.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 28

Remark. while loops can only belong to a static execution space if the values
occurring in their conditions are not changed by any statement. This renders
only while loops that have either no (the while condition always yields ff)
or infinitely many iterations (the while condition always yields #t). It can
be determined at compile time which case applies. So, usually execution
spaces determined by one or more while loops are non-static (dynamic, see
Definition 32).

Ezample 2 (Static Execution Space).

The loop nests in the following two programs yield the static execution spaces
shown in Figures 2.5 and 2.6.

No loop bound depends on the computations of any other statement, so we
know the execution spaces at compile time by considering only the bound
expressions of the loop instructions.

The shaded regions mark the space described by the loop bounds and the
dots show the intersection of these regions and the integer lattice, the actual
execution space. One-dimensional operations have 0 as second coordinate.
The third coordinate reflects the order of the statements in the source pro-
gram.

control dependence
[0 1st for-instruction
L] 2nd for-instruction
® body

Figure 2.5: The static execution space of the first program in Example 2

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 29

The first program yields a polytope as execution space (Figure 2.5):

/ x program 1 x /
for i := 0 to 3 do
for j:=0to (2/3)xi+1 do
ali,j] :=0
end
end

The execution space of the second program is neither convex nor has it
straight borders, but it is static, too.

control dependence

[1st for-instruction

L] 2nd for-instruction

@® body

" g !

7, ge———
1

Figure 2.6: The static execution space of the second program in Example 2

To express that static execution spaces do not depend on the body of their
loop nests, we can substitute this body by a skip statement (the empty
statement).

/ * program 2 x /
for 1 := 0 to 3 do
for j:=0to (1/3) * (: — 3)* do
skip
end
end

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 30

The difference in the shape is not significant for an execution space to be
static, but — as we will see in the following sections — it is very significant
for target code generation.

Now let us look at dynamic execution spaces. These are characterized by
dependences ‘pointing’ to the bound expressions (for loops) or to the while
condition (while loops).

Definition 32 (Dynamic Execution Space).

Let s and s’ be two statements in program P. The dimensionality of s is de-
noted as d,. Let further bd_ass, be a bound assignment of a loop surrounding
s at level r.

We call the execution space X, of s dynamic if for some s', where s’ is not
part of a loop instruction

(3r:1<r<d,: s bdass,)
In other words: if an execution space is not static then it is dynamic.

The dependences cause the execution space to change in the course of time.
Thus, such execution spaces cannot be enumerated in parallel. Moreover, the
upper bound of the time dimension is generally not predictable, and therefore
we will obtain while loops for the time dimension in the target loop nest.

Ezample 3 (Dynamic Execution Spaces).

Dynamic execution spaces can be caused by for loops as well as by while
loops.

In program 1 the while loop causes the first dimension to be the “dynamic
dimension”. A sample execution space is shown in Figure 2.7. Here the array
len has the following entries: len = (1,2,0,1,6,4,2)

This is a very simple example, but it shows that the extent of the first
dimension determined by the while loop depends on the execution of its body
and of the while condition of the previous iteration. Therefore the execution
space cannot be enumerated in parallel, but has an inherent time component
that has to be considered.

/ ® program 1 x /

1:=0

for wi := 0 while (len[i] < 5)
for j := 0 to len[i] do

alj]:=0

end
1:=1+1

end

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 31

control dependence e L
data dependence ? ; 3 3 3

statement 1
while-condition (true)
while-condition (false)
for-instruction
statement 2
statement 3

O.DOQO¢

Figure 2.7: The dynamic execution space of the first program in Example 3

We can see that this sequentiality does not affect the second dimension. For
every instance of the for loop, all its iterations can be executed in parallel.

As mentioned above, for loops can also cause dynamic execution spaces. This
is shown in program 2:
f(i,7) may be any piece of code that computes a value for the array a[i, j].

/ * program 2 x /
al0,0] ;=1
for 1 := 0 to 3 do
for j := 0 to ali, 0] do
ali +1,4] := £(i,)
end
end

Again we have a sample execution space, depicted in Figure 2.8. In this
example f(i,0) yields the values 1, 2 and 0. These are the only relevant ones
for the upper bounds of the second for loop.

As in program 1, every single instance of the second for loop can be executed
in parallel. Because the body of instance 7 of the inner loop affects the bounds
of instance 7 4+ 1 of this same loop, the different instances of the inner loop

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 32

control dependence A A ®
statement 1

for-instruction (level 1) 3 3 | |
for-instruction (level 2) ® @ @
statement 2 3 | ; |

@)
|
|
[]

Figure 2.8: The dynamic execution space of the second program in Example 3

have to be carried out one after the other. This means that the outer loop
has to be executed sequentially.

Note that, although the extent of the first dimension is known at compile
time, it must be enumerated sequentially. Although the upper bound of the
second dimension is determined at run time, each instance of the second loop
can be executed in one time step.

The explanations in this section make clear that the handling of dynamic
execution spaces causes much more overhead than that of static execution
spaces, as we have to determine their bounds at run time.

2.3 State of the Art

The present state of the art is that only sequential source programs with
loop nests containing only so-called affine for loops can be parallelized using
the polytope model. We will briefly describe this kind of for loops and the
implications for the source and target execution spaces. For a closer look, we
point to [18, 19, 25]. The handling of special cases and some extensions are
also described there.

Bound expressions must be affine expressions in structure parameters and
indices of enclosing loops (if there are any), i.e., the bounds of a for loop at
any level r have the form:

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 33

b, = Crila +Qr,222+' ’ '+Qr,r—127‘—1 +Qr,r
Ubr = Er,lll +Er,222+' ' '+Er,r—lzr—1 +Er,r
where ¢, ;, . x € Z are constants, (i1y---yir—1) € Xpa_ ass,-

Note that ¢, and €., can be composed of several numerical constants and
structure parameters. We view them just as one constant part in the bound

expressions.

As constants cannot cause any data dependences (see the remark following
Definition 19) and loop indices may only be read in the bodies of the re-
spective loops, the execution spaces caused by affine for loops are always
static.

This means that in Figure 2.2 on Page 23 the data dependences pointing to
and away from the shaded box of the for instruction do not really exist.

We can determine in a parameterized way at compile time how many itera-
tions the loop will carry out and what values the index will take. Thus, we
can also predict the boolean values of the condition in the for instruction at
compile time. These are incorporated in the ranges of the target loops, i.e.,
the target loops will only enumerate the points whose respective conditions
in the source loop nest had yielded ftt.

The shape of an execution space caused by affine for loops is a polytope.
Together with an affine transformation function the target execution spaces
also result in a polytope. This property guarantees the existence of a precise
scan of the target execution space without unnecessary run time overhead.

2.4 Loop Classification

Scanning consists of two tasks: finding bounds for the target loops and mak-
ing sure that no operations are executed which are not executed in the source
program.

The classification proposed in [12] deals only with the second task for for
loops; the target loops are considered to be given and we ask what the source
execution space must look like to be sure not to enumerate too many target
points.

The refinement of while loops into the two classes is not guided by the problem
of scanning the target execution space exactly, but is done with respect to
existing related work, such as [22, 24, 28].

Remark. The titles of the following sections give the numbering of the classes
introduced in [12].

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 34

2.4.1 Affine for Loops (Class 4 Loops)

This class is equal to the class described in the last section. In difference
to Class 3 (see Section 2.4.2) we always know how to compute the bound
expressions for the target loop nest.

2.4.2 Convex Execution Spaces (Class 3 Loops)

The for loops contained in Class 3 ensure convex target execution spaces, i.e.,
they can be proved at compile time to cause only convex execution spaces.
This “proved at compile time” induces that only static convex execution
spaces are considered here. The class of convex loops forms a superset of
Class 4, as the latter always yields (polytopes as a special case of) convex
static execution spaces.

The definition of Class 3 makes use of the fact that an affine function maps
a convex set onto a convex image: if the bounds of the image are given as a
function of target loop indices and structure parameters, it can be scanned
exactly.

Ezample 4 (Convex Ezxecution Spaces).

The following program has the convex static execution space (of loops in
Class 4 and Class 3) depicted in Figure 2.9. The upper bound of the inner
loop prevents the loop nest from belonging entirely to Class 4.

for i := 0 to 4 do
for j :=0 to sqrt(4 = i) do
body
end
end

In Class 3 we free ourselves from the question: “How can we find the bound
expressions 7”7 We simply say: “If someone gives us the bound expressions,

we know the target execution space to be scannable (precisely) !”

Remark. We could also imagine a more practical view of Classes 3 and 4
by defining one ‘big’ class of convex loops which contains the class of affine
loops and the subset of Class 3 for which we actually have the mathematical
tools to find functions that describe the shape of their target execution spaces
under any affine transformation. Thus, a for loop with a bound that causes
a convex static execution space would not be part of the new convex class if
we were not able to find a function as bound for the target loops that yields
the respective border of the target execution space.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 35

Figure 2.9: The convex static execution space of the program in Example 4

2.4.3 Arbitrary for Loops (Class 2 Loops)

Class 2 contains all other types of for loops. In general, they yield un-
scannable dynamic execution spaces that must be estimated at run time.
We will show this estimation in the next chapter.

Ezample 5 (Class 2 Loops).

We already saw examples for programs with Class 2 Loops. In Example 3 on
Page 30 the inner for loop of program 2 belongs to Class 2. As it is dynamic,
it cannot be proved at compile time to yield only convex execution spaces.
The inner loop of program 2 in Example 2 on page 28 also belongs to Class
2. Tt is static, but its upper bound yields a concave execution space.

2.4.4 Static while Loops (Class 1 Loops)

The number of iterations of while loops in Class 1 is fixed before the first
operation of the body is executed, but it is not given explicitly. It is computed
iteratively instead.

Different approaches to parallelization (e.g., [28]) rewrite the source loop to
first compute the number of iterations sequentially and than carry out the
remainder of the body in parallel.

Ezxample 6 (Class 1 Loops).
See Example 3, program 1. The while loop is static, because the values

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 36

of the variables in the condition are not changed in the body. Thus, the
number of iterations of the while loop does not change during its execution,
but it is not given explicitly and is not computable in O(1). We cannot
determine by looking only at the loop instruction whether the array lenl[i] is
updated somewhere else in the program. So the number of iterations cannot
be computed at compile time, either.

Note that the ‘static’ in the term “static while loops” has nothing to do with
the ‘static’ in “static execution space”. A static while loop always causes a
dynamic execution space.

2.4.5 Dynamic while Loops (Class 0 Loops)

In contrast to Class 1, the number of iterations of a loop in Class 0 is affected
by its body, i.e., a while loop of Class 0 changes its number of iterations during
its execution. In the setting of the alternative approach mentioned for Class
1 this means that the subsequent parallel forall loop could be empty.

In our setting we do not distinguish Class 1 and Class 0. We believe that
our result of parallelizing nests of Class 1 loops without further inspection
is not worse than the alternative, specialized approaches and yields a better
load balance of the processors.

Note that with additional semantic knowledge our classification collapses,
as every loop may move from a more general class to a more specialized
one. Looking at Class 2, we could also imagine to have convex execution
spaces that are dynamic. However, to prove the convexity at compile time
we would need additional semantic information about the program and the
data. Some approaches examine such properties and try to parallelize the
easier loop found this way [22, 28], but this is exactly what we do not want
to consider in this classification.

Our approach is more general. We base our analysis on a mathematical
foundation rather than finding special cases ad hoc that can be parallelized.
However, our method does not prevent the usage of such methods. If we
knew more about our source program we possibly could use methods for
easier loop classes and exploit more parallelism this way.

2.5 Consideration of the Transformation
Function

The classes of the previous section were defined without considering trans-
formations. We involve these at the next level of analysis.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 37

In [10] a property of space-time mappings is defined which guarantees scann-
able target execution spaces. This property is not of interest for Classes 3
and 4, because the shape of their execution spaces ensures scannable target
execution spaces anyway.

Scannable transformations ensure the following two aspects of scanning:

e The execution space is only changed in a way that the target execution
space has “no holes inside” .

e The target loops can describe the bounds of the target execution space
precisely.

These advantages of scannability hold for both static and dynamic execution
spaces. We refine the static and dynamic parts of Class 2 into one that is
determined by scannable transformations and one that contains the rest.
Griebl [9] proves that for every asynchronous target program a scannable
transformation can be found. This is nearly never the case for synchronous
target programs.

Scannability implies that no target loop at level » may depend on a source
loop at a level greater then r. Thus, if we have a one-dimensional schedule
for a synchronous target program, only the outermost source loop may be a
dynamic loop. Or the other way round: a valid scannable transformation for
a synchronous target program is in general only possible if the dimension of
the schedule is at least as large as the level of the innermost dynamic loop
in the source loop nest.

Typically this will prevent much of the parallelism allowed by the source pro-
gram, and therefore a non-scannable transformation will probably be chosen.

Remark. 1f there are if statements in the source program there is in general
no scannable transformation. if statements mean that the source execution
space “has holes” that are arbitrarily spread across the index space®. The
target execution space has these holes, too, and we have to test for them at
run time.

To conclude this section: scannability of transformations compensates for
non-convexity of the execution space and makes it ‘easy’ to find target loop
bounds. Essentially the original loop bounds only have to be transformed by
the space-time mapping.

The opposite side of the coin is that (at least for synchronous target pro-
grams) we cannot always find preferable scannable transformations.

6This is different to the ‘holes’ produced by strides different to 1 or —1 that are spread
across the index space in a regular pattern.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 38

2.6 Additional Consideration of the Target
Execution Space

The target execution spaces related to affine and convex loops and to trans-
formations that are scannable can be scanned precisely without actually look-
ing at their shape. Now the question arises, what we could tell about the
scannability of static target execution spaces if we knew their shape and
extent in addition to the source execution space and the transformation.

2.6.1 Scannable Target Execution Space

We can find target execution spaces that are scannable, though their space-
time mappings are not scannable and their source execution spaces are not
convex, either.

Ezample 7 (Consideration of Target Execution Spaces).
Figure 2.10 shows on the left side the non-convex static execution space of
the following sample program:

for i :=0to 5 do
for j:=0to ((i — 5)?)/5 do
skip
end
end

Figure 2.10: The execution spaces of the program in Example 7

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 39

The right side shows the target execution space determined by the space-time

0 1
i T = .
mapping 10
Although T is not scannable and the execution space is not convex, the
scanning of the target execution space causes no problems — the target

execution space is scannable.

To get the bounds of the target loops we essentially have to compute the
inverse function of the upper bound of the second loop. Therefore we have
to solve the following inequalities for p:

_)2
< P—5)
- 5
For the given range of p: 0 < p <5 we get:

p<5—+5t

We can use the following target loop nest to enumerate the target execution
space:

/ x target program * /
forall t := 0 to 5 do
forall p:=0to 5 — sqrt(5 «t) do
skip
end
end

2.6.2 Minimal but not Exactly Scannable Target Exe-
cution Space

Due to non-convex execution spaces, there are cases where the smallest pos-
sible scanned target space is bigger than the actual target execution space.
This is possible because a loop cannot skip some iterations and then go on
to continue the execution of its body.

Ezample 8 (Minimal but not exactly scannable Target Execution Space).
This example is a continuation of Example 7. We have the same program with

the same execution space, but this time we consider a different transformation

. 11 s i .
function, T = 01) with its corresponding target execution space
(depicted in Figure 2.11). Again T is not scannable and now the target

execution space is not scannable, either.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 40

Figure 2.11: The target execution space for the transformation in Example 8

The light grey region represents the transformed target execution space. The
darker grey region contains the additional points that have to be scanned,
but are not in the target execution space. Filled dots represent iterations
which have to be executed, white dots mark iterations that are scanned but
must not be executed.

It is not possible to find a loop nest that scans a smaller region without
loosing points belonging to the target execution space.

The difference to the previous class is that, although we know the upper
border of the second dimension and its image, we cannot find a loop nest
which scans a smaller region without omitting points of the target execution
space. Thus, we have to take care of points whose inverse images are not in
the execution space.

Remark. The same holds for execution spaces that are determined by if state-
ments.

2.6.3 Approximatable Target Execution Space

For the class described in the previous subsection we had to scan too many
points because loop nests were not powerful enough to describe the target
execution space exactly. In addition to this, the class of approximatable target
execution space deals with the lack of mathematical procedures or tools for
describing the bounds of the target execution space as (closed) functions in
target loop indices and constants.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 41

For our classification it does not matter whether we have no tool or whether
it is theoretically impossible to find a function that describes the exact target
execution space. In both cases the consequence is that we have to approx-
imate the target execution space by a superset which liberates us from the
actual shape and which we can describe. This approximation can be done at
compile time for static execution spaces.

For instance, a polytope may serve as an approximating superset, because
for any polytope we have a method for enumerating its image under an affine
space-time mapping.

We use the following property of affine functions (omitting the proof) that
ensures that we do not skip points of the target execution space if we scan
the image of a superset of the execution space.

Lemma33. Let X C XS C 7 and T an affine function T : T — TL with
T(X)=TX and T(XS) =TS. Then: TX CTS CTL

The following example shows the characteristic features of approximatable
target execution spaces.

Ezample 9 (Approzimatable Target Execution Spaces).

Let the following program be given and assume that we have no tool to
find the bounds of its target execution space under any transformation. The
left part of Figure 2.12 shows the execution space, the right part shows the
target execution space.

for i := 0 to 12 do
for j :=0 to (i/2) + 2 x sin(¢) do
skip
end
end

We can approximate the execution space (light grey) by a polytope (union
of the light grey and dark grey region) yielded by the following loop nest:

/ * approximation x |
for 7 : =0 to 12 do
for j :=0to (i/2) + (5/2) do
if(j <= (¢/2) + 2 * sin(¢))then
skip
end
end
end

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 42

Figure 2.12: Execution- and target execution space of the program

Since we enumerate too much, we have to take care of the points that are
scanned but are not in the execution space (white points). This is done on
the fly by the if clause.

The altered program can now be transformed with the methods for polytopic
execution spaces.

The right part of Figure 2.12 shows the target execution space (light grey),
the minimal number of points which must be scanned additionally (medium
grey). The dark grey region contains the additional points caused by the
approximation of the execution space. Again, filled dots must be executed
and white ones must not.

The medium grey region is caused for the same reasons as discussed in Sub-
section 2.6.2, i.e., because of the non-convex execution space.

Remark. Note that the approximation by an affine upper bound is only an
example. In general, any function that yields a superset of the execution
space may serve as an approximation. However, it should be a function that
ensures an approximation which can be scanned precisely.

In contrast to the class described in Section 2.6.2, we have to go to the trouble
of finding an appropriate approximation.

CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 43

Without further semantic information about the program we cannot take
the shape and extent of dynamic target execution spaces into account for
our analysis, as they are only known at run time (see the dark grey box in
Figure 2.1).

2.7 Implementation in LooPo

The last row in Figure 2.1 shows the classes we distinguish for our imple-
mentation in the automatic parallelizer LooPo.

Current methods can already deal with the class of (extended) affine loops
that yield polytopes and quasi-convex polytopes as execution spaces.

We treat all other for loops as if they were dynamic for loops and all other
while loops as if they were dynamic while loops. This worst-case view ensures
that we can put up with all kinds of sequential loops, but by nature we
cannot treat all cases in the best possible way. These optimizations are up
to future work and further studies.

Chapter 3

Dynamic Approximation of
Execution Spaces

As we mentioned in the last chapter, we distinguish between affine for loops
with static execution spaces, other for loops (static or dynamic) and while
loops (always dynamic). The present stage of development of the polytope
model is already suited for parallelizing nests of affine for loops. In the
current chapter we extend the theory to dynamic execution spaces. For the
integration of while loops we base our work on Griebl [9] and adapt it for
imperfectly nested loops.

Dynamic execution spaces can only be calculated at run time. In general, this
computation cannot be precise (see Section 2.6) but must yield a superset,
the scanned target space.

If we scan a superset, of the target execution space, we have to take care not to
execute points whose inverse image does not belong to the source execution
space. We explain this execution analysis in Section 3.2, but first of all we
present a simple example that demonstrates the problems we are facing.

3.1 Example
Consider a program with one surrounding affine for loop and a non-affine for

loop that determines the second dimension of the body statement s. Assume
that the transformation we use, preserves the dependences of the loop nest.

44

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 45

fori:=0to 5 do
for j := 0 to a[i] do
s
end
end

The inequalities describing the execution space of the body s would be:

o
VIV IV IV
oo oo

(Vi:0<i<5p)

As we might not know the values of a[i] at compile time’, we must omit the
last inequality and approximate the execution space by a polyhedron whose
second dimension is unbounded. Later, when we are generating the target
code, we have to determine an upper bound for the target loops depending
on j.

1 . . .
Let T, = 1 be the affine synchronous transformation. Its inverse is

1

0
1 -1
0 1
Thus, the following inequalities define the target space, where ¢ is the index
for the time and p the index for the space dimension:

T =

t — p > 0
-t + p + 5 >0
P > 0

To get a synchronous target program, we have to express p in terms of ¢:

INTV IV IV
-~ + OO

R"VRW o+

This leads to the target loop nest

If the loop of i were also non-affine or a while loop, we would not even know an upper
bound for ¢ at compile time.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 46

/ * synchronous target program x /
fort :=0to 7 do
forall p := max(0,¢ — 5) to ¢ do
sl
end

end

where s’ is derived from s just by expressing i and j in terms of ¢ and p.
The unknown upper bound ali] of j in the source inequalities implies that
we do not know an upper bound for the time ¢ now. It would have to be

max{7,(i,7) | 0<i<5 A 0<j<ali]}

We do not know the values of a[i] and so this upper bound can only be
computed at run time step by step as the values become known. This “step
by step” can be formulated as a while loop for the time.

Let us take a look at the asynchronous target program now. To achieve this,
we have to express t in terms of p and we get the following description of the
target space:

0
0

p
p 4+ O

S S S o
INIV IV IV

We transform the inequalities to an asynchronous target program and get:

/ x asynchronous target program x /
forall p:=0to 7 do
for t := max(0,p) to p+ 5 do
Sl
end
end

Again we do not know the upper bound of the outermost target loop, but if
we changed this loop into a while loop, we would have a completely sequential
target program, as there are no parallel while loops [9]®. We cannot compute

8We do not consider partitioning in this example, but describe its implications in Sec-
tion 3.5.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 47

the upper bound of the outermost loop iteratively at run time, because the
semantics of a for loop (and a forall loop) prescribes that the bounds are
fixed once and for all before the body is executed; they never change during
execution, even if the body changes the value of a variable occurring in one
of the bound expressions.

We notice that now there is a problem-inherent difference between the time
and space dimensions; formerly, when we only had affine for loops, there was
only a technical difference for code generation, namely that space dimensions
were enumerated by parallel forall loops whereas time dimensions were enu-
merated by sequential for loops to preserve the dependences in the source
program.

If the second loop were a while loop, e.g,
FOR j := 0 while (a[i] < 10) do body end,

we also would not know the upper bound and we would have to drop the last
inequality. This would result in the same target loops as for the non-affine
for loop. However, we shall see that the calculation of the appropriate upper
bound is more complicated.

Together with the implications of (un)scannability (see the previous chapter)
we make three observations:

1. In general (without partitioning) we can derive only synchronous target
programs that may have while loops for enumerating the time.

2. We have to take care of the termination of the target loops and call
this task termination detection.

3. As target execution spaces are unscannable in general, we have to scan
a superset of the actual target execution space. Thus, we have to decide
which target points must be executed and which must not. We call this
decision execution determination.

3.2 Execution Determination

This chapter examines how execution determination can be realized. We
choose to describe this before termination detection, because we implement
termination detection as side effect of the execution determination (Sec-
tion 3.3).

Before we introduce a general predicate executed for every statement in a
source program we include if statements in our considerations.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 48

v

I
if statement : L
I
COND := cond I : I
A A
)
- |
v v
data dependence control dependence arbitrary dependence
(optional) >
—> _____

Figure 3.1: Dependences related to an if statement

3.2.1 Execution Condition of an if Statement

In Chapter 2 we define the execution space of a statement without consid-
ering if statements, because we do not want to include if statements in the
classification. However, the execution space of a statement is determined not
only by the surrounding loops but also by surrounding if statements.
Figure 3.1 shows an if statement with the possible dependences.

The substatement CON D := cond expresses that the condition is evaluated
once and the truth value remains the same for every statement in the body
of the if statement (COND is only read from now on) even if some statement
changes a variable occurring in cond.

Data dependences can be caused by the variables in the condition. The
essential purpose of an if statement, however, is the implementation of a
control dependence to the statements in its body. We can also put this
the other way round: a control dependence can be implemented by an if
statement.

Like for loops we can also find execution conditions for if statements.

Definition 34 (Execution Condition of an if Statement).
The execution condition of an if statement is the if condition itself. Denoted:
ex_condif,, where in this case k is a unique number for each if statement.

An operation may only be executed if all surrounding execution conditions
evaluate to tt.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 49

In Chapter 4 we describe the implementation of if statements in LooPo.

3.2.2 General Predicate ezecuted for each Statement

Until now we have considered the execution conditions caused by loops and
if statements only dimension by dimension. In this section we combine these
separate conditions to one condition for each statement that determines
whether an operation of this statement is to be executed or not.

Definition 35 (Predicate ezecuted).

Let s € Sp be a statement in source program P and d, the dimensionality of
s. Let M be the number of surrounding if statements of s. Then the predicate
executeds : T, — {ff, tt} determines whether an operation of statement s is
executed at a given iteration. We define:

executeds(iy, ..., 1q,) = ex_condly A ... A excondly A
ex_condify, N ... A ex_condify,

where ez_condl, := ((ex_condf, Nis_for(ix)) V (ex_condw, Ais_whi(iy))),
1< i, <d,.

Remark. The sequence of the various execution conditions does not matter
for the theoretical definition. However, for the implementation we have to
interleave the execution conditions of if statements with those of the loops
according to their original nesting order in the source program.

All the definitions concerning execution conditions are phrased only in terms
of the source side. In the target program, however, the source indices are no
longer visible.

Since we consider only bijective affine transformation functions in this thesis,
every source index can be uniquely recomputed from an affine combination
of target indices and constants.

Let Ty be the transformation function of a statement s and T, ! its inverse.
Then:

i = (T (i i)

where i, € & are source indices, 1 < k < dg, and II is the projection onto
the k-th dimension, i.e., the k-th row of the matrix T, '

If we replace the source indices in all ex_condl, ex_condif and executeds by
these expressions we can check whether a target point must be executed or
not.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 50

We have presented a way to ensure that only target operations of a statement
are executed that have an inverse image in the respective source execution
space. In the next section we take care of the bounds of the target loops and
show their termination and that they enumerate a large enough target space.

3.3 Termination Detection

Example 3.1 shows that we have to find ‘suited’ bounds for the target loops.
Obviously this is not possible with the original loop instructions, so we pro-
pose a rewriting of the source program to get index spaces we can handle.
Unfortunately these new index spaces are not equal to the old ones, but
bigger in general. Thus, we have to take care of the additional points as
described in Section 3.2.

3.3.1 Scanning Execution Spaces of Dynamic for Loops

In this section we describe how we transform dynamic for loops to yield index
spaces we can handle.

Figure 3.2 depicts the changed for instruction for a non-affine for loop®.
Essentially two things have changed:

1. We have got a new substatement in the part of the for instruction which
computes the new upper bound of the loop.

2. We guard the original body with the execution condition of the original
loop.

The new substatement max_ub, := max(max_ub,, UB,) is responsible for the
‘inexact’ iteration space but yields the benefit of getting a monotone function
for the upper bound. The upper bound of an instance of the loop is at least
as high as the maximum of the upper bounds of all previous instances of this
loop. This monotony is one of the reasons why affine bound expressions are
so suitable for parallelization. It enables us to compute the minimum and
maximum easily: we find the extrema of a monotone function either at the
beginning or at the end of the source domain.

The price for a convenient shape of the new index space is firstly the effort
that must be taken to prevent the execution of operations that do not belong
to the execution space. By guarding the body with the original execution

9Note that Figure 3.2 only shows the situation for a positive stride. If ST, is negative
the computation of the maximum has to be replaced by the computation of the minimum.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES o1

v

non-affine for instruction

~ 1B=b, L)
(ila---air-l)’ 1

< UB, := ub, >— l + v

new body

> i =
_< L= LBr > eXECOﬂdfr (iu---air)
max_ub, :=

L e

re T

|
|
|
|
|
. v

data dependence control dependence arbitrary dependence

ional
_—) __(OEHOE)__;

Figure 3.2: Changed non-affine for loop with a new upper bound

condition we ensure that the execution space of the body statements remains

the same, although the number of iterations of the loop has changed (see also
Section 3.2).

Secondly, the computation of the maximum introduces a new sequentiality
that might not have existed in the original source program. Note that in-
stances of a loop at level r can still be executed in parallel, if this has also
been possible in the original program. The sequentiality is affecting the loop
at level r — 1.

If we look at Figure 3.2, however, we notice that there is no dependence from
an instance of the max_ub,-statement to its next instance. This is possible,

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 52

because we have some degree of freedom here.

In the model, the missing dependence allows all operations of the max_ub,-
statement to be executed in parallel. This approach makes sense, because the
order in which the values are compared is not important and we can leave
it up to the hardware (or the memory management) to synchronize these
memory accesses. The calculation of the maximum of n values is done in
one step of time from the view of the model, but its real duration naturally
depends on the value of n and refines the time steps. As a consequence, from
now on there is no (strong) correlation between the schedule and the running
time of a program anymore.

If the target program is intended to run on an asynchronous target machine,
we have to ensure that all updates of max_ub, that are scheduled at the same
time are done before the new upper bound is used.

3.3.2 Scanning Execution Spaces of while Loops

While the number of iterations of an instance of a for loop is known before
the first operation is executed, the number of iterations of a while loop is
calculated during its execution. This is the main difference between non-
affine for loops and while loops. The consequences are examined in this
section.

In contrast to for loops, the upper bound of a while loop is not given as a
value but as a condition. When we are dealing with a while loop, we have to
compute an upper bound (a number) that is increasing monotonously over
all instances of this loop. Figure 3.3 shows the changes of a while loop in
order to achieve this goal.

Similar to non-affine for loops (Section 3.3.1), we need a new variable that
expresses the upper bound. For consistency reasons we also call it max_ub,..
It is shared by all instances of one while loop.

In the beginning maz_ub, is set equal to the lower bound. This means that
every instance of the while loop evaluates the predicate ezecuted at least once
and this is equivalent to the semantics of a while loop, which prescribes that
the condition is evaluated at least once.

As long as the condition LB, < i, < max_ub, holds, the respective instance
of the loop is iterating. 7, < maz_ub, means that every instance is running
at least as long as the previous instance. If the current instance turns out
to execute more iterations than the previous one, max_ub, is incremented by
1 at every new iteration (see the darker grey box in Figure 3.3). Thus, at
any given point in time, max_ub, stores the maximum number of iterations
which an instance of the loop has carried out up to now.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 53

v

while instruction

—< LB, :=0 > i

v

< max_ub, :=LB, >—
_>< i,:=LB,) « - -
|

v
LB, < i, < max_ub, hll
_»E AV ? -bod .

i, =i+l

ex_condw,(i,...i) >

I
I
I
+ |
max_ub, := |
max(max_ub, , +1) I
I
I
v v
data dependence control dependence arbitrary dependence
. (optional) >
—> _____

Figure 3.3: Changed while loop with an upper bound

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES o4

Since every instance of the loops runs at least as long as the previous one,
some instances run longer than they would have done originally. This is the
reason for the difference between the iteration and the execution space and
therefore we have to take care of execution determination expressed by the
truth value of executed.

3.3.3 Bounds and Termination

We have presented how we want to change the original source program and
claim that we can handle the changed program. Before we provide the proofs
of correctness and applicability, let us look at the following lemma.

Lemma 36.

Let s be a statement in the body of a non-affine (for or while) loop at level
r and maxr_ub,(7,(Z)), T = (i1,..-,1q4,), the value of max_ub, at time 7,(T).
Then the currently known value of the upper bound of loop v, UB,(iy, ..., 1,),
15 already considered for the calculation of max_ub, at a time earlier than
75(%). Further, we can abstract from the inductive computation of max_ub,
(Figures 3.2 and 3.3) by looking at the values which are actually considered.
Formally:

Lyevorig,) @ 2,7 € Ly ANTo(1) < 76(T) -

(V%Z(il,...,ids),i‘ s
) = max{UB, (i1, ...,i,)})

= (7'

max_ub, (7s(Z

Remark. For a for loop at level r UB,(i1,...,i,) = UB.(i1,...,0.) =

UB, (i1, ..., ir—1), where i,,i!. € Z. while loops need the last coordinate i,, as

the upper bound changes during execution. To be uniform we choose to use
it for for loops, too.

Proof (Sketch).

The (transitive) dependences from the max_ub,-statement to every body
statement ensure that the operation (maz_ub,, (i1,...,i,)) is executed at
a time earlier than 74(z), i.e., that the UB,(iy,...,i,) are considered “early
enough”. As for the result of a max-instruction, the order in which the values
are considered does not matter; at a given time 74(Z) the variable maz_ub,
contains the specified value.

In the following part of the thesis we explain how and prove (partly infor-
mally) that we can find expressions for the bounds of the target loops. For
simplicity, we assume that the lower bounds of non-affine loops are smaller
than the respective upper bounds, i.e., that the strides are positive. This

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 55

requirement is not a limitation of our method, but it eliminates some case
distinctions.

First of all we need some requirements to be satisfied by the source program,
the scheduler and the allocator:

o Requirement 1: The lower bounds of non-affine loops have to be affine
expressions in the indices of surrounding loops and parameters (we shall
see later that this is not a severe limitation).

e Requirement 2: Let i, and i, be two values of the loop index of a
non-affine loop at level r and body, its body. Then we require:

(Vs : s € body, :
ZTSZ; =4 Ts(ila---;ir;---aids)st(ila---ai;;---aidS))

This means that statements in the body of a non-affine loop must not
be enumerated in opposite order, even if the dependences allow this.
For while loops, this requirement is always satisfied because of the while
dependence, but since we do not insert a similar dependence into for
instructions, Requirement 2 must be imposed on non-affine for loops.

e Requirement 3: Upper bounds of non-affine for loops must not be con-
sidered as known, i.e., there is no inequality that limits the upper bound
of the index of a non-affine for loop.

With these requirements, it is always possible to find lower bounds for the
time loops that do not depend on the upper bounds of non-affine loops (which
we do not know at compile time).

Definition 37 (Minimum/Maximum of Time for a Statement).
Let s € Sp a statement in program P and 7, the affine schedule of s. Then

min_t; = min{r(z) |z € S}
mazx_ty; = max{rs(z) |z € S}

are the minimal and maximal values for the time at which an operation of s
is executed.

Lemma 38 (Lower Bounds for Time Loops).
Let 4 be the affine schedule of a dg-dimensional statement s in the body of
a loop nest with non-affine loops and let NAL be the set of loop indices that

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 56

belong to a non-affine loop. Then the lower bound of the range of time for
the operations of s is:

min_ts = min{7,(MBy, ..., MBy,) |
(Vr:1<r<ds : (re NAL = MB,=1B,) A
(re{l,...,ds} \ NAL = MB, € {LB,,UB,}))}

Proof.
According to the two conjuncts, we prove the lemma in two parts:

Part 1: (Vr : r € NAL : MB, = LB,) for minimal 75,(MBy, ..., MBy,).
We prove by contradiction.

(3r : r€ NAL : (3 MB, : MB, > LB,
7(MB,, ..., MB,,...,MBy,) < 7,(MB,,...,LB,,..., MBy)))
= { <istotal }
(3r : r € NAL : (3 MB, : MB, > LB,
~(ry(MB,,...,IB,,...,MBy,) < 7,(MB,..., MB,,..., MB,.))))
= { Requirement 2 }
(3r : re€ NAL : (3 MB, : MB, > LB, : —~(LB, < MB,)))
= { <istotal }
(3r : r € NAL : (3 MB, : MB, > LB, : (MB, < LB,)))
= { contradiction to the assumption }

Vi

Part 2: (Vr : re{l,...,ds} \ NAL : MB, € {LB,,UB,}) for minimal
7s(MBy, ..., MBy,). We prove by contradiction.

3r:re{l,....,d;} \ NAL : (3 MB, : LB, < MB, < UB,
Ts(MBy,...,MB,,...,MBy,) < 17s(MBy,...,LB,,..., MB;,) A
7s(MBy,...,MB,,...,MBy,) < 7s(MBy,...,UB,,...,MB,,)))
= { definition of the lexicographical order <; let [be the first dimension
where the values of 74(...) are different and ¢, : 0 < k < dy be the
coefficients in the [-th dimension of 7y }
(Hr:re{l,...,d}\NAL (EIMB LB, < MB, < UB,
ciMBy + -+ + ¢, MB, + -+ + 14, MBy, + ¢
< enMBy + -+ ¢ LB, + -+ + cq, MBy, + cip
A C”MBl + -+ ClrMBr + -+ CldsMBds + o
< eyMBy+ -+ pUB, + -+ + CldsMBds + ClO))
= { arithmetic }

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 57

3r:re{l,...,d;} \ NAL : (3 MB, : LB, < MB, < UB, :
Clrmr < ¢ LB, A Clrmr < ClrUBr))

= { range of MB, }
3r:re{l,....,d;} \ NAL : (3 MB, : LB, < MB, < UB, :
ar <0 A ¢p > 0))

= { arithmetic }

i

The time for the first operation of a statement in the body of a loop nest
with non-affine loops still depends on the lower and upper bounds of affine
for loops but only on the lower bounds of non-affine loops.

To find this minimum we need Requirement 1. It ensures that the expression
for the minimum consists only of affine subexpressions. Thus, we can apply
existing methods (like [6], [8] or [27]) for finding the minimum.

The next step is to show that our time loops are running long enough. In
the proof we apply the following lemma.

Lemma 39 (Positive Coefficients).

Let 75 a dt-dimensional affine schedule for statement s andr:1 <r <d, a
non-affine dimension. Then the r-th column ¢, in the coefficient matriz of
Ts contains only values that are greater or equal to 0, i.e.,

(Vr,7s : 7€ NAL :

Ts satisfies Requirement 2 < 0726)

Proof.
Let © = (21, ..., Zpy...,xq,) € Xsand 2’ = (xq,...,2), ..., 24,) € Xs.
/
x, < .

< { Requirement 2 }
7s(2) 2 7o(2')
< { 74 is an affine function }
Co+CLar—+...htC T +...+cCq Ta,
jc?—i—cixl+...+cjx;+...+cgsxds
& { lexicographical order }
¢z <cp
< { arithmetic }
¢ (2, —) <0
& { arithmetic }
>0

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 58

Lemma 40 (Enumerating Enough Time).

Let s and 75 as usual. The time at which an operation of s is executed is never
later then the maximum value of the schedule with respect to the execution
space known at that time step. Formally:

Vo :ax=_(>i1,...,0q,) €EXs: (VI :1e{l,...,ds} :
75(2) X max{7,(MBy,...,MBy,) | (Il € NAL = MB; = maz_ub/(7(z))) A
(le{l,...,d}\ NAL = MB, € {LB,,UB})))

Proof.
Let 07, 0 <[<d,, the [-th column in the coefficient matrix of 7,. Lemma 36
implies

Vo :x=_(i1,...,iq,) € Xs: (Y7 :r € NAL : i, <mazx_ub,(75(x))))
= { Lemma 39 }
Va:x=(i,...,0q) € X, : (V7 : 7€ NAL : ¢ i, < ¢, maz_ub,(1,(2))))
= { let MBy € {LBy,,UBy} the values that contribute to the maximum }
Vaz:x=_(i,...,0q,) € X,
(Vr :re NAL iy < amax_ubr(Ts(:r))) A
(VEk:ke{l,...,d,}\ NAL : cyi < ¢y MB}))
= { arithmetic }
Va:z=_(i,...,i0q,) € X
(Vr :re NAL LY, iy <Y, amax_ubr(Ts(x))) A
(VEk:ke{l,....,d}\ NAL : ¥ cxir, < X cx MBy))
= { arithmetic }
Vo :x=_(i1,...,iq,) € Xs: (Y1, k:r€NAL, k€ {1,...,ds} \ NAL :
S, Crir + Xy rix < X, ermaz_ub, (1,(x)) + S ¢ MB))
= { arithmetic }
Vz:x (il,...,ids)EXs
(er le{l . ds}, me NAL, ke {1,...,d,;} \ NAL :
Yai < %, ¢pmaz_ub,(t4(x)) + Xy cx MBy))
= { arithmetic }
Vz:x (il,...,idS)EXs.
(er le{l d} r€ NAL, k€ {1,...,ds} \ NAL :
S ait ey < Z crma:c uby (15(2)) + X% ¢ MBj+ ¢o))
= { definition of the ¢ and “< implies <" }
Vo :xz=_(i1,...,00,) €EXs: VI :1€{1,...,ds} :
(l e NAL = MBZ maz_ub)(15(x))) A
(lefl,....d}\NAL = MB,=MB,) A
(75(z) < TS(MBl,...,MBdS))))

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 59

= { definition of MB,; and analogous application of Part 2 of the proof
of Lemma 38, where <, < and > are replaced by =, > and <,
respectively }
Vo :x=_(>i1,...,0q,) € Xs: (VI :1e{l,...,ds} :
7s(z) < max{rs(MBy,...,MBy,) | (I € NAL = MB;, = max_ub(7s(x)))
A (led{l,...,ds} \ NAL = MB, € {LBy,UB})))

Lemma 41 (Termination of Time Loops).

The time loops terminate after a finite number of steps if the source loops
terminate, i.e., after some time step t the bounds max_ub, of non-affine loops
do not change anymore:

(Ft:t>mints - (Vt: t>t: maz_ub.(t) = mazx_ub.(t)))

Proof. (Sketch)
We prove this assertion informally.

max_ub,(t) = max{UB,(z1,...,z,) | Ts(x1,...,24,) <t}
maz_ub,(t) = max{UB,(z1,...,z,) | Ts(x1,...,24,) <t}

If the two sets contain the same elements, both maxima are sure to be equal.
What sets are possible? The number of elements in the set of all different
upper bounds {UB, (i1, ... i) | LBp <i, <UB, A 1<k<r} is finite if all
surrounding loops terminate. This means that there has to be an instant of
time (¢) where all different upper bounds UB, are considered. For all ¢ > t,
the set of upper bounds does not change and so the maximum of this set
does not change, either.

Since the max_ub, are the only values in the expression for the maximum of
time that change over time and there is a point in time at which this values
do not change anymore, the loops that enumerate the time dimension must
terminate after a finite number of time steps.

Lemma 41 means that, if we replace the original upper bound ub, of a loop
by maz_ub,., we can find bounds for the time loops of the target program.
However, the polyhedron model is based on solving systems of linear in-
equalities — and max_ub, is not a linear expression. For the parallelization
steps of dependence analysis and computing schedules and allocations for the
operations of the statements in a source program, we can replace the new
upper bound of non-affine loops by a structure parameter that represents a

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 60

“large enough” value!® (Requirement 3). A constant parameter is an affine
expression, and so all parallelization steps can be carried out as usual.
When generating the target code, we have to replace this new inserted arti-
ficial parameter by its ‘proper’ value. In the expressions of the target loop
bounds this is max_ub,. The previous proofs and explanations show that, at
any given time, this value is large enough. We only have to take care not to
read values of max_ub, at a time at which no operation of a statement in the
body of the loop is executed, i.e., max_ub, must contain a valid value. This
problem can be solved by holding a (global) flag valid_ub, that is initialized
with ff and is set to ¢t by the processor that is assigning to max_ub, for the
first time. We implement the administration of the flag valid_ub, as a side
effect of the loop instructions (see Chapter 4 and especially Section 4.2).

The set of points that are to be executed in the same time step is called a
time slice. Lemma 41 implies that there is a finite number of such time slices
of a statement.

Remark. Every single time slice of a statement contains a finite number of
operations.

As all for loops terminate'!, they enumerate a finite number of operations.
Thus, the number of operations executed at a given time step must be finite,
too. For while loops the finiteness of time slices is proved in [11].

Now we know that, at a given instant of time, we only have to address a finite
number of processors. The following lemmata ensure that we can describe
this set of processors and that it is large enough.

Lemma 42 (Lower Bounds for Space Loops).
The lower bounds of the space loops can be computed as in the polytope model.

Proof.

Let LB,= : the d,-dimensional vector of the lower bounds of the
LBdS

loops surrounding statement s and p = (pi,...,ps) the values of the space

coordinates. For a point in 7S, at a given time step t = (t;,...,%q4), the

following condition must be satisfied:

1B, < T7'(i,p) (3.1)

10Tt is assumed to be positive if the stride ST; is positive and negative if the stride is

negative.
HPASCAL-like loop semantics.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 61

where each row in T, ! represents a source index corresponding to the re-
spective lower bound.

As the expressions in LB are all affine and T, ! is also an affine function,
this system of inequalities can be solved to express p; in dependence on ¢,
po in dependence on ¢ and p;, etc. This can be done by applying one of the
algorithms in [6], [8] or [27].

We have to show that we can also find the other bound of the range of the
space indices.

Lemma 43 (Upper Bounds for Space Loops).
The upper bounds of the space loops can be computed by allocators based on
the polytope model.

Proof (Sketch,).

UB,
Let UBs= : the dg;-dimensional vector of the upper bounds of the
UBy,
loops surrounding statement s and p = (pi,...,ps) the values of the space
coordinates. For a point in 7S, at a given time step £ = (f1,...,%4) the

following condition must be satisfied:
T, '(t,p) < UB, (3.2)

where each row in T, ' represents a source index corresponding to the re-
spective lower bound.

Again T, ! is an affine function, but now the expressions for UB,, where
1 <r <ds;and r € NAL, are given by mazr_ub, and these are non-affine.
Therefore, in this form the inequalities cannot be solved by the algorithms
used for the the lower bounds.

If we take a look at Lemma 36, we notice that the values of max_ub, form a
function of time. As in Lemma 42, in our synchronous view, time is fixed for
the space dimensions and so the values of UB, can be considered constant
by the allocator. Constants are affine and so the algorithms for calculating
the lower bounds can be applied.

When generating the target code, we only have to replace this artificial con-
stant by the real value of max_ub,.

Remark. The same arguments would hold for Lemma 42, too, i.e., Require-
ment 1 would not be necessary for allocations, if we introduced a min_ub, for
non-affine lower bounds. However, for finding lower time bounds, we need
the lower source bounds to be affine (and Requirement 2).

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 62

In Lemmata 42 and 43, we state which bounds for the space loops we want
to use. However, we modified the source loop bounds and so we have to show
that we are enumerating enough (virtual) processors.

Lemma 44 (Enumerating enough Space).
Let s € Sp a statement in the source program P and Ty the transformation
for s. Then:

Ve:zeX:
Ts(x) = (t,p) satisfies conditions 3.1 and 3.2)

Proof.

T, ' (Ts(x)) = x, as we only consider bijective transformations. We have to
show (Vo : o= (i1,...,14,) € X5 : x satisfies Conditions 3.1 and 3.2).
Condition 3.1 is trivially satisfied, since the definition of for loops and while
loops implies that (V7 : 1 <r <d; : LB, <i,) and we do not change the
lower bounds.

Since we have changed the upper bounds of non-affine loops, we have to take

a closer look at Condition 3.2.

Case 1: i, is the index of an affine for loop

is_for(r)
= { semantics of for loops }
ir < UB;

Case 2: i, is the index of a non-affine loop

r € NAL

= { we changed the upper bound }
i, < max_ub,

= { Lemma 36 }
ir < max_ub,(15(x))

I.e., at a given point in time, we enumerate enough processors. Since UB, <
max_ub,, in general we enumerate too many.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 63

3.3.4 Different Methods for Termination Detection

The basis of the termination detection described in this thesis is the calcu-
lation of the maximum of upper bounds, mazx_ub,. In [1] and [11] two other
methods are presented: the signaling scheme [11] for distributed-memory
computers and the counter scheme [1] for shared-memory computers. Their
goal is to avoid as many communications and overhead as possible (within
the scope of the respective machine model).

In our thesis we concentrate on the “synchronous parallelism on a shared-
memory machine” point of view, since this view is closest to the usual sequen-
tial way of thinking and since we wanted to learn about parallel execution
at an abstract level. Further, in [5] methods for mapping parallel shared-
memory programs to distributed-memory machines are described. These are
also implemented in LooPo [13]; so the decision for generating shared-memory
programs does not restrict the choice of target machine. However, we expect
that, for distributed-memory machines, the signaling scheme yields better
results than the adapted methods for shared-memory machines. Anyway,
we think that many of the theoretical results in this thesis are valid for the
signaling scheme, too.

In the present section, we compare the counter scheme [1] to the way we
describe termination detection in this thesis, which we call the mazimum
scheme.

In the counter scheme, a global shared counter is incremented before a new
‘tooth’ (an instance of a loop) starts (in any arbitrary dimension) and is
decremented when a tooth terminates. The program terminates when every
tooth has terminated, which is the case when the counter is 0 again. [1]
also describes possible optimizations to prevent the counter from becoming
a bottleneck.

The main advantage of the counter scheme is the reduction of synchroniza-
tion by one dimension. The management of the counter does not affect the
innermost dimension which causes a considerably decrease in run time over-
head; the more iterations the instances of the innermost loop execute, the
bigger the gain.

To generalize the counter scheme for the execution of non-perfect general
loop nests, essentially for every tooth of a for loop (that is not the innermost
loop) the counter must be incremented by the number of iterations the loop
will execute. This is the number of teeth of the next inner loop which will
start into the next dimension. When an instance of a for loop terminates,
the counter has to be decremented by 1 in the same way as for while loops.
However, the target execution space is not the same for all statements that

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 64

have the same source execution space, so it is not possible to say precisely
“when an instance of a loop terminates”. Consider two statements with
the same dimensionality r in the body of a loop nest. An instance of the
surrounding loop terminates only when all operations of the statement whose
schedule yields the largest values have been executed. It must be ensured
that this statement decrements the counter (as side effect). We suspect that,
for non-perfect loop nests where every statement has its own transformation,
it is hard to find this statement at compile time; but we refer to possible
future studies on this.

Another drawback is the reduced information the counter scheme stores.
Only the number of currently executing loop instances is known and that
leads to a very inexact scanning of the space dimensions. As partitioning
(see also Section 3.5) divides a space dimension into a space dimension for
the really existing processors and a time dimension, this rough approximation
costs also time.

A generalization of the counter scheme has to store larger numbers than the
maximum scheme. The latter stores only the maximum of the upper bounds
of non-affine loops, whereas the former stores the number of instances of all
kinds of loops. This might cause practical problems.

The transformation of the counter scheme for distributed-memory machines
causes a lot of time-consuming communication which can be used to calculate
the maz_ub, as well. This provides more information and makes an explicit
counter unnecessary.

We illustrate the differences between the spaces scanned by the counter and
the maximum scheme by means of the following figures. Consider the spaces
shown in Figure 3.4.

The left part shows the source index space of statement s, e.g., given by the
source program of Section 3.1. The right part shows the target index space
11

0 1)

Note that the j-dimension of the source index space has no upper bound
in the polyhedron model. Accordingly, both dimensions of the target index
space have no upper bounds, either (expressed by the dark grey color shading
off into white).

The following three figures show different sample target execution spaces
with their respective scanned target spaces.

For Figure 3.5 the values of a[i] happen to be 5,3,2,2,1,1. We notice that the
counter scheme enumerates one more (virtual) processor than the maximum
scheme, but the latter enumerates considerably more time.

The region containing the horizontal dashed lines contains the points which
would be scanned additionally by the maximum scheme if the target index

determined by the transformation T, =

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 65

v

Figure 3.4: The index spaces

space (known at compile time) was not considered. Since our maximum
scheme considers the intersection of the target space and the space that
would be scanned if only the max_ub values were used (without concerning
the index space), the dashed region is cut off the scanned target space.
This is an example where the difference between both schemes becomes very
clear and the counter scheme delivers better results. The reason is that
the first tooth is the longest and the upper bound of j is monotonously
decreasing.

Figure 3.6 shows a case that is more common. The values of a[i] are 1, 1, 3,
2,4, 1.

Because the longest tooth is close to the end, the maximum scheme is about
as good as the counter scheme; it only needs one additional time step. The
space dimension is scanned more precisely by the maximum scheme. The
additional information given by the max_ub values causes the ‘jagged’, thus
more precise, left border of the target space scanned by the maximum scheme.
Again the dashed region is actually not scanned.

Figure 3.7 depicts a target space that is supported best by the maximum
scheme. Both methods yield minimal possible time, but only the maximum
scheme scans the space dimension precisely. We can say that the maximum
scheme yields the same run time as the counter scheme if the upper bound
of the j-dimension is increasing monotonically. Then the maximum scheme,
in general, scans a smaller subset of the target index space than the counter
scheme.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 66

—_— e - — o — — S

—
t
D Target Index Space Scanned Target Space (Maximum Scheme)
E=3 Additionally Scanned Points (Maximum
= =3 Scheme not Considering the Index Space)
@ Executed Iteration Scanned Target Space (Counter Scheme)

Figure 3.5: The scanned target spaces: counter vs. maximum

Summary of the results:

e Both schemes depend heavily on the actual target execution space. If
there is statistical knowledge about the values occurring at run time
then it is possible to decide which scheme to use.

In general: monotonically increasing upper bounds are supported bet-
ter by the maximum scheme whereas with virtual processors the time
dimensions are scanned more precisely by the counter scheme.

e The usage of a greater number of real processors has a greater effect
with the counter scheme than with the maximum scheme. However,
naturally the latter one is improved, too.

e No method can be said to be “best”, but a combination of both methods
is better than any of the two alone. It scans the intersection of both

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 67

———

v
| . a
| V.
| | |
| | |
|
|
D Target Index Space Scanned Target Space (Maximum Scheme)

Additionally Scanned Points (Maximum
Scheme not Considering the Index Space)

@® Executed Iteration Scanned Target Space (Counter Scheme)

Figure 3.6: The scanned target spaces: counter vs. maximum

scanned target spaces and this is smaller than any individual scanned
target space.

We choose to use the maximum scheme for termination detection, because
it constitutes a more consequent generalization of the existing method for
affine for loops. Additionally we avoid the necessity of finding that statement
among all statements with the same execution space whose schedule yields
the largest values.

It may turn out that the biggest (practical) advantage of the maximum
scheme is the comparatively small storage overhead for the values of max_ub,.
Further studies will have to deliver more concrete and measurable results.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 68

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

D Target Index Space Scanned Target Space (Maximum Scheme)

Additionally Scanned Points (Maximum
Scheme not Considering the Index Space)

@® Executed Iteration Scanned Target Space (Counter Scheme)

Figure 3.7: The scanned target spaces: counter vs. maximum

3.4 “By-Statement View”

All our deliberations so far have only been concerned with perfect loop nests
with only one body statement, or rather with a body that is subject to one
and the same transformation function for all statements. This is how the
scheduling and allocation method by Lamport [18, 26] can treat bodies of
perfectly nested loops. Thus, all operations of different statements at the
same iteration are mapped to one instant in time and one processor, and the
whole body of one iteration is executed sequentially. Only different iterations
are executed in parallel.

Modern scheduling and allocating techniques [2, 4, 7, 21, 26] calculate an
affine schedule and allocation for each individual statement. This implies that
operations of different statements and different iterations can be executed in
parallel and that loops do not have to be perfectly nested.

The disadvantage is that, in general, every statement has a different target

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 69

execution space even if the source execution spaces are equal. These target
execution spaces must be scanned by one common target loop nest, i.e., they
must be merged.

Wetzel [25] offers a method for merging target execution spaces of statements
in the body of loop nests with only affine loops.

Since we base our code generation technique on the output (created by the
so-called “synchronous run time method”) of Wetzel’s code generator, we
briefly explain its basics here without considering special cases.

Roughly, the transformation of the source execution spaces yields as many
d-dimensional target polytopes as there are statements (say n) in the source
program. One dimension of the union of all these n target polytopes is
enumerated by one single target loop, a sequential one if it is a time dimension
and a parallel one if it is a space dimension. The lower bound of the loop
for some target dimension is determined by the minimum of the n minima
of the respective dimension. Analogously, the upper bounds are determined
by the “maximum of all maxima”.

Ezxample 10 (Merging the Target Execution Spaces).
Consider the following source program:

fori:=0to 5
for j:=0to 2
S1
S2
end
end

LetT1=<(1) ?>,T2:<i (1)>,T1_1:<(1) (1)>7T2_1:<_11 (1)>

be the transformation functions and their inverses of statement s; and so,
respectively. The two target execution spaces are depicted in Figure 3.8 (left)
and can be described by the following inequalities:

Statement 1 | Statement 2
0<t<5b 0<t<5h
0<p<2 t<p<t+1

Next we have to compute the minimum and maximum of every dimension
for every statement. This is very simple in this example:

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 70

4

’ﬁé ‘' P

t t
u operation of statement 1 . operation of both statements
operation of statement 2 n additionally scanned iterations

Figure 3.8: Target execution spaces (left) and scanned execution space (right)

. . Statement 1 | Statement 2
Dimension - -
min | max | min| max
t 0 5 0)
D 0 2 t t+2

The last step is to compute the minimum and maximum of ¢ and p over all
statements. These values are the new target loop bounds:

min(0,0) < ¢t < max(5,5)
min(0,¢) < p < max(2,t+ 2)

The union of all grey regions in Figure 3.8 represents the scanned target
space. It is not exactly the union of the two execution spaces. Thus, there
are points at which no, one or two operations have to be executed, e.g., (4, 3),
(3,1), (1,2), respectively.

To prevent the execution of points that are not in the execution space of a
statement, every statement in the target program is guarded by its trans-
formed predicate executed.

Note the two different levels at which an inexact scanning of the target exe-
cution spaces can occur:

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 71

1. As described in Sections 3.2 and 3.3 and as considered in Chapter 2, the
target execution space of a statement may not be precisely scannable.

2. In this section we see that the union of the target execution spaces of
different statements is not precisely scannable — even if the individual
target execution spaces were precisely scannable.

As predicate erecuted of a statement describes its execution space exactly, it
solves both problems at one go.

The execution predicates here are the same for both statements, since both
statements are in the same loop nest and have the same level (namely 2):

executeds, (i,j) = executeds,(i,j) =
0<i<5 A (i—0)%Ll=0 A 0<j<2 A (j—0)%L=0

Since every statement has its own transformation, we get two predicates
executed on the target side, one for each statement:

Statement 1 Statement 2
targ-evecuted, (t,p) = targ-evecuted,, (t,p) =
0<t<5 A (t—0)%1=0 A 0<t<5 A (t—0)%1=0 A
0<p<2 A (p—0)%1l=0 t<p<t+2 A (p—t—0)%1=0

With ¢ as time and p as processor dimension we can construct the target
program:

for t := min(0,0) to max(5,5)
forall p := min(0, t) to max(0,t + 2)

if targ-executed, (t,p) then
/
51

endif

if targ-ezecuted,,(t,p) then
5

endif

end
end

si and s, are the transformed statements, where i and j are expressed in
terms of ¢ and p.

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 72

This target program ensures the scanning of a large enough space and avoids
execution of operations at inappropriate iterations.

Remark. The example illustrates only the basic steps of target code genera-
tion a la Wetzel. [25] describes a number of extensions, e.g., the handling of
non-bijective and non-unimodular transformations, not mentioned here.

3.5 Implications of Finiteness

Example 3.1 illustrates that it is not always possible to generate an asyn-
chronous parallel target program, because the upper bounds of the space
loops may not be known at the beginning of the execution. On the other
hand, there are machines that work asynchronously and consequently need
asynchronous programs. The logical implication would be that, in general,
only parallel synchronous or sequential asynchronous target programs are
derivable.

However, this scenario does not take into account that we have only a finite
number (say n) of processors and must apply a partitioning algorithm (e.g.,
[23]) to map the virtual processor coordinates onto real processors.
Essentially when partitioned, one virtual processor loop becomes a nest of
two loops. One of them enumerates all n processors in some dimension and
the other counts the number of steps each of the n processors has to make
in order to enumerate the whole (virtual) dimension.

Ezxample 11 (Partitioning).
Let the program
for p := 0 while cond do body end

enumerate a space dimension in the target program that could be executed
in parallel if its upper bound were known. Further let n be the number of
(real) processors in the respective dimension. Partitioning would change the
loop as follows:

forpp:=0ton—1do
for pt := pp while cond step n do

p=pp+pt
body
end

end

CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 73

The while loop still does not offer the opportunity for more parallelism — but
the new for loop does. Since all statements in the body may be carried out in
parallel, we can change the for loop into a forall loop and exploit the maximum
parallelism our machine offers. The second loop would be sequential in any
case (also if it was a for loop), because we do not have more than n processors
in the respective dimension. Thus, no more parallelism is possible.

With a finite number of processors we can have partially parallel while loops
with a speed-up of n.

The theoretically interesting conclusion of this section is that, in practice,
we can also derive asynchronous target programs that exploit the maximum
parallelism that is offered by a given multi-processor machine. It does not
exploit the maximum theoretical parallelism offered by the source program.

Chapter 4

Implementation in LooPo

LooPo [13] is a prototype of an automatic parallelizer for sequential source
programs which are written in a loop language. It offers a variety of methods
for dependence analyses, for finding (piecewise affine by-statement) sched-
ules and allocations and for generating synchronous or asynchronous target
programs for distributed-memory or shared-memory machines. It also pro-
vides a graphical tool to view the source and target execution spaces of the
different statements.

At present, LooPo can deal with (possibly 0-dimensional) arrays as data
structures and affine for loops as control structures. Within the scope of this
diploma thesis we implement an extension to LLooPo which makes it capable
of dealing with if statements and all types of for and while loops.

In Chapter 3 we described the theoretical basis of our method. However,
for historical reasons the current implementation of LooPo lacks structures
that are general enough to express programs with general loop nests: since
the execution conditions of affine for loops can be evaluated at compile time,
there was no need to find schedules and allocations for loop instructions so
far.

The execution condition of a general loop, however, must be evaluated at
run time. In Chapters 2 and 3 we saw that a loop instruction consists of
several substatements whose results are part of the respective execution con-
dition. We have to find schedules and allocations for these substatements,
to be able to evaluate the execution condition at run time. Therefore, and
to meet the needs of the parallelization tools like the dependence analysis,
scheduler, allocator and the present code generator that we want to use as
far as possible, we have to transform the source program.

This program transformation (at the source level) is called normalization,
because it puts all loops in a similar form. Note that our normalization —

74

CHAPTER 4. IMPLEMENTATION IN LOOPO 5

in contrast to other normalizations that can be found in the literature, e.g.,
[20] — does, in general, not preserve the semantics of the source program:
the execution spaces of statements are changed. We will also transform if
statements and insert new statements, so that the program can be handled
by the “other tools”. Since normalization does not preserve the semantics,
we have to retransform the program during code generation, i.e., we have to
restore the original execution spaces.

4.1 Normalization

We describe the normalization in five steps. These are implemented in the
normalization module (see Figure 0.2).

Input: a program as described in Chapter 1, i.e., with all kind of loops
and with if statements

Output: e a program with different semantics, only affine for loops and no
if statements, but with additional (user-defined control) depen-
dences and

e a list of records that establish a relation between every statement
and the execution conditions of its surrounding non-affine loops
and if statements. This list also contains information of whether
a statement was an ordinary statement in the source program
or whether it originates from an if statement, from a while loop
or from a non-affine for loop.

1. The for loops with a non-affine lower bound are normalized to have a
lower bound that is 0, i.e., a for loop

for © := (b to ub step ST do
body
end

is changed to

LBlindlist] := b

for i := 0 to (ub— LB[indlist]) step ST do
body

end

CHAPTER 4. IMPLEMENTATION IN LOOPO 76

where in body all occurrences of 7 are replaced with i+LB[indlist]. The
assignment before the for instruction is necessary, because some state-
ment in the body may change values occurring in [b and a subsequent
evaluation of i+1[b would yield the wrong result. Furthermore, this
allows lower bounds with side effects. indlist is the list of all enclosing
loop indices. The usage of an array ensures that no possible parallelism
is destroyed.

Remark. LB must be unique within the source program.

With regard to parallelization, we have to ensure that the new assign-
ment is executed before all the body statements. We can achieve this
by inserting user-defined dependences from the new assignment to all
statements in the body of the loop.

After this step, we have only for loops with affine lower bounds. Thus,
requirement, 1 in Chapter 3 is satisfied.

Note that this step preserves the semantics of the source program.

2. All for loops with a non-affine upper bound are changed to

boolean validfubb := ff
integer maxfubb := 0

UB[indlist] := ub
mazfubb := max(maxfubb, UB[indlist])
fori :=1bto FUBB step ST do
if (Ib<=1i <= UB[indlist] and (i — I)%ST = 0) then
body
endif
end

If the stride is negative, then we have to replace the calculation of
mazfubb by minfubb := min(minfubb, UB[indlist]).

This step alters the semantics of the program. The upper bound will
become greater than it was in the source program, i.e., the index space
of the body is enlarged. During code generation, we must take care to
obtain the correct execution space.

Again new dependences from both new assignments to every body
statement have to be inserted.

CHAPTER 4. IMPLEMENTATION IN LOOPO 7

maxfubb is the same as max_ub for a for dimension in the last chapter
and computes the new upper bound of the loop. It is initialized with
an arbitrary value. validfubb is a boolean flag that indicates whether a
value of mazxfubb is already written. If so, mazfubb does not contain an
undefined value and may be read from now on. wvalidfubb is initialized
with ff.

FUBB (For loop Upper Bound Blob) is a new constant parameter
whose value has to be assumed to be infinite by the other tools. It
must be replaced by the value of the respective mazfubb during code
generation to ensure the termination of the target program. We cannot
simply replace FUBB by maxfubb, because this would yield a non-affine
bound which cannot be handled by the other tools.

Remark. The variables maxfubb and validfubb must be unique for every
non-affine for loop within the source program.

3. We change while loops as described in Chapter 3:

while cond do body end

is changed to
integer mazxwubb := 0

for new i :=0to WUBB do
if (executed]indlist]) then
body
endif
end

What applies to FUBB and maxfubb also applies to WUBB (While
loop Upper Bound Blob) and mazwubb. The latter is declared and
initialized here but is only introduced into the target program during
retransformation (see Section 4.2). We do not need a validwubb for
a while loop, because we know the lower bound. It is 0 for every in-
stance of the loop and does not depend on any other values. Initializing
mazwubb with 0 means that every normalized while loop executes at
least one iteration, which is necessary to check the while condition at
least once.

CHAPTER 4. IMPLEMENTATION IN LOOPO 78

The single if statement is not powerful enough to ensure the correct
execution space of the body. It has to check the execution condition of
the while loop and this is more complex (see Section 2.1.2). We have
to take care of this when we retransform the target program.

We still have to eliminate the if statements.

4. There are three kinds of if statements in the source program:

(a)

Standard if statements are transformed as follows:

if cond then body endif

is changed to
new_if [indlist] := cond

body

The value of the condition must be stored for the same reasons as
the bounds of non-affine for loops.

This transformation changes the execution space of the body, as it
would be executed unconditionally this way. We must take care of
that during code generation. Therefore we must record to which
body every statement originally belonged.

We insert dependences from the new assignment to every state-
ment in the body of the original if statement.

If the if statement results from a while loop, we have to insert
additionally the while dependence from an operation of the new
assignment to the operation at the next iteration of new_i. The
reason for this dependence is the calculation of executed. The new
assignment (together with the new for loop) represents the while
loop in the normalized source program.

An if statement originating from a non-affine for loop can only
have a condition of the form:

Ib <= i <= UBlindlist] and (i — Ib)%ST = 0 or
Ib <=1 <= (UB[indlist] — LB[indlist]) and (i — Ib)%ST =0

As the values occurring in these expressions are already stored
and never written again, we need not insert the new assignment.
The dependences we inserted for the UB[indlist] statement and
LBlindlist] statement already contain the control dependences
from the if statement to its body. Note that this is just an opti-
mization to save memory.

CHAPTER 4. IMPLEMENTATION IN LOOPO 79

We must record the origins of if statements to be able to make the case
distinctions described above.

Remark. The new inserted user-defined dependences embody the control de-
pendences shown in Figures 2.2, 2.3, 2.4, 3.1 and 3.2.

We illustrate the normalization by means of the following example and return
to this example again later to describe the retransformation during code
generation.

Ezample 12 (Parallelization of Dynamic Execution Spaces).

Given the following source program, which contains an affine for loop, a non-
affine for loop, an if statement, and a while loop and which is not perfectly
nested, we apply the normalization steps “one by one” and “inside out”, i.e.,
we begin with a loop or if statement at an innermost level, apply all five steps
and continue with the next outer level.

/* source program */

for 7:=0to 4 do
if (a[i] = 0) then
for j := b[i] to b[i] + [i] do

1: bli] :==0bli] +1
2: cli] == ¢[i] + 1
end

endif

while (a[i] > 0) do
3: ali] == ali] — 1

end

end

After applying the normalization steps we get the following result:

CHAPTER 4. IMPLEMENTATION IN LOOPO 80

/* normalized source program */

boolean validfubb := ff
integer maxfubb := 0
integer maxwubb := 0

for 2 :=0 to 4 do

7: new_if[t] := (a[i] = 0)

4 LBJi] := b[i]

5: UBJi] := abs(c[i])

6: mazfubb := max(mazfubb, UB[i))
for 7 := 0 to FUBB do

1. blj + LBli]] := b[j + LB[i]] + 1

2: clj + LB[i]] :==¢c[j + LB[i]] + 1
end

for k := 0 to WUBB do
8: new_if o[, k] := (a[i] > 0)
3: ; ali] :==ali] — 1

end

inserted dependences
source | target | h-transformation
4
7 5 (10)
6
1
4) (100)
5 : (100)
2
6 : (100)
2
10 0
8 (0 1 —1>
i 1 00
3 (O 1 0)

Note that we did not insert dependences 761 and 742, although statements 1

CHAPTER 4. IMPLEMENTATION IN LOOPO 81

and 2 belong to the body of the if statement. This is legal, because we know
that we insert, e.g., dependences 764, 461 and 462 which contain dependences
7601 and 702 in their transitive closure.

This optimization can be done because we know the normalization algorithm.
It does not eliminate arbitrary transitive dependences in source programs.
These are treated by the dependence analysis afterwards.

Remark. The inserted dependences describe only a temporal sequence and
correspond to the control dependences shown in Figures 3.1, 3.2 and 3.3. It
is still up to the dependence analysis to identify the data dependences.

As stated above, the normalization yields a relation, we call it STATEC
(STAtement ordered Table of Execution Conditions), between each state-
ment (in the normalized program) and the execution conditions of its non-
affine dimensions. These are the execution conditions of non-affine for loops
and if statements. Additionally we remember the origin of each statement:

types of origins
ordinary | the statement was an ordinary statement in the source

program

if the statement was an if statement that was normalized
to a new_if array

UB]] the statement is the new assignment of the original

non-affine upper bound of a non-affine for loop

maxfubb | the statement is the new assignment which calculates the
maximum of the upper bounds of a non-affine for loop
while the statement is a new_if statement originating from the
normalization of a while loop

Note that we do not have to store the % expressions concerning the strides
and the conditions of affine for loops, as these are already considered by the
code generator for affine loop nests.

We use relation STATEC to retransform the target program (see Section 4.2).

Example 13 (STATEC).
This example is a continuation of Example 12 and shows relation STATEC
for the normalized source program.

CHAPTER 4. IMPLEMENTATION IN LOOPO 82

STATEC for the normalized program
statement, conditions origin
7 if
4 new_if [i] = t¢t | ordinary
5 new_if |[i] = tt UB]]
6 new_if |[i]] = tt | maxfubb
1 new_if[t] = tt | ordinary
0 < j < UBi]
2 new_if[1] = tt | ordinary
0 < j < UBJ]
8 while
3 new_if 4[i, k] = tt | ordinary

Each row expresses the relation between a statement and the conditions that
determine the dimensions of its execution space.

After the normalization, the source program meets the requirements we have
imposed on the retransformation, and we can send it through the “paral-
lelization pipeline” of LooPo.

4.2 Retransformation

We base our method on the “synchronous run time” target program pro-
duced by the method described in [25]. This computes already the target
loop bounds and ezecuted predicates for the normalized (and therefore affine
portions of the) execution spaces. So we only have to restore the changes
made during normalization.

Remark. The retransformation part could also be implemented as an integral
component of the target generator by applying the extensions described in
the previous chapter.

See Example 14 for an accompanying illustration of the retransformation
steps.

Input: e the (partitioned, tiled) target code generated by the “synchronous
run time method” of the target code generator by Wetzel [25],

e a list of records that establish a relation between every statement
and its (non-affine) dimensions.

CHAPTER 4. IMPLEMENTATION IN LOOPO 83

Output: the retransformed synchronous target program with the same
semantics as the source program

1. Retransformation of the Target Loops:

Scan the target program for target loops. Sequential loops (for loops)
are time loops and parallel loops (parfor loops) are space loops.

(a) Time Loops:
A time loop looks as follows:

for t := min(tlby,...,tlb,) to max(tuby,...,tub,) step ST do

end

t is the index of the time loop, n is the number of program parts in
the target program generated by the target generator of Wetzel.
tlby (tubg), 1 < k < n, are the lower (upper) bounds of the re-
spective dimension of the scanned target space for program part
k. 'The tlby and tub, are ordered according to the sequence of
the program parts in the target program and each pair (¢lby,tuby)
corresponds to exactly one program part.

In the last chapter, we have shown that a lower bound of a time
dimension never depends on an upper bound of a non-affine loop.
Thus, no expression tlb; can contain a FUBB or WUBB.

Consequently we only have to change the upper bounds of time
loops. Let tub, be an upper bound that contains some WUBBs
and FUBBs, denoted

tuby(FUBB,, ..., FUBB,, WUBB.1, ..., WUBB,,)

We have to replace the FUBBs and WUBBs by the respective
variables maxfubb and maxwubb, introduced during normalization
and computed at run time. This means that the upper bound
changes during the execution of the target program and can be
taken into account by changing the for loop into a while loop.

The values of mazfubb, however, are not valid from the beginning

of the execution, so we must prevent them from being read “too
early” for the evaluation of the upper bound of time.

CHAPTER 4. IMPLEMENTATION IN LOOPO 84

If some invalid maxfubbs occur in a tub, expression, this means
that no operation of the corresponding statement has to be exe-
cuted yet (ensured by the dependences pointing from the mazfubb
statements to all the body statements). The tuby should appear
as if it was not used for calculating the upper bound of the time
loop. We can achieve this by using the upper bound, say tub,, of
any other program part which is sure not to contain any FUBBEs.
The upper bound of the respective time dimension of the maxfubb
statement belonging to the outermost non-affine for loop in the
loop nest of statement k& meets this requirement since it is not in
the body of any non-affine for loop.

To decide whether some maxzfubbs are valid or not, we utilize the
respective validfubbs in combination with the ‘cond?a : b’ opera-
tor. It corresponds to the conditional operator known from the
programming language C and evaluates to ‘a’ if ‘cond’ is tt and to
‘b’ if ‘cond’ is ff.

The substitute for tub, is:

(validfubby and ... and validfubb, ?

tuby, (maxfubby, . . ., mazfubb;, mazwubby 1, ..., mazwubby,):tub,)

If k£ is the only statement whose upper bound of the time dimen-
sion depends on FUBBs and WUBBs, the whole time loop looks
like this:

for t := min(¢lby, ..., tlby,)

while t <= max(tuby, ..., tubk_1,
validfubby and . . . and validfubb; ?
tubg (mazfubby ..., maxfubby,
mazwubby 1, ..., maxwubby,) :

tub,,
tubgy1,...,tub,) step ST

do

end

Space Loops:
A space loop looks as follows:

parfor p := min(tlby,...,tlb,) to max(tuby,...,tub,) step ST do

end

CHAPTER 4. IMPLEMENTATION IN LOOPO 85

p is the index of the space loop, n is again the number of program
parts in the target program. tlby (tuby), 1 < k < n, are the lower
(upper) bounds of the respective dimension of the scanned target
space for statement k.

The upper bounds of space loops must be handled the same way as
the upper bounds of time loops. However, space loops (according
to the proof of Lemma 43 in the previous chapter) do not have to
be changed to while loops.

In contrast to time loops, also the lower bounds of space loops may
depend on FUBBs and WUBBs, so these must be considered, too.
Let tub; be such a lower bound, denoted by

tiby,(FUBB,,. .., FUBB,, WUBB,.,, ..., WUBB,,)

Again the WUBBs are changed to the respective maxwubbs.
Instead of using the tub, if the occurring validfubbs are ff, we use
the respective tlb, for lower bounds of space loops.

The substitute for a tlb; is:

(validfubby and ... and validfubb, ?
tuby(mazxfubby, . .., mazfubb,, marwubb, 1, ..., marwubb,,) : tlb,)

The explained steps must be repeated for every element in the min and
max expressions of the target loop bounds and for every target loop.

2. Retransformation of the executed Predicates:

Scan the target program statement by statement. Each statement is
guarded by an if statement of the form:

if scond; and ... and scond, then

sl

endif

s’ is the transformed statement s and the scond,, 1 < ¢ < p, are
subconditions depending on the values of the target indices. They do
not contain or/and operators.

If the source program contained only affine loops, these if statements
would describe the execution spaces of the statements in their bodies.

CHAPTER 4. IMPLEMENTATION IN LOOPO 86

However, since we changed the original loop bounds, we do not get the
original execution spaces now. In this step, we correct these ezecuted
predicates.

For every statement, we have to look at the subconditions of the sur-
rounding if statement and at the source execution spaces. Accordingly
we distinguish several cases:

(a)

The Statement Belongs to the Bodies of if Statements in the Source
Program.

During normalization we introduce a new_if array that stores the
values of the condition of each if operation. Since the execution
spaces of the statements in the body of if statements depend on
these values, we have to guard the current statement by another if
statement whose condition checks whether the surrounding trans-
formed new_if arrays all contain the value #t.

No Subcondition Contains a FUBB or WUBB.

This implies that the target execution space of the corresponding
statement does not depend on the bounds of non-affine loops.
Nothing has to be done.

A Subcondition Contains FUBBs.

This means that the execution space of the corresponding state-
ment depends on the upper bound of a non-affine for loop. Let
scond,(FUBBy, ..., FUBB)) be such a subcondition.

The FUBBs must be replaced by the real values of the upper
bounds of the respective loops computed by the UB statements
that were introduced during normalization. The source indices in
the index lists of UB arrays must be replaced by their image un-
der the transformation function for the current target statement.
These can be computed from the inverse transformation.

The dependences from the UB statements to all body statements
ensure that the UB arrays are always computed before they are
needed. However, since the target execution spaces cannot be
scanned exactly, the target program references array elements that
are not written yet or do not exist at all.

To prevent accesses to undefined array elements, we guard the
whole program part by a new if condition that checks whether
the respective values of all valid UB arrays (see also Item 3a)
yield tt. If so, the referenced values of the UB arrays may be

CHAPTER 4. IMPLEMENTATION IN LOOPO 87

read. Otherwise, the respective elements of the UB arrays were not
written before and the whole program part must not be executed.

The substitute for the current program part looks like this:

if valid_UB; and ... and valid_UB, then

if scond; and ... and
scond,(UBy,...,UB)) and ... and scond,
then
S/
endif
endif

The UBy, are the new arrays that were introduced during the same
normalization step as the corresponding FUBDB;.

(d) A Subcondition Contains WUBBs

In this case the current target statement belongs to the body of a
while loop. Let scond,(WUBB;, ..., WUBB) be such a subcondi-

tion.

Like in the target loop bounds, we replace each WUBBy, 1 < k <
[, by its corresponding maxwubb, This yields the whole scanned
target space for this statement.

If the statement is a new_if statement originating from a while
loop, the actual execution space does not matter, i.e., the state-
ment may be executed for every scanned iteration (see the addi-
tional descriptions for new_if statements originating from a while
loop in Item 3c).

Is the current statement an ‘ordinary’ statement (not originating
from a while loop), then we have to guard it by the value of the
respective new if statement, just as if it were in the body of a
regular if statement.

3. Retransformation of the Program Part Bodies:

In this step we insert the code for the administration of the new vari-
ables UB|...], validfubb, mazfubb and maxwubb.

(a) The Current Statement is a UB Statement that Computes the Up-
per Bound of a Non-Affine for Loop
To indicate the elements of the UB arrays that contain valid val-
ues, we introduce an additional boolean array valid_UB for each

CHAPTER 4. IMPLEMENTATION IN LOOPO 88

UB array. It is indexed with the same indices and an element is
set to tt if the corresponding element in the UB array contains a
valid value and to ff in all other cases. The new program part
looks like this:

if ... then // as in the original part
UBlindlist] := ... // as in the original part
valid_UBlindlist] :== tt // new assignment

endif

We describe how we handle accesses to the new boolean arrays
(valid_UB and new_if) in Section 4.3.

The Current Statement is a maxfubb Statement Originating from
a Non-Affine for Loop:

These statements must take care of the administration of the
validfubb variables. Thus, if the corresponding mazfubb is written
for the first time, the validfubb must be set to tt. Since not every
processor needs to do this, we choose to select the one with the
minimal space coordinates.

The following piece of code is inserted behind the current state-
ment:

if (validfubb = ff and p; = tlb,, and ... and pg = tlb,,,) then
validfubb := tt
endif

dP is the number of space loops. The indices of the space loops are
the ps, and the tlbs are the lower bounds of the respective space
dimensions for the current statement.

The Current Statement is a new_if Statement Originating from a
while Loop:

These statements serve to calculate the execution conditions of
the respective while loops by following Definition 29 in Chapter 2
on page 26.

The only difference is that the source indices are expressed by the
respective (affine) combination of the target indices, according to
the inverse transformation (see also Example 14).

If the execution condition yields tt, the value of the respective
mazwubb must be updated: mazrwubb = max(mazwubb,i + 1)

where i is the index of the respective while loop (see also Fig-
ure 3.3).

CHAPTER 4. IMPLEMENTATION IN LOOPO 89

We do not need any barrier statements as described in [1], because we do not
calculate an explicit terminated predicate. The synchronous model ensures
that all values are changed before the next time step is initiated.

The following example illustrates the various retransformation steps.

Ezxample 14 (Retransformation).
This example is a continuation of Example 12. The Darte-Vivien scheduler
[2, 21] yields the following schedules and allocations:

statement transformation inverse transformation
to = 0 .
7 p1o= 1 LTk
pp = 0
= 1 .
4 o . 1= M
5 pr = 1t
pp = 0
to = 2 .
6 P o= 7/ = DN
p2 = 0
to = .
1 po B ? T = M
2 ! . =
b2 =] J b2
8 ppo= i - M
k = ty/2
p2 = 0 0/
3 pr = 1 PToh
k = (tg—1)/2
A (to = 1)/

We illustrate the retransformation by means of the “synchronous run time”
output of our target generator [25] for the given schedules and allocations.

/* synchronous run time output */

for ¢y := ceil(min(0, 1,1,2,3,3,0,1)) to
floor(max(0,1,1,2,3,3,2 * WUBB,2+« WUBB+ 1)) do
parfor py := ceil(min(0,0,0,0,0,0,0,0)) to
floor(max(4,4,4,4,4,4,4,4)) do
parfor py := ceil(min(0,0,0,0,0,0,0,0)) to
floor(max(0,0,0,0, FUBB, FUBB,0,0)) do

CHAPTER 4. IMPLEMENTATION IN LOOPO 90

if (0<=ty and tH) <=0 and t %1 =0 and
0<=p; and p1 <=4 and p1%1 =0 and
0 <=py and p2 <=0 and py,%1 = 0)

then
7 new; fi[p1] := (a[p1] = 0)
endif
if (1<=ty and tp <=1 and (tp —1)%1 =0 and
0 <=p; and p; <=4 and %1 =0 and
0 <=p2 and py <=0 and p2%1 =0)
then
4 LB[pl] = b[pl]
endif
if (1 <=1ty and tp) <=1 and (to — 1)%1 =0 and
0 <=p; and p; <=4 and %1 =0 and
0 <=ps and py <=0 and p2%1 = 0)
then
5 UB|p1] := abs(c[p1])
endif
if (2 <=ty and tg <=2 and (to — 2)%1 =0 and
0 <=p; and p; <=4 and p1%1 =0 and
0 <=ps and py <=0 and p2%1 = 0)
then
6 mazfubb := mazx(mazfubb, UB[p1])
endif
if (3<=ty and tH <=3 and (tp —3)%1 =0 and
0<=p; and p; <=4 and p1%1 =0 and
0 <=py and py <= FUBB and p2%1 = 0)
then
1 blp2 + LB[p1]] := blpa + LB[p1]] +1
endif
if (3<=ty and tH <=3 and (tp —3)%1 =0 and
0<=p; and p; <=4 and p1%1 =0 and
0 <=py and py <= FUBB and p2%1 =0)
then
2 C[pg + LB[pl]] = C[pg + LB[pl]] +1

endif

CHAPTER 4. IMPLEMENTATION IN LOOPO 91

if (0<=ty and ty <=2+ WUBB and t,%2=0 and

0 <=p; and p; <=4 and p1%1 =0 and
0 <=py and py <=0 and p2%1 = 0)
then
8 new; f2[2 * p1/2,t0/2] := (a[2 x p1/2] > 0)
endif
if (1<=ty and ty <= (2% WUBB+1) and (tx —1)%2 =0 and
0<=p and p; <=4 and p1%1 =0 and
0 <=p2 and p2 <=0 and p2%1 = 0)
then
3 al2+p1/2]:=al2*xp1 /2] — 1
endif
end
end
end

The functions ceil, floor, abs, min and max are predefined and compute the
next greater integer, the next smaller integer and the absolute value of a
number and the minimum and maximum of a tuple of numbers, respectively.

The first target loop is a time loop whose upper bound depends on the upper
bound of a while loop in the source program, indicated by the WUBB in its
upper bound:

for to := ceil(min(0,1,1,2,3,3,0,1)) to
floor(max(0,1,1,2,3,3,2« WUBB,2+ WUBB + 1)) do

end

Accordingly we must change this loop to a while loop where WUBB is replaced
with the new variable mazwubb:

for tg := ceil(min(0,1,1,2,3,3,0,1))
while ¢, <= floor(max(0,1,1,2,3,3,
2 x mazwubb, 2 x marwubb + 1)) do

end

The second target loop is a space loop. No bound depends on a non-affine
loop in the source program, so nothing has to be done here.

CHAPTER 4. IMPLEMENTATION IN LOOPO 92

The third target loop is again a space loop, but this time the upper bound
depends on the upper bound of the non-affine for loop in the source program.
We have to replace FUBB by maxfubb and guard it by the ‘?:” operator.
The statements corresponding to the elements of the max expression that
depend on the FUBB are statement 1 and 2. The outermost non-affine
for loop is the loop with index j and the respective mazfubb statement is
statement 6. As statement 6 corresponds to the fourth program part in the
target program, we set the second branch of the ’7:* operator to the fourth
element in the max expression, i.e., to 0:

parfor p, := ceil(min(0, 0,0, 0,0,0,0,0)) to
floor(max(0, 0, 0, 0,validf ubb ? mazfubb : 0,
validfubb? mazfubb : 0,0,0)) do

end

We have retransformed the target loops to enumerate the target space de-
scribed in the last chapter. The execution conditions must still be retrans-
formed. This is done statement by statement.

The execution space of statement 7 only depends on the range of an affine
for loop, so nothing needs to be done here.

The execution spaces of statements 4, 5 and 6 depend additionally on the
value of the if condition evaluated by statement 7. These statements may
only be executed if the respective evaluation of the if condition yielded tt.
So we have to check this value. It is stored in new_if,[i], where i must be
recomputed from the inverse of the transformation function.

We can gather from the table at the beginning of Example 14 that the value
of i equals the value of p;, so we must replace ¢ by p; in new_if [i] and get
new_if[p1]. The new program part for statements 4 and 5 is:

CHAPTER 4. IMPLEMENTATION IN LOOPO 93

if (new_if,[p1] = tt) then
if (1<=ty and ty <=1 and (tp —1)%1 =0 and

0 <=p; and p; <=4 and %1 =0 and
0 <=py and p; <=0 and pa%1 = 0)
then
4 LB[p:] := blpi]
endif

endif

if (new_if,[p1] = tt) then
if (1<=ty and ty <=1 and (tp —1)%1 =0 and

0 <=p; and p; <=4 and %1 =0 and
0 <=py and py <=0 and pa%1 = 0)
then
5 UB|p1] := abs(c[p1])
valid UB[p;] := tt
endif

endif

As statement 5 evaluates the UB array for the upper bound of the non-affine
for loop, we added the additional assignment valid_UB|[p,] := tt to indicate
that the value of UB[p;] was written.

Statement 6 is the statement that calculates the maximum of the upper
bounds of the non-affine for loop. It also serves to indicate that maxfubb is
valid after it received its first value:

if (new_if[p1] = tt) then
if (2<=1ty and ty <=2 and (tp —2)%1 =0 and

0 <=p; and p; <=4 and %1 =0 and
0 <=p; and p, <=0 and P %1 = 0)
then
6 mazfubb = max(maxfubb, UB[p,])

if validfubb = ff and p; = 0 and py = 0 then
validfubb = tt
endif
endif
endif

CHAPTER 4. IMPLEMENTATION IN LOOPO 94

The execution spaces of statements 1 and 2 depend (besides the i-loop) on
the range of the non-affine for loop with index j and on the value of the if
condition new_if[i].

The dependence on the if condition is handled like for statement 4. The
execution conditions computed by the target code generator contain a FUBB
because the statements belong to the body of a non-affine for loop.

We have to exchange the FUBB by the variable for the real upper bound of
the respective instance of the j-loop. This must be done for both statements
UB|[p1], as i = p; (see the table at the beginning of Example 14). To prevent
uninitialized elements of UB[p;] from being accessed, we check the respective
value of valid_ UB[p;] (second if statement).

The transformed program parts for statements 1 and 2 appear as follows:

if (new_if,[p1] = tt) then
if (valid_UB[p,] = tt) then

if (3<=1tp and ty <=3 and (tp —3)%1 =0 and
0<=p and p; <=4 and p1%1 =0 and
0 <=py and py <= UBIp;| and pa%1 = 0)
then
1 blpa + LB[p1]] := b[pa + LB[p1]] + 1
endif
endif

endif

if (new_if,[p1] = tt) then
if (valid_UB|[p,] = tt) then

if (3<=1t; and t; <=3 and (tp —3)%1 =0 and
0<=p; and p; <=4 and p1%1 =0 and
0 <=p, and py <= UBJ[p;] and P %1 = 0)
then
2 c[p2 + LB[p1]] := c[p2 + LB[p:]] + 1
endif
endif

endif

The next statement is statement 8. Its execution space depends on the ¢-loop
and the while loop with new index k. It was not really an if statement, but
originates from the while loop and has to compute the execution condition
for the other statements in the body.

The upper bound of the target index ¢, depends on the artificial constant
WUBB. We must replace it by the proper value maxwubb.

CHAPTER 4. IMPLEMENTATION IN LOOPO 95

Then the if statement around statement 8 expresses its scanned target space.
To get the target execution space, we have to implement the rest of the
execution condition. With k& = ¢;/2 from the table at the beginning of
Example 14, we get the following part for statement 8:

if (0<=1t, and ty <=2 mazwubb and ;%2 =10 and

0<=p; and p; <=4 and p1%1 =0 and
0 <=py and py, <=0 and p.%1 = 0)
then
if (to/2 =0 and a[2*p;/2] > 0)
then
81 new_if 5|2 * p1/2,10/2] := tt

mazwubb = max(mazwubb, ty/2 + 1)
if (validwubb = ff) then validwubb := tt endif
else
if (to/2 > 0 and new_if 4[2 x p1/2, (ty/2) — 1] = tt and
af2 * p1/2] > 0)

then

8, new_if o2 x p1/2,t0 /2] := 1t

mazwubb = max(maxwubb, ty/2 + 1)

else

83 new_ifo[2 x p1/2,t0/2] := ff
endif

endif
endif

We still have statement 3 to consider. It is an ordinary assignment whose
execution space depends on the affine for loop and the while loop. We have
to change the upper bound of ¢, in the if statement as we did for statement
8. This again yields the scanned target space. To get the target execution
space, we must check the value of the execution condition of the while loop.
It is stored in new_if,[i, k]. For this statement, i = p; and k = (t, — 1)/2.
We get the result:

if (new_if4[p1, (to — 1)/2] = tt) then
if (1 <=ty and ty <=2+ mazwubb+ 1 and (ty —1)%2 =0 and

0<=p; and p; <=4 and p1%1 =0 and
0<=py and py <=0 and pa%1 = 0)
then
3 a[2xp1/2] :=al2xp1 /2] — 1
endif

endif

CHAPTER 4. IMPLEMENTATION IN LOOPO 96

If we put all these program parts together we obtain the retransformed target
program that executes only the operations that belong to the target execution
space of a statement.

4.3 The Size of the New Arrays

During normalization and retransformation we have introduced various new
arrays for storing lower bounds, upper bounds and the values of conditions.
However, we did not consider the size of these arrays so far.

We index them with the indices that may belong to dynamic loops. In this
case — as for the execution spaces — we cannot give a precise size at compile
time. For non-affine dimensions we must assume an initial range. If it turns
out to be too small at run time, it is necessary to resize the array. This is
an expensive operation and it shows the omnipresent tradeoff between run
time and memory consumption: if the ranges of non-affine dimensions are
by chance estimated large enough no resizing is necessary and no run time
overhead is caused.

We want to present a possible high-level way to handle the accesses to such
dynamic arrays, but leave the concrete implementation up to the target out-
put module that maps the internal representation to a real programming
language.

4.3.1 Dynamic boolean Arrays

A new dynamic boolean array is used to indicate either which elements of a
corresponding integer array may be accessed (valid_UB][]) or which instances
of an execution condition yield t¢ or ff (new_if[]).

We propose the following data structure for controlling the accesses to these
dynamic arrays.

CHAPTER 4. IMPLEMENTATION IN LOOPO 97

structure dynamic_boolean_array

begin
integer Ib, := DEFAULT LB,
lby = DEFAULT_LB,,
uby = DEFAULT UB,,
ubgy = DFEFAULT UB,,
boolean dyn_array[ub; — lby] ... [ubg — lby]
end

The structure stores the current upper bounds of the contained array
dyn_array. This enables the functions get() and set() to check whether the
referenced element is inside the current range of the arrays bounds. If so,
and if the value passed to set() equals ¢, the referenced element is set equal
to value.

Remark. By convention all elements are considered to be initialized to ff
(even the elements that are currently not in the range of the array). So ff
values do actually not have to be written.

If the value tt should be written into an element that does not exist yet, the
resize() function must be called. It has to allocate a boolean array that is
large enough to include the new element. The values of the old elements
must be copied into the new array. The additional elements must be set to
ff. After that, the old array can be deleted and replaced by the new array.
The respective values of the bounds, lby,...,lby and uby,...,ub; must be
adjusted to the new bounds.

CHAPTER 4. IMPLEMENTATION IN LOOPO 98

function set(dynamic_boolean_array array, boolean value,
integer 1st, ..., integer dth)
begin
if (value = ff) then
return

endif

if (array.lby <= 1st — (array.lby) <= array.ub;) and ... and
(array.lby <= dth — (array.lby) <= array.uby)
then
array.dyn_array[1st — (array.lby), ..., dth — (array.lbg)] :== value
else
resize(array, 1st,. . ., dth)
array.dyn_array[1st — (array.lby), ..., dth — (array.lby)] :== value
endif
end

Function get() returns the value of the specified array element if it is inside
the current extent of the array, else ffis returned.

function get(dynamic_boolean_array array,
integer 1st,...,integer dth) : boolean
begin
if (array.lby <= 1st — (array.lby) <= array.ub;) and ... and
(array.lby <= dth — (array.lby) <= array.uby)
then
return(array.dyn_array[1st — (array.lby), ..., dth — (array.lby)])
else
return(ff)
endif
end

The construction we presented ensures that arbitrary elements of our dy-
namic boolean arrays may be referenced and the program reacts with a de-
fined behavior, even if a referenced element does not exist.

4.3.2 Dynamic integer Arrays

The second type of dynamic array we introduce during normalization stores
the values of the lower and upper bounds of non-affine for loops (LB][] and

CHAPTER 4. IMPLEMENTATION IN LOOPO 99

UBJ]). This might also be indexed with the loop indices whose range depends
on non-affine dimensions and therefore its size cannot be predicted at compile
time.

For dynamic integer arrays the definition of the structure changes slightly,
namely the type of the dyn_array elements changes to integer:

structure dynamic_integer_array

begin
integer [by := DEFAULT LB,
lby = DEFAULT_ LBy,
uby := DEFAULT UB,,

ubgy = DEFAULT UB,,
integer dyn_array[uby — Iby] ... [uby — 1by]

end

In contrast to dynamic boolean arrays, the set() function for dynamic integer
arrays must write each value passed to it.

function set(dynamic_integer_array array, integer value,
integer 1st, ..., integer dth)
begin
if (array.lby <= 1st — (array.lby) <= array.ub;) and ... and
(array.lby <= dth — (array.lby) <= array.ub,)

then
array.dyn_array[1st — (array.lby), ..., dth — (array.lbg)] :== value
else
resize(array, 1st,. . ., dth)
array.dyn_array[1st — (array.lby), ..., dth — (array.lby)] :== value
endif
end

For this kind of array, we ensure (by using the surrounding if statements)
that only previously written elements are read: every read value is a valid
value, unread elements may contain undefined values. This means that the
get() function does not have to check the current range of the referenced
dynamic integer array.

CHAPTER 4. IMPLEMENTATION IN LOOPO 100

function get(dynamic_integer_array array,

integer 1st, ..., integer dth) : integer
begin
return(array.dyn_array[1st — (array.lby), ..., dth — (array.lby)])
end

The resize function should extend the size of the arrays in as large as possible
steps to keep the probability of write accesses to not existing elements as
small as possible.

We have described all steps and elements of the implementation of our
method for estimating dynamic execution spaces at run time now. The last
chapter gives an overview of the thesis, some prospects on possible future
work and some general thoughts.

Chapter 5

Conclusion

Let us summarize the major concepts and their correlation in the setting of
parallelization in the polyhedron model. The main task in our thesis was to
describe (dynamic) target execution spaces by loop nests at compile time.
Three problems arose:

1. In general, loop nests are too weak to describe these spaces exactly
(scannability).

2. There are types of execution spaces whose shape cannot be predicted
at compile time.

3. There are types of execution spaces whose shape and extent cannot be
predicted at compile time.

Point 1 implies that we must enumerate iterations at which no operations
have to be executed, and this leads to the distinction between inder and
execution space. Since we scan too much, we must find a way to filter the
iterations at which some operation has to be executed. This is done by the
execution conditions and the executed predicate described in Chapter 3.
Point 2 alludes to the kind of static execution space that may be known
entirely at compile time, however, the shape of its corresponding target ex-
ecution space cannot be described by loop bounds — due to technical or
theoretical reasons. For this kind of execution space, there is an index space
whose shape can be described by target loop bounds and which contains the
actual execution space as a subset. FEzrecution determination must be applied
but no termination detection is necessary.

Finally there are the dynamic execution spaces (Point 3) whose shape and
extent cannot be predicted at compile time, but must be estimated at run

101

CHAPTER 5. CONCLUSION 102

time. Since the approximation may not be precise, we must care for execution
determination and have to establish the extent via termination detection.
The processing of dynamic execution spaces is the main topic of this thesis
and one method is described in Chapter 3.

We can imagine some extensions to our classification (in Chapter 2). One
case we do not consider is the kind of execution space that needs termination
detection but no execution determination. Consider the following loop nest:

while (cond) do
for ¢ := 0 to 10 do
5
end
end

Although there is a dynamic dimension, we know the shape of the execution
space — it is a (rectangular) polytope. However, we do not know the extent
of the first dimension. We know that polytopes belong to the class of affine
execution spaces and can be scanned precisely, so we only have to apply
termination detection.

Without further examination, we believe that only this kind of loop nest
(the outermost loop is a while loop, all inner loops are affine for loops) con-
tains execution spaces that need termination detection but not execution
determination.

Another conceivable extension to the classification is a class that contains
a cross between static and dynamic execution spaces; we call them semi-
dynamic execution spaces.

Unlike static execution spaces, there are dependences pointing to the bound
expressions, but the sources of these dependences are in the execution space
just scanned, i.e., they are not caused by a statement that belongs to the
body of the current loop nest. Thus, although the shape and extent of the
current execution spaces are not known at compile time, they are known
before the execution of the loop nest starts. The assessment of possible
positive implications on target code generation is left for future work.

Let us recall that the classification in Chapter 2 is only done with respect
to the execution space of one single statement. These separate spaces must
be merged to one complete target space that contains at least the union of
all separate target execution spaces; this means scanning on a different level.
Although each separate execution space is scannable the union may not be.
The effects are the same: non-scannability requires execution determination.

CHAPTER 5. CONCLUSION 103

The scannability of the separate target execution spaces of each statement is
only a necessary condition, but if we want to exploit the benefit of scannabil-
ity the union of all execution spaces must be scannable, too. This is not
taken into account in the classification and that is why (separate) scannable
transformations do not yield as much benefit as they seem to promise at
first sight: they ensure easier termination detection but still need execution
determination because of the necessity of merging.

We want to make another remark on merging here. In our thesis merging is
viewed as finding a perfect target loop nest that enumerates the union of ex-
ecution spaces. However, we can imagine merging methods that yield imper-
fectly nested target loops. This would mean that (parts of) an unscannable
target execution space can be divided into scannable subsets. Thus, some
parts of the execution determination are already incorporated in the target
loop bounds and need not be evaluated as separate execution predicates.
Maybe this would allow for better run time results.

We implement termination detection as side effect of execution determina-
tion. However, the correlation is not necessarily as close as this suggests.
The implication is: if there are no operations executed now and in the future
then the target program can be terminated.

If someone gives us a better method for termination detection (maybe hard-
ware-supported) then we can remove the code for managing the validfubbs,
maxfubbs and maxwubbs and change the target loops according to the new
method.

Another option would be to iterate time for a given number of steps (say
n) and then check if the program should already have terminated. The
disadvantage of this method is that the program runs longer than necessary.
On the other hand, it may be possible that the overhead for termination
detection can be decreased to 1/n-th (compare also to a clever resizing of the
dynamic arrays). Enumerating too much time does not affect the correctness
of the results, as execution determination compensates for every inaccuracy
of scanning.

Let us point out some aspects of our implementation and possible modifica-
tions. In Chapter 3 we explained that we do not need a while dependence
for non-affine for loops, because the sequence of computing the maxfubbs is
arbitrary. This realization allows for ‘good’ ways to compute maxima, e.g.,
parallel algorithms that need only logarithmic time. However, our target
output module will not be able to use this facility yet, so we chose to allow
the dependence analysis to find the data dependence from one instance of
the mazxfubb statements to the next instance.

CHAPTER 5. CONCLUSION 104

By nature, affine loop bounds do not cause side effects. Our normalization
method of storing the non-affine loop bounds and the values of if conditions
in arrays allows for loop bounds and if conditions with side effects.

We set the lower bound of a while loop always to 0. It may turn out during
future studies that it might be useful to have different lower bounds, e.g., to
reduce communication. Our theory allows for all kinds of affine lower bounds
for while loops, just as for for loops.

It is possible to permit the usage of indexed while loops already in the source
program. In this case the lower bound must be affine and the index must be
unique. Combined with a generalization of Section 4.3, the user may write
source programs that contain dynamic arrays — always with the ‘danger’ of
a possibly necessary resizing.

The dynamic arrays can be spread across the processors such that the resize
operations are local to one processor: not the whole array is resized but only
the part of the array that is located on one processor. This saves time and
memory and fits the view of distributed memory.

The valid_UB arrays that indicate whether an element of a dynamic integer
array does exist and is initialized is not needed necessarily. Instead the
respective value could be computed each time it is referenced: if the executed
predicate of the statement that should have written the referenced element
is ¢t then the value is valid and can be read. There is (as so often) a great
variety of design decisions until a concrete realization of the theory will be
reached. Different implementations and performance measurements will have
to show the practical characteristics of the various implementations.

For each iteration of a while loop we remember whether it is executed or
not. For non-affine for loops we store the range of the index instead. This
means reduced memory overhead, as the storage of the values of the executed
predicates is pulled to the next outer level.

On the other hand: the indices of while loops show the same behavior as the
indices of for loops, i.e., they also cover a range between a lower and an upper
bound. The only difference is that the upper bound must be computed at
run time. Thus, we can use the same storage scheme as for non-affine for
loops. The source program

fori:=1to N do
while cond do
body;
end
end

CHAPTER 5. CONCLUSION 105

could be normalized to

fori:=1to N do
UBJi| := cond?0 : —1;
for 7 := 0 to WUBB step ST do
body;
UBJi| = cond?UBJi] + ST : UB]i];
mazwubb = max(mazwubb, UB[i]);
end
end

In the target loop bounds mazwubbd is used as before, but now in the executed
predicates we use the new UB[i| array just as we do for non-affine for loops.
We must also add the appropriate control dependences from the UB and
mazxwubb statements to the body.

Note that UB is only indexed with 7 and not with ¢z and j as the new_if array
we introduce during normalization.

Remark. The only advantage of this method is the memory reduction by one
dimension. The computation of the bounds is still placed at the same level
as the while loop.

At the very end of this thesis let us make some general — partly philosophical
— remarks on the topic of parallelization which we have learned to keep in
mind when we are thinking about parallelism:

e The fact that an execution space is bounded does not imply that the
bounds are known. Since the information about the execution space
changes during run time, it is in general impossible to enumerate the
complete execution space in one time step. Instead, different parts of it
must be enumerated successively, i.e., the task of enumerating a space
itself costs time.

e In general, it is impossible to evaluate the quality of the whole paral-
lelization by only looking at the results of one parallelization step.

E.g., finding descriptions of the target loop bounds at compile time is
inherent to the polyhedron model. If this seems to destroy possible
parallelism indicated by the transformation of a statement, the reason
is not necessarily a bad implementation of the target generator, but
may also be the restricted view of the schedulers and allocators (which
is sufficient for them) on the parallelization problem.

CHAPTER 5. CONCLUSION 106

Of course we have to look for ways to compute the execution spaces
as efficiently as possible and it should be possible to find theoretical
bounds for the degree of this efficiency. These bounds may vary for
different loop classes.

e The bounds of the execution spaces, and consequently the concept of
termination detection, are central aspects in this research area. The
quality of the algorithm we utilize to find these bounds can only be
determined with respect to a certain machine model, e.g., the signaling
scheme [11] for distributed memory machines or the counter [1] and
maximum scheme for shared memory machines. All methods compute
a maximum — explicit or implicit — with different accuracy.

e Run time measurements are imperative to gather data on the differ-
ences between various shades of implementations of the (polyhedron)
model.

Maybe it is better to enumerate the target execution spaces less pre-
cisely if the (less exact) bounds can be computed faster.

e Virtually every decision that is made for implementing (certainly not
only) the (polyhedron) model is accompanied by the trade-off between
run time and memory consumption. One is always tempted to minimize
and maximize, respectively, each aspect. However, this is not possible.
We can only try to find a suited balance between run time and memory
consumption.

The main aim of parallelizing programs it to decrease run time. Thus, if
we argue about the theoretical aspects of parallel execution, we should
completely omit the aspect of memory, since nearly every attempt to
save memory results in increased run time. Neglecting the question
of memory consumption is also justified, because the availability (and
affordability) of large amounts of fast memory is constantly increasing.

If the parallelized program is executed on a real target machine, prac-
tical restrictions naturally force us to deviate from the theoretically
possible performance. We have seen such a restriction earlier: there
are not infinitely many processors. There is another one: there is not
infinitely much memory. So it is certainly justified (and necessary)
to think about the memory consumption of a certain implementation.
However, this should not have the highest priority.

CHAPTER 5. CONCLUSION 107

e We think that, in the end, every approach for exploiting parallelism
has to face essentially the same problems. The polyhedron model offers
only one way to face, learn about and solve these problems.

We hope that our research contributes some interesting and useful aspects to
the examination of parallelism and to the development of automatic methods
for exploiting existing parallelism in sequential programs.

Bibliography

1]

J.-F. Collard and M. Griebl. Generation of synchronous code for auto-
matic parallelization of while loops. In S. Haridi, K. Ali and P. Mag-
nusson, editors, FURO-PAR ’°95 Parallel Processing, Lecture Notes in
Computer Science 966, pages 315-326. Springer Verlag, August 1995.

A. Darte and F. Vivien. Optimal fine and medium grain parallelism
detection in polyhedral reduced dependence graphs. Research Report
96-06, Laboratoire de I'Informatique du Parallélisme, Ecole Normale
Supérieure de Lyon, April 1996.

E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Se-
mantics. Texts and Monographs in Computer Science. Springer-Verlag,
1990

M. Dion and Y. Robert. Mapping Affine Loop Nests: New Results.
Lecture Notes in Computer Science 919, pages 184—-189. Springer Verlag,
1995.

P. Faber. Target Output. Diploma thesis, Fakultat fiir Mathematik und
Informatik, Universitat Passau, 1997. In preparation.

P. Feautrier. Parametric integer programming. Operations Research,
22(3):243-268,1988.

P. Feautrier. Dataflow Analysis of Array and Scalar References. Int.
J.Parallel Programming, 20(1):23-53, February 1991

U. Banerjee. Loop Transformations for Restructuring Compilers: The
Foundations, pages 81-94. Kluwer, 1993.

M. Griebl. The mechanical parallelization of loop nests containing while
loops. Dissertation, Fakultat fiir Mathematik und Informatik, Univer-
sitat Passau, 1996.

108

BIBLIOGRAPHY 109

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Griebl and C. Lengauer. On the space-time mapping of WHILE-
loops. Parallel Processing Letters, 4(3):221-232, September 1994.

M. Griebl and C. Lengauer. A communication scheme for the distibuted
execution of while loops. Technical Report MIP-9406, Fakultat fiir Math-
ematik und Informatik, Universitat Passau, June 1994.

M. Griebl and C. Lengauer. Classifying Loops for Space-Time Mapping.
In L. Bougé, P. Fraigniaud, A. Mignotte and Y. Robert, editors, FURO-
PAR’96, Lecture Notes in Computer Science 1123, volume I, pages 467
474, Springer-Verlag, 1996.

M. Griebl and C. Lengauer. The Loop Parallelizer LooPo. In M. Gerndyt,
editor, Proc. Sizth Workshop on Compilers for Parallel Computers, Kon-
ferenzen des Forschungszentrums Jiilich, 21:311-320. Forschungszen-
trum Jiilich, 1996. URL: http://www.uni-passau.de/~loopo/

R. Guenz. The new LooPo scanner and parser. Internal Report, Fakultat
fiir Mathematik und Informatik, Universitat Passau, 1995.
URL: http://www.uni-passau.de/~loopo/doc/guenz-p.ps.gz

R. M. Karp, R. E. Miller and S. Winograd. The organization of compu-
tations for uniform recurrence equations. J. ACM, 14(3):563-590, July
1967.

H. Keimer. Datenabhéngigkeitsanalyse zur Schleifenparallelisierung:
Vergleich und Erweiterung zweier Anséitze. Diploma thesis, Fakultat fiir
Mathematik und Informatik, Universitat Passau, 1997.

URL: http://www.uni-passau.de/~loopo/doc/keimer-d.ps.gz

R. Kubias. Array DatenfluBanalyse und Single Assignment Konversion.
Diploma thesis, Fakultat fiir Mathematik und Informatik, Universitat
Passau, 1996.

L. Lamport. The parallel execution of DO loops. Comm. ACM, 17(2):83—
93, February 1974.

C. Lengauer. Loop parallelization in the polytope model. In E. Best,
editor, CONCUR ’93. Lecture Notes in Computer Science 715, pages
398-416. Springer-Verlag, 1993.

T. G. Lewis and H. El-Rewini with In-Kyu Kim. Introduction to parallel
computing. Prentice-Hall Inc., 1992

BIBLIOGRAPHY 110

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

W. Meisl. Practical Methods for Scheduling and Allocation in the Poly-
tope Model. Diploma thesis, Fakultat fiir Mathematik und Informatik,
Universitat Passau, 1996.

URL: http://www.uni-passau.de/~loopo/doc/meisl-d.ps.gz

L. Rauchwerger and D. Padua. Parallelizing While Loops for Multi-
processor Systems. Proc. 9th Int. Parallel Programming Symposium
(IPPS’95), pages 347-355, IEEE Computer Society Press, 1995.

M. Schumergruber. Partitionierung von parallelen Schleifensiatzen. Di-
ploma thesis, Fakultat fiir Mathematik und Informatik, Universitat Pas-
sau, 1997. In preparation.

P. P. Tirumalai, M. Lee and M. S. Schlansker. Parallelization of while
loops on pipelined architectures. .J. Supercomputing, 5:119-136, 1991.

S. Wetzel. Automatic Code Generation in the Polyhedron Model.
Diploma thesis, Fakultit fiir Mathematik und Informatik, Universitit
Passau, 1995.

URL: http://www.uni-passau.de/~loopo/doc/wetzel-d.ps.gz

C. Wieninger. Automatische Methoden zur Parallelisierung im Poly-
edermodell. Diploma thesis, Fakultit fiir Mathematik und Informatik,
Universitat Passau, 1995.

URL: http://www.uni-passau.de/~loopo/doc/wieninger-d.ps.gz

V. Weispfenning. Parametric linear and quadratic optimization by elimi-
nation. Technical Report MIP 9404, Fakultat fiir Mathematik und Infor-
matik, Universitat Passau, 1994. To appear in J. Symbolic Computation.

Y. Wu and T. G. Lewis. Parallelizing whlie loops. In H. D. Schwetman,
editor, Int. Conf. on Parallel Processing, volume II, pages 1-8. CRC
Press, 1990.

