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AbstractThe polytope model is one possible (mathematical) basis for par-allelizing sequential computer programs automatically. It provedto be well suited for the parallelization of loop nests containingonly for loops whose bounds satisfy several restrictions. Recentresearch e�orts propose an extension of the polytope model, thepolyhedron model, and provide an implementation for perfectlynested while loops.The �rst part of this thesis examines the implications of di�erentloop types for target code generation and integrates the results ina class hierarchy. The second part extends the polyhedron modelto imperfect loop nests containing general for loops, while loopsand if statements. We provide also one possible implementation.
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Chapter 0PrefaceThis diploma thesis is part of a research project on building automatic par-allelizers based on the polytope model. It examines methods for derivingparallel target programs that contain statements with execution spaces thatare known only at run time. We call such spaces dynamic execution spaces(Chapter 2), in contrast to static execution spaces whose shape and widthare entirely known at compile time. Dynamic execution spaces typically arisefrom source programs containing while loops. But there are also special kindsof for loops causing dynamic execution spaces. Their number of iterations(usually) cannot be predicted at compile time.We will examine several classes of loops with their resulting spaces and dis-cuss their requirements for parallelization.Parts of the results are implemented as components of the automatic paral-lelizer for imperative programs, LooPo [13], under development at the Uni-versit�at Passau, Germany.Figure 0.1 shows the �ve main parts of LooPo that have to be carried out insequence. Note that we depict scheduler and allocator as one module, becausetogether they yield the transformation function that maps the source indexspace to the target index space.We utilize the polytope model as a mathematical geometrical foundation. Itsroots reach back to the late Sixties [15] and it was discovered for parallelizingcompilers by Leslie Lamport in 1974 [18].Parallelization in this setting proceeds along the following steps (refer toFigure 0.1):� The Parser checks the syntactical correctness of the source programand computes the parse tree [14].� During theDependence Analysis the memory accesses are examined andthe data dependences between operations as well as the index spaces of3
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Figure 0.1: Structure of LooPothe statements in the source program are calculated [16, 17]. These aremodeled as polytopes resulting from intersections of half spaces givenby the loop bounds. To be able to do so, the source program must onlycontain special kinds of loops, which we will discuss later.� Scheduler and Allocator yield a function, the transformation, that tellsus which operation is to be executed on which processor at what time[26, 21]. This transformation consists of a time component determinedby the scheduler and a space component determined by the allocator.It is often also called the space-time mapping.� TargetLoops takes the source polytopes and the transformation, calcu-lates the target polytopes and transforms these target polytopes backto a nest of space and time loops [25]. We call this module also thetarget generator.� The module TargetCode transforms the internal representation deliv-ered by the target generator to real parallel programs coded in di�erentparallel programming languages [5].The polytope model turned out to be very useful for expressing and paral-lelizing loop programs under certain circumstances:



CHAPTER 0. PREFACE 5� The space-time mapping has to be a bijective a�ne function in loopindices and constant parameters.� The lower and upper bounds of a loop have to be a�ne expressions inindices of enclosing loops and constant parameters. We describe waysof relaxing this restriction in this thesis.There are other restrictions, e.g., the form of the dependences, which are notsigni�cant for this paper. We omit them.The properties described above have some incisive implications:� The extent of a statement's execution space is entirely known (param-eterized) in all dimensions at compile time. This means we have onlystatic source execution spaces.� The shape of source execution spaces is a polytope, i.e., it has straightedges and is �nite.� We have a static target execution space whose shape is a polytope, too.� The sequence of target loops is arbitrary since the target polytope canbe expressed as a system of linear inequalities that can be solved inany order. In particular, the time loops can be outermost to get asynchronous target program or they can be innermost to achieve asyn-chronous parallelism. In contrast to the target program, the polytopemodel does not distinguish between space and time dimensions.� Existing methods based on the polytope model cannot deal with dy-namic execution spaces, whose shape and width are not known at com-pile time. Where we know the end of a for loop before the �rst operationof a statement within its body starts, the execution spaces containingwhile loops cannot even be supposed to be �nite ex ante (at compiletime), but { of course { should turn out to be at run time.To solve the problems mentioned in the last item, an extension of the polytopemodel is necessary, the polyhedron model [10]. Dynamic execution spaces aremodeled as polyhedra (which are in�nite in some dimensions).Our thesis examines ways of implementing the polyhedron model. This im-plementation should require as few changes of existing methods (that areshown in Figure 0.1) as possible.Figure 0.2 shows the logical integration of the results of this paper into theow of parallelization steps. They also could be implemented as an integralcomponent of the respective module to let it appear more as a uniform whole.
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Figure 0.2: Structure of LooPo for handling dynamic execution spacesNormalization and Retransformation are extensions to the parser and thetarget generator, the grey arrow symbolizes requirements which schedulerand allocator have to meet. More on this in Chapter 3.Chapter 1 gives some basic de�nitions of concepts related to the polyhedronmodel. In Chapter 2 we consider several types of execution spaces and discusstheir e�ects on parallelization. We will see that there is a great variety ofexecution spaces which cannot yet be treated by the existing methods in thepolytope model. A theory for dealing with these (dynamic) execution spacesis presented in Chapter 3.Chapter 4 describes how the theoretical methods introduced in Chapter 3can be realized in the setting of LooPo. The major concepts here, as shownin Figure 0.2, are loop normalization and retransformation. The latter isnecessary to restore the original execution spaces that are changed duringnormalization.The last chapter gives a conclusion and some prospects on possible optimiza-tion and future work.



Chapter 1Basic De�nitionsThis chapter gives an overview of some necessary, basic concepts and no-tation that we will use throughout this thesis. We are proceeding on theassumption that the reader is familiar with the concepts of linear algebra,particularly with matrices and their inverses, a�ne transformations, (sys-tems of) linear equations and inequalities. We also assume that the principleof parallelization in the polytope model is known.1.1 Mathematical FoundationsDe�nition 1 (Declaration of Functions).Usually we declare functions in the following way:f : D! R : x 7! f(x)where D is the domain and R is the range of the function with name f .x 2 D is a value to which f is applied and f(x) is an arithmetic expressionthat evaluates to the value (2 R) of f when applied to x.Our notation of quanti�cations and logical deductions follows Dijkstra [3]:De�nition 2 (Quanti�cation).Quanti�cation over a variable x is denoted as follows:(Q x : R(x) : P (x))where Q 2 f8; 9g is a quanti�er, R is a predicate that determines the rangeof the values of x and P is any predicate depending on the values of x.De�nition 3 (Formal Logical Deduction).We denote formal logical deductions in the form:7



CHAPTER 1. BASIC DEFINITIONS 8formula1op f comment explaining the validity of relation op gformula2where op 2 f(;,;)g is a boolean operator. The boolean values true andfalse are denoted by tt and �, respectively.De�nition 4 (Componentwise Partial Order on Vectors).Let *x = 0BB@ x1...xr 1CCA and *x 0= 0BB@ x01...x0r 1CCA be two r-dimensional vectors. Then wede�ne the componentwise orders < and � on vectors as follows:*x <*x 0 , (8 k : 1 � k � r : xk < x0k)*x �*x 0 , (8 k : 1 � k � r : xk � x0k)`>' and `�' are de�ned analogously.Remark. We use the same componentwise order analogously for r-tuples androw vectors.Let us now recall some mathematical concepts that are fundamental for ourtopic.De�nition 5 (Halfspace).Let a1; : : : ; an; b 2 R , n 2 N . Then a halfspace H of Rn is de�ned asH = f(x1; : : : ; xn) 2 Rn j a1x1 + � � �+ anxn � bgDe�nition 6 (Polyhedron).An n-dimensional polyhedron in Rn is the intersection of a �nite number ofhalfspaces of Rn.De�nition 7 (Polytope).An n-dimensional polytope in Rn is a bounded n-dimensional polyhedron inRn.De�nition 8 (Convex Set).Let a 2 R , a 2 [0; 1]. A set S � Rn, n 2 N is convex, i�:(8 x; y : x; y 2 S : (ax + (1� a)y) 2 S)



CHAPTER 1. BASIC DEFINITIONS 9Remark. Every intersection of a �nite number of halfspaces is convex. Thus,every polyhedron and every polytope is convex, too.The de�nitions above are all given with respect to R . However, we are onlyinterested in those points x whose coordinates are integer values, i.e., xk 2 Z,1 � k � n. Only these points are considered, because the code generationtechniques available to us [25] can only process such index spaces (see alsoDe�nition 16).1.2 Legal Input ProgramsFrom the point of view of this paper, a legal source program may be composedof elements described in this section.De�nition 9 (Identi�er).There are three possible kinds of identi�ers:� Loop indices or loop variables run from the lower bound of a loop to theupper bound and are incremented by the stride (see also De�nitions 11and 12). A loop index is only `visible' in the body of its respective loopbut may not be changed by any other statement except for the loopstatement itself (see also Figure 2.2 on Page 23).� Variables may be changed arbitrarily, in contrast to loop indices. Notethat our method does not exclusively require arrays (possibly 0-dimen-sional), however, the capabilities of LooPo are restricted to arrays |so far.� Structure parameters represent the problem size. They are initializedduring the loading of the program and are only read during run time,i.e., they are constant throughout the whole execution of the program.We will also call them constants.De�nition 10 (if Statement).We allow plain if statements of the form:if condition then body endifwith all kinds of conditions.Remark. Although we do not explicitly consider if statements with an elsebranch in this thesis, this implies no loss of generality. Every if statementwith an else branch can be split into two plain if statements: the then branchkeeps its original condition and the else branch becomes an if statement withthe negation of the original condition.



CHAPTER 1. BASIC DEFINITIONS 10De�nition 11 (for Loop).Allowed are for loops with all kinds of loop bounds. For technical reasons weonly allow integer values (2 Z) for loop indices, although the theory wouldpermit rational values (2 Q ). The stride has to be composed of integerstructure parameters. Thus, it is decidable before run time whether the strideis positive or negative and this does not change during run time. Notation:for index := lower bound to upper bound step stride do body endWe call lower bound and upper bound the bound expressions.If the stride is not given explicitly, we assume it to be 1.The values of lower bound, upper bound and stride are evaluated before theexecution of the loop. If we reference these �xed values, we use the symbolsLB, UB and ST , respectively.De�nition 12 (while Loop).A while loop is usually denoted as follows:while condition do body endAs we have to specify the index space of a body statement of a while loop, weview while loops | according to [10] | as generalized for loops and providethem with a new index:for newindex := 0 while condition step stride do body endnewindex is just a counter for the number of iterations of the respectivewhile loop. Therefore the stride usually (and in our thesis always) is set to 1.However, we could permit the same types of strides as are permitted for forloops.With \upper bound of a while loop" we mean the number of iterations theloop actually carries out. This value is only known after the loop's termina-tion and therefore is not explicit in the syntax of a while loop.With this notation we have an explicit lower bound for the respective di-mension of the execution space and the loop condition, which describes theupper bound of this dimension in an implicit way.body is the set of statements whose execution is repeated (in case of a loopbody) or whose execution depends on the truth value of the if condition (incase of an if body).Note that one and the same statement can belong to more than one body:it belongs to all bodies of its enclosing loops and if statements.



CHAPTER 1. BASIC DEFINITIONS 11Remark. The notation introduced in De�nition 12 can easily be translatedto the usual syntax: newindex := 0while condition dobodynewindex := newindex + strideendThe `new' syntax makes the role of the new counter explicit (see also Fig-ure 2.4 on Page 26) and is therefore more expressive. newindex is treated asit were the index variable of a usual for loop.De�nition 13 (Statement).In our context a statement may be an if statement or any conventional state-ment, usually an assignment, in the source program.In Chapter 2 we split the head of a for or while loop into several statements,e.g., the evaluation of the lower bound (see Figures 2.2 and 2.4). To makeclear that we do not view the head of a loop as one single statement, we callit for instruction, while instruction or just loop instruction throughout thisthesis.In most cases a statement is an assignment and is uniquely de�ned by itsleft side. For instance, let x := y a statement. Then we call this statement\statement x" or \x statement".De�nition 14 (Some Sets).� The symbol for the set of statements in a source program P is: SP .� The symbol for the set of index variables in a source program P is: LP .� Es denotes the set of enclosing loop indices of a statement s, i.e., itcontains all indices of loops whose bodies contain s.The set of enclosing loop indices also identi�es the loop nest of a state-ment s. This loop nest determines the index space of s (see De�ni-tion 16).A loop nest is said to be perfect if, for all statements, the sets of enclosingloop indices are equal.



CHAPTER 1. BASIC DEFINITIONS 12De�nition 15 (Dimensionality or Level of a Statement).Let s 2 SP be a statement in program P. The value of the functiondim : SP ! N : s 7! jEsjis called the dimensionality or level of s.We can associate the level of any a loop instruction with its respective loopindex and use this numbering as a basis for de�ning an (\outside to inside")order on the indices of enclosing loops of a statement.Remark. A loop is identi�ed by its loop instruction. If the dimensionality ofthe loop instruction is r than we often speak of \a loop at level r".1.3 Spaces and their TransformationIn this section we describe the essential concepts of the model we use torepresent the loop nests of our source programs. The index and executionspaces are the interfaces between the programs and the mathematical model.De�nition 16 (Index Space).Let s 2 SP be a statement in the source program P, and ds the dimensionalityof s. Further let ir be the value of the loop index of a loop surrounding s atlevel r. Then the index space of statement s is de�ned as a subset of Zds :Is := f(i1; : : : ; ids) 2 Zds j (8 r : 1 � r � ds : (ir � LBr)%STr = 0 ^* LBr � ir � UBr if ir belongs to a for loopLBr � ir if ir belongs to a while loop +)gIn the programming language C `%' is the sign for the modulo operator. Weuse this notation throughout this thesis.Remark. Let x = (i1; : : : ; ids) 2 Is. Every position r in the tuple, r 2f1; : : : ; dsg, uniquely identi�es the loop index of a surrounding loop at levelr. To express this, we use the function indexofs : f1; : : : ; dsg ! Es. We willalso need the three additional predicates is for(r), is naf(r) and is whl(r)that indicate whether position r identi�es a for loop (any type), a non-a�nefor loop whose bounds are only non-a�ne expressions in loop indices andstructure parameters, or a while loop.



CHAPTER 1. BASIC DEFINITIONS 13De�nition 17 (Operation, Instance of a Loop).One operation is an instance of a statement. A statement in a loop body isexecuted several times with di�erent values for the indices of the surroundingloops. In the program it occurs as one statement; during the execution thissingle statement appears as several operations.Our notation of an operation is hs; xsi, where s 2 SP and xs 2 Is.We call the loop identi�ed by an operation of a loop instruction an instanceof the loop, given by its loop instruction and the values of the indices ofenclosing loops.Remark. The substatements of loop instructions have operations, too. Thus,the value of the lower bound of a loop at level k, lbk, is a function of theindices of the surrounding loops1, lbk(i1; : : : ; ik�1). We will use this notationonly if this aspect is of interest in a given context. Otherwise we will simplywrite lbk. The same applies for the upper bounds.The index space of a statement represents the set of possible operations ofthis statement.If some dimension of the index space is determined by a while loop then wehave an in�nite index space. Thus, there is a di�erence between the points inthe index space and the points actually executed, as while loops are supposedto terminate and not to enumerate in�nitely many points.A similar situation arises when we have an if statement around a statements. Then there are also points in the index space that do not contribute to anoperation of s that is actually executed (see De�nition 17).Example 1.Consider the following program:for i := 0 to 5 doif i <> 3 thensendifendThe index space of s is: Is = fi 2 Z j 0 � i � 5g = f0; 1; 2; 3; 4; 5g. But nowthere is a point 3 2 Is whose respective operation hs; 3i is not executed bythe program.1It is also a function of other variables occurring in the bound expression, but the valuesof these variables also depend on the iteration. So for the loop bounds it is su�cient toconsider only the indices of the surrounding loops.



CHAPTER 1. BASIC DEFINITIONS 14To distinguish these two di�erent sets of points, we need the concept of theexecution space [11]. At this stage, we only give an informal de�nition andleave the formalization up to Chapter 3.De�nition 18 (Source Execution Space).Let s 2 SP be a statement in the source program P. Then the sourceexecution space of statement s, X s, is de�ned as a subset of Is. It containsall points at which an operation of s is actually carried out at run time.The source execution space of the entire program is X = Ss2SP X s.Remark. For a statement that is not in the body of a loop nest with whileloops and that is not guarded by if statements, the source index space isequal to the source execution space, Is = X s. Statements that belong to thesame body and have the same dimension have the same index and executionspaces.In Chapter 3 the di�erence between index and execution space will becomeimportant: we will have to change the original index space of a statementbut have to take care not to change its respective execution space.Another important concept for parallelization is that of the dependencesbetween operations. They express a necessary execution ordering betweenthe operations involved.There are several special kinds of dependences, but for our needs a generalde�nition is su�cient [26].De�nition 19 (Dependence).Let s; s0 2 SP be two (not necessarily di�erent) statements in program P andlet hs; xsi and hs0; xs0i be operations of s and s0 with xs 2 X s and xs0 2 X s0.� Data dependence: operation hs0; xs0i is data dependent on operationhs; xsi, denoted hs; xsi�dhs0; xs0i, if:1. hs; xsi and hs0; xs0i access the same memory cell and at least oneof them is a write access, and2. hs; xsi is executed before hs0; xs0i in P.� Control dependence: operation hs0; xs0i is control dependent on opera-tion hs; xsi, denoted hs; xsi�chs0; xs0i, if:1. hs; xsi evaluates a predicate and2. the execution of hs0; xs0i depends on the value of this predicate.



CHAPTER 1. BASIC DEFINITIONS 15s is called the source, s0 the target of the dependence.Both types of dependences impose a temporal order on the involved opera-tions. If the di�erence between data and control dependence does not matterin a given context, we omit the superscripts c and d of �.Sometimes it is su�cient to know which statements are dependent on eachother. In this case we write s�s0 instead of hs; xsi�hs0; xs0i. Again the re�ne-ments �d and �c are possible.Remark. A structure parameter is initialized before the actual execution ofthe program starts. During run time these values are only read. Thus,according to De�nition 19, structure parameters do not cause any data de-pendences.De�nition 20 (h-Transformation).Let hs; xsi�hs0; xs0i. Then � de�nes a relation between the execution spacesof s0 and s. Because up to now only a�ne dependences can be handled andthe source of a dependence is unique, this relation can be expressed as ana�ne function, the h-transformation [7]:h : X s0 ! X s : xs0 7! xsRemark. A�ne functions can be represented as a matrix. In the case of an h-transformation, this is a (ds�ds0+1)-matrix whose columns correspond to thedimensions of statement s0 plus the constant portion of the a�ne function.The rows correspond to the dimensions of s.Based on the dependences, each operation is mapped to a special point intime at which it is to be executed. This time mapping is called the schedule.To be able to express the requirements a valid schedule must meet, we needthe lexicographical order on an r-dimensional vector space �. Sometimes wedo not need the strict order and use � to denote this.Note that � and � are di�erent from the < and � operators on vectors (seeDe�nition 4).De�nition 21 (Schedule).The function �s : Is ! Zdts , dts 2 N is called a dts-dimensional schedule forstatement s (superscript t stands for time), if it preserves the dependencesbetween all operations of s and all operations of any other statement in P,i.e.,(8 xs; xs0 : xs 2 Is ^ xs0 2 Is0 : hs; xsi�hs0; xs0i ) �s(xs) � �s0(xs0))



CHAPTER 1. BASIC DEFINITIONS 16Remark. In our setting the schedule is always an a�ne function, so it can beexpressed by a (dts�ds+1)-matrix whose columns correspond to the indicesof the surrounding loops and whose rows reect the various dimensions ofthe schedule. The last column represents the constant portion of the a�nefunction.�s assigns every operation of s to a certain instant of time, at which it is tobe executed.De�nition 22 (Allocation).The function �s : Is ! Zdps , dps 2 N , de�nes the place (the virtual processorcoordinates) at which the operations of s are to be carried out.Just as a schedule, an allocation can also be expressed by a matrix, a (dps�ds + 1)-matrix.De�nition 23 (Transformation, Transformation Matrix).The transformation of a statement s is de�ned by both, the schedule and theallocation of this statement:Ts : Is ! Zd0s : xs 7! (�s(xs); �s(xs)) , where d0s = dts + dpsTo get the transformation matrix for a statement s, we compose the matricesfor schedule and allocation to a single (d0s�ds+1)-matrix by positioning thematrix for the allocation below the matrix for the schedule.Remark. Schedule and allocation are often calculated separately. Thus, ingeneral, the transformation will not be bijective. Wetzel [25], however,presents methods for dealing with non-bijective and non-unimodular transfor-mations. Consequently we may (and do) assume to have bijective unimodulartransformations only, as this is no limitation to generality.De�nition 24 (Target Space).We de�ne the target space or transformed index space of statement s as asubset of Zd0s :TIs = fx0s 2 Zd0s j (9 xs : xs 2 Is : x0s = Ts(xs))gd0s is the dimension of the target space for statement s.Analogously to the source execution space we also have a target executionspace of a statement.



CHAPTER 1. BASIC DEFINITIONS 17De�nition 25 (Target Execution Space).The target execution space or transformed execution space of a statement sis de�ned as a subset of its target space:TX s = fx0s 2 TIs j (9 xs : xs 2 X s : x0s = Ts(xs))gIn contrast to the target execution space we will often call the source execu-tion space just execution space.Remark. While di�erent statements in the same body have the same index(execution) spaces, in general, they have di�erent target (execution) spaces.The reason for this is that every statement can have a di�erent transforma-tion.De�nition 26 (Scanning and Scannability).The enumeration of (source and target) execution spaces by a nest of loopsis called scanning.An execution space is scannable i� it can be scanned precisely by a nest ofloops.Remark. Scannability holds trivially for source execution spaces, becausethey are given by loop nests [9]. So the property of scannability is mainlyinteresting for target execution spaces.On closer inspection we notice that the scannability property of target execu-tion spaces depends on the transformation and on the shape of the respectivesource execution space, as these two determine the appearance of a targetexecution space.In [10] the predicate scannability is de�ned for space-time mappings. Itensures that the target execution space is scannable, regardless of the shapeof the source execution space.We will have a closer look at the implications of scannability in Chapter 2.With the presence of general loop nests, the transformed execution spaceTX s of a statement s may be unscannable [11]. In this case it is not possibleto �nd a set of nested loops that enumerates the target execution spaceprecisely.De�nition 27 (Scanned Spaces).The set of actually scanned source (target) points of a statement s, thescanned source (target) space Ss (TSs), is de�ned as the set of points thatare enumerated by the source (target) program.



CHAPTER 1. BASIC DEFINITIONS 18Remark. If we have if statements in the source program, then | in general| the scanned source space of a statement in the body is di�erent from itsexecution space.We will have to prove that our implementation ensures that the target pro-gram scans a superset of the transformed execution space, i.e., that TX s �TSs for all s 2 SP . Further, we must prevent an operation from being exe-cuted at a point that does not belong to the transformed execution space ofits respective statement.1.4 Summary of Frequently Used SymbolsLet us summarize the symbols and notation introduced in this chapter, asthese will often recur throughout this thesis:Programs:P : identi�er for a (source) programs : identi�er for a statementSP : set of statements occurring in a program PLP : set of all loop indices occurring in program PEs : set of indices of enclosing loops of a statement sLoops:LBr : �xed value of the lower bound of a loop at level kUBr : �xed value of the upper bound of a loop at level kSTr : value of the stride of a loop at level rir : value of the index variable (loop index) of a loop at level k,condk : boolean value, usually the value of the condition of awhile loop or an if statementbodyr : body of a loop at level rSource spaces:r : in the current context a �xed bound, but variable ingeneral, often 1 � r � dsk : index, often 1 � k � rds : (source) dimension of a statement sIs : index space of statement sX s : execution space of statement sxs : point in the source space Is of statement s, usuallyxs = (i1; : : : ; ids)hs; xsi : operation of statement s



CHAPTER 1. BASIC DEFINITIONS 19Transformation:�d : data dependence�c : control dependence� : dependence�;� : lexicographical order (used to describe a temporal orderbetween operations)�s : schedule of statement s�s : allocation of statement sTs : transformation of statement sTarget spaces:dts : dimension of the schedule of statement sdps : dimension of the allocation of statement sd0s : target dimension of a statement sTIs : target index space of statement sTX s : target execution space of statement sTSs : scanned target space of statement sx0s : point in the target space TIs of statement s, usuallyx0s = (i01; : : : ; i0d0s)Remark. We will omit subscripts if the meaning is clear without them in agiven context.



Chapter 2Classi�cation of ExecutionSpacesAn important step of a parallelization in the polyhedron model is the deter-mination of the target execution spaces and the identi�cation of a nest oftarget loops (space and time loops) which enumerates them. One main con-tribution of this thesis is an examination of the correlation between di�erenttypes of execution spaces and their images under certain transformations.Note that we restrict ourselves to piecewise a�ne transformations, since ourschedulers and allocators only yield piecewise a�ne space-time mappings.To show the di�erences between the various target execution spaces, we intro-duce a classi�cation of source loop types a�ecting the respective dimension ofthe execution space. The examination of the execution spaces and transfor-mations can be performed with varying precision: a more precise examinationmeans on the one hand more e�ort but on the other hand it reveals re�nedclasses for which better methods of parallelization can be found.Figure 2.1 shows the di�erent classes we shall de�ne in this chapter. Ingeneral, from left to right the potential for parallelism decreases and the runtime overhead increases. From the top to the bottom the e�ort of analyzingthe execution spaces (at compile time) increases and the classes get moreprecise. The target execution spaces of the classes in the light grey boxescan theoretically be scanned precisely. For all other classes, in general, wehave to scan a superset of the target execution space and watch out foroperations which must not be carried out at some iteration.Remark. Our classi�cation is only based on instructions that constitute in-dex spaces, namely on for and while loops. Thus, it does not consider ifstatements. We make remarks on the consequences of if statements at theappropriate points in the following sections.20
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Figure 2.1: Di�erent classes of execution spacesOur aim is to learn as much as possible about the target execution spaces atcompile time. If we knew them exactly, we could enumerate them in parallelwithout any run time overhead. In this case the only sequentiality arisesfrom data dependences between operations of statements in the body | notfrom calculating the execution spaces themselves.We can use the types of loops in the source program, their bounds and thetransformation function to describe the target execution space. The more wecan take into account the better our results will be.Remark. In this thesis we are only interested in scanning (a superset of) thetarget execution space and �ltering the points that must not be executed,because their inverse image does not belong to the execution space. Weconsider only dependences that have to do with these problems and do nottake into account further dependences that arise from the program itself.It is up to the programmer to invent algorithms that impose as few datadependences as possible or to apply other tools (e.g., [17]) that eliminatesome unnecessary data dependences.In the following sections we will discuss the classes shown in Figure 2.1 andpresent some examples for illustration. The maximum dimensionality of theexecution spaces of statements in the examples is 2. We use the third di-mension for depicting operations of di�erent statements; operations with the



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 22same third coordinate belong to the same statement. If we use transforma-tion matrices, the �rst line corresponds to the schedule (t) and the secondline to the allocation (p). In the examples we consider only target programswhose outermost loops are time loops (synchronous target programs).2.1 A Glance at Sequential Execution SpacesEvery for loop and while loop2 determines one dimension of the executionspaces of the statements in its body. All execution spaces are scanned insequence and at every point the operations are ordered according to thetextual order of their statements in the source program.In the next two subsections we take a closer look at for and while instructions.This may seem somewhat trivial, and usually we do not think about theirlogical structure when we use sequential for loops or while loops, but it isessential for the understanding of why and how loop nests can be parallelized.2.1.1 Sequential for LoopsThe nature of a single for loop is that the bounds and the stride are evaluated�rst and do not change during the execution of the body3.The values of the loop index of a for loop can be described by the followingcondition.De�nition 28 (Execution Condition of a for Loop).The execution condition of a for loop is given by the (usual) semantics of forloops and is de�ned as follows:ex condfr(i1; : : : ; ir) :� LBr � ir � UBr ^ (ir � LBr)%STr = 0The body is executed for all ir which satisfy the execution condition. In allother cases the loop terminates.The expressions for LBr and UBr are evaluated once before the respectivebody is executed. Only the value ir is changing during the execution of theloop: after each iteration the stride STr is added to ir.2We do not consider repeat loops, they can be easily transformed to while loops.3The programming language C has a di�erent view of for loops: the bounds and thestride of a for loop are evaluated before each new iteration. If, e.g., a variable occurringin a bound expression has changed during the last iteration, this a�ects the value of thebound for the next iteration. In C every while loop can be denoted as a for loop.



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 23As the index increases monotonously and all other values in the bound ex-pressions do not change, the number of iterations is known at the beginningof the loop's execution, i.e., the extent of an instance of such a loop is knownbefore the �rst operation of a statement in its body is executed.

bodyr

(i1,...,ir-1)
=

(i1,...,ir-1)’

data dependence control dependence arbitrary dependence
(optional)

for instruction

ir := ir + STr

ir := LBr

LBr := lbr

UBr := ubr

ex_condfr(ir,...,ir)

Figure 2.2: Dependences related to a for-instructionFigure 2.24 shows the dependences caused and made possible by a for in-struction in a sequential program. The grey rectangle contains all informa-tion given by the syntax of a for loop. The two assignments LBr := lbr andUBr := ubr are used to symbolize that the values of the bounds are �xed be-fore the loop starts. We will call these statements lower bound assignment,upper bound assignment or bound assignment if we mean one of them. Fromnow on we will denote them by lb assr, ub assr and bd assr, respectively, if4The way we show the dependences related to loop instructions and if statements areinspired by [28].



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 24they belong to a loop instruction at level r.The dotted dependences attached to the border of the rectangle can only becaused by the expressions for lbr and ubr.The grey arrows represent control dependences to the body and to the induc-tion (see [22]) whose execution depends on the boolean value of the executioncondition: an operation of a body statement is only executed if the executioncondition evaluates to tt. Control dependences may coincide with data de-pendences in the same direction, i.e., the control dependences exist de�nitelyand may make some similar data dependences redundant (we omitted thedata dependences for the sake of clarity). This is always the case for thedependence of the induction on the condition, as ir has to be read before itmay be incremented if the condition yields tt.We see that the body of an instance of a for loop that is currently beingexecuted cannot a�ect the bounds of its own execution space, but obviouslyit can a�ect the bounds of, e.g., the next instance of the same loop or thebounds of an inner loop, if there is one. This is expressed by the adornment(i1; : : : ; ir�1) 6= (i1; : : : ; ir�1)0 for the dependence from the body to the forinstruction and by the possible dependences pointing to and away from thebody.This observation will become important for parallel execution.To summarize: we know the extent of an instance of a for loop before the�rst operation of its body is carried out. This holds independently from theappearance of the bound expressions.2.1.2 Sequential while LoopsIn contrast to for loops, the number of iterations of a while loop is not knownbefore the loop terminates and the value of the condition has to be checkedat the beginning of every new iteration. The body of a while loop may |and, for getting non-trivial loops, must | change the values occurring inthe condition. In general, not only one \well-chosen index" changes in amonotone manner, but any value may change and a�ect the result of thenext evaluation of the while condition.If we take a look at Figure 2.3, we notice that the syntax of a while loopprovides much less information compared to that of a for loop.In general, we do not know how the values occurring in the condition willchange before its next evaluation. These changes (the induction [22]) takeplace somewhere in the body.The initialization of the changing values is not given syntactically, either.We know only the condition and that there are control dependences. One isdirected from the condition to the loop body and another one points to the
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while instruction

condr bodyr

data dependence control dependence arbitrary dependence
(optional)Figure 2.3: Dependences related to a while instructioncondition at the next iteration of the same loop instance. We call the latterone the while dependence [10].In contrast to for loops, the dependence from the body to the while instructionis unlabeled. That means that it may be of an arbitrary form5 and, especially,may point to the while instruction of the currently executed instance of theloop. Thus, a while loop can change the extent of its own execution space.The facts just mentioned entail that we cannot predict the number of itera-tions a while loop will carry out. The loop's termination only becomes knownwhen the condition evaluates to � after some iteration.However, Figure 2.3 only shows what is commonly related to a while loop.This view is su�cient for considering sequential loops, but for examining theparallel execution of while loops we have to take a closer look. In Figure 2.4we present a more general view of while loops and show also the integrationof the iteration counter (see De�nition 12).For while loops we can also de�ne an execution condition, similarly to forloops. It is de�ned recursively according to the while dependence and there-fore is more complicated to calculate.

5Here `arbitrary' means: \all kinds of dependences possible in a sequential program".
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data dependence control dependence arbitrary dependence
(optional)

new while instruction

bodyr

ir := 0

ex_condr(i1,...,ir)

ir := ir + 1

Figure 2.4: Dependences related to a while instruction given by the newsyntaxDe�nition 29 (Execution Condition of a while Loop).The execution condition of a while loop at level r is given by the semanticsof while loops and is de�ned as follows:ex condwr(i1; : : : ; ir) :�(0 � ir ^ (ir � 0)%1 = 0) ^(0 = ir ^ condr(i1; : : : ; ir)) _(0 < ir ^ ex condwr(i1; : : : ; ir � 1) ^ condr(i1; : : : ; ir))The �rst line describes the index space of the loop. As in our thesis the lowerbounds and the strides of all while loops are always 0 and 1, respectively, wecould also omit this line. However, we want to remember the general case(arbitrary lower bounds and strides) and choose to keep it. The followingtwo lines restrict the index space to the actual execution space of the loop:the �rst iteration of a while loop is carried out if the loop condition holds,the following iterations are executed if the previous one was executed andthe condition holds. For ir < 0 the execution condition yields �.



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 27The de�nition of ex condwr follows the de�nition of the predicate executed in[1]. However, we take only the parts that relate to one level of the loop nest,i.e., here we have a single-dimensional view. In Chapter 3 we combine theexecution conditions of every dimension to one execution condition for everystatement.Now that we can express the values of the loop indices we can give a formalde�nition of an execution space.De�nition 30 (Source Execution Space).Let s 2 SP be a statement in a source program P that does not belong tothe body of an if statement. Then the source execution space of statement sis de�ned as a subset of Is :X s = f(i1; : : : ; ids) 2 Is j (8 k : 1 � k � ds :(ex condfk(i1; : : : ; ik) ^ is for(k)) _ (ex condwk(i1; : : : ; ik) ^ is whl(k)))gThe source execution space of the entire program is X = Ss2SP X s.After this closer look at sequential loops we shall describe the loop classes.Each of the following sections corresponds (downward) to a row in Figure 2.1.2.2 Static and Dynamic Execution SpacesWe distinguish two main kinds of execution spaces, determined by the de-pendences that point to the loop instructions.The �rst one is called static execution space. Its shape and extent is entirelyknown at compile time or can at least be approximated by a superset whoseshape and extent is known at compile time. Static execution spaces arecharacterized by loop bounds to which no data dependences are `pointing'.De�nition 31 (Static Execution Space).Let s and s0 be two statements in program P, where s0 is not part of a loopinstruction. The dimensionality of s is denoted as ds. Let further bd assr bea bound assignment of a loop surrounding s at level r.We call the execution space X s of s static if the following holds:(8 r : 1 � r � ds : :(s0 �d bd assr))These spaces could be scanned in one time step (i.e., in parallel) by forallloops. However, dependences between the body statements may spoil thisparallel execution.



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 28Remark. while loops can only belong to a static execution space if the valuesoccurring in their conditions are not changed by any statement. This rendersonly while loops that have either no (the while condition always yields �)or in�nitely many iterations (the while condition always yields tt). It canbe determined at compile time which case applies. So, usually executionspaces determined by one or more while loops are non-static (dynamic, seeDe�nition 32).Example 2 (Static Execution Space).The loop nests in the following two programs yield the static execution spacesshown in Figures 2.5 and 2.6.No loop bound depends on the computations of any other statement, so weknow the execution spaces at compile time by considering only the boundexpressions of the loop instructions.The shaded regions mark the space described by the loop bounds and thedots show the intersection of these regions and the integer lattice, the actualexecution space. One-dimensional operations have 0 as second coordinate.The third coordinate reects the order of the statements in the source pro-gram.
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1st for-instruction
2nd for-instruction
body

control dependence

Figure 2.5: The static execution space of the �rst program in Example 2



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 29The �rst program yields a polytope as execution space (Figure 2.5):= � program 1 � =for i := 0 to 3 dofor j := 0 to (2=3) � i+1 doa[i; j] := 0endendThe execution space of the second program is neither convex nor has itstraight borders, but it is static, too.
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1st for-instruction
2nd for-instruction
body

control dependence

Figure 2.6: The static execution space of the second program in Example 2To express that static execution spaces do not depend on the body of theirloop nests, we can substitute this body by a skip statement (the emptystatement). = � program 2 � =for i := 0 to 3 dofor j := 0 to (1=3) � (i� 3)2 doskipendend



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 30The di�erence in the shape is not signi�cant for an execution space to bestatic, but | as we will see in the following sections | it is very signi�cantfor target code generation.Now let us look at dynamic execution spaces. These are characterized bydependences `pointing' to the bound expressions (for loops) or to the whilecondition (while loops).De�nition 32 (Dynamic Execution Space).Let s and s0 be two statements in program P. The dimensionality of s is de-noted as ds. Let further bd assr be a bound assignment of a loop surroundings at level r.We call the execution space X s of s dynamic if for some s0, where s0 is notpart of a loop instruction(9 r : 1 � r � ds : s0 �d bd assr)In other words: if an execution space is not static then it is dynamic.The dependences cause the execution space to change in the course of time.Thus, such execution spaces cannot be enumerated in parallel. Moreover, theupper bound of the time dimension is generally not predictable, and thereforewe will obtain while loops for the time dimension in the target loop nest.Example 3 (Dynamic Execution Spaces).Dynamic execution spaces can be caused by for loops as well as by whileloops.In program 1 the while loop causes the �rst dimension to be the \dynamicdimension". A sample execution space is shown in Figure 2.7. Here the arraylen has the following entries: len = (1; 2; 0; 1; 6; 4; 2)This is a very simple example, but it shows that the extent of the �rstdimension determined by the while loop depends on the execution of its bodyand of the while condition of the previous iteration. Therefore the executionspace cannot be enumerated in parallel, but has an inherent time componentthat has to be considered.= � program 1 � =i := 0for wi := 0 while (len[i] � 5)for j := 0 to len[i] doa[j] := 0endi := i+ 1end
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Figure 2.7: The dynamic execution space of the �rst program in Example 3
We can see that this sequentiality does not a�ect the second dimension. Forevery instance of the for loop, all its iterations can be executed in parallel.As mentioned above, for loops can also cause dynamic execution spaces. Thisis shown in program 2:f(i; j) may be any piece of code that computes a value for the array a[i; j].= � program 2 � =a[0; 0] := 1for i := 0 to 3 dofor j := 0 to a[i; 0] doa[i + 1; j] := f(i; j)endendAgain we have a sample execution space, depicted in Figure 2.8. In thisexample f(i; 0) yields the values 1, 2 and 0. These are the only relevant onesfor the upper bounds of the second for loop.As in program 1, every single instance of the second for loop can be executedin parallel. Because the body of instance i of the inner loop a�ects the boundsof instance i + 1 of this same loop, the di�erent instances of the inner loop
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Figure 2.8: The dynamic execution space of the second program in Example 3have to be carried out one after the other. This means that the outer loophas to be executed sequentially.Note that, although the extent of the �rst dimension is known at compiletime, it must be enumerated sequentially. Although the upper bound of thesecond dimension is determined at run time, each instance of the second loopcan be executed in one time step.The explanations in this section make clear that the handling of dynamicexecution spaces causes much more overhead than that of static executionspaces, as we have to determine their bounds at run time.2.3 State of the ArtThe present state of the art is that only sequential source programs withloop nests containing only so-called a�ne for loops can be parallelized usingthe polytope model. We will briey describe this kind of for loops and theimplications for the source and target execution spaces. For a closer look, wepoint to [18, 19, 25]. The handling of special cases and some extensions arealso described there.Bound expressions must be a�ne expressions in structure parameters andindices of enclosing loops (if there are any), i.e., the bounds of a for loop atany level r have the form:



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 33lbr := cr;1i1+cr;2i2+� � �+cr;r�1ir�1+cr;rubr := cr;1i1+cr;2i2+� � �+cr;r�1ir�1+cr;rwhere cr;k; cr;k 2 Z are constants, (i1; : : : ; ir�1) 2 X bd assr .Note that cr;r and cr;r can be composed of several numerical constants andstructure parameters. We view them just as one constant part in the boundexpressions.As constants cannot cause any data dependences (see the remark followingDe�nition 19) and loop indices may only be read in the bodies of the re-spective loops, the execution spaces caused by a�ne for loops are alwaysstatic.This means that in Figure 2.2 on Page 23 the data dependences pointing toand away from the shaded box of the for instruction do not really exist.We can determine in a parameterized way at compile time how many itera-tions the loop will carry out and what values the index will take. Thus, wecan also predict the boolean values of the condition in the for instruction atcompile time. These are incorporated in the ranges of the target loops, i.e.,the target loops will only enumerate the points whose respective conditionsin the source loop nest had yielded tt.The shape of an execution space caused by a�ne for loops is a polytope.Together with an a�ne transformation function the target execution spacesalso result in a polytope. This property guarantees the existence of a precisescan of the target execution space without unnecessary run time overhead.2.4 Loop Classi�cationScanning consists of two tasks: �nding bounds for the target loops and mak-ing sure that no operations are executed which are not executed in the sourceprogram.The classi�cation proposed in [12] deals only with the second task for forloops; the target loops are considered to be given and we ask what the sourceexecution space must look like to be sure not to enumerate too many targetpoints.The re�nement of while loops into the two classes is not guided by the problemof scanning the target execution space exactly, but is done with respect toexisting related work, such as [22, 24, 28].Remark. The titles of the following sections give the numbering of the classesintroduced in [12].



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 342.4.1 A�ne for Loops (Class 4 Loops)This class is equal to the class described in the last section. In di�erenceto Class 3 (see Section 2.4.2) we always know how to compute the boundexpressions for the target loop nest.2.4.2 Convex Execution Spaces (Class 3 Loops)The for loops contained in Class 3 ensure convex target execution spaces, i.e.,they can be proved at compile time to cause only convex execution spaces.This \proved at compile time" induces that only static convex executionspaces are considered here. The class of convex loops forms a superset ofClass 4, as the latter always yields (polytopes as a special case of) convexstatic execution spaces.The de�nition of Class 3 makes use of the fact that an a�ne function mapsa convex set onto a convex image: if the bounds of the image are given as afunction of target loop indices and structure parameters, it can be scannedexactly.Example 4 (Convex Execution Spaces).The following program has the convex static execution space (of loops inClass 4 and Class 3) depicted in Figure 2.9. The upper bound of the innerloop prevents the loop nest from belonging entirely to Class 4.for i := 0 to 4 dofor j := 0 to sqrt(4 � i) dobodyendendIn Class 3 we free ourselves from the question: \How can we �nd the boundexpressions ?" We simply say: \If someone gives us the bound expressions,we know the target execution space to be scannable (precisely) !"Remark. We could also imagine a more practical view of Classes 3 and 4by de�ning one `big' class of convex loops which contains the class of a�neloops and the subset of Class 3 for which we actually have the mathematicaltools to �nd functions that describe the shape of their target execution spacesunder any a�ne transformation. Thus, a for loop with a bound that causesa convex static execution space would not be part of the new convex class ifwe were not able to �nd a function as bound for the target loops that yieldsthe respective border of the target execution space.
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Figure 2.9: The convex static execution space of the program in Example 42.4.3 Arbitrary for Loops (Class 2 Loops)Class 2 contains all other types of for loops. In general, they yield un-scannable dynamic execution spaces that must be estimated at run time.We will show this estimation in the next chapter.Example 5 (Class 2 Loops).We already saw examples for programs with Class 2 Loops. In Example 3 onPage 30 the inner for loop of program 2 belongs to Class 2. As it is dynamic,it cannot be proved at compile time to yield only convex execution spaces.The inner loop of program 2 in Example 2 on page 28 also belongs to Class2. It is static, but its upper bound yields a concave execution space.2.4.4 Static while Loops (Class 1 Loops)The number of iterations of while loops in Class 1 is �xed before the �rstoperation of the body is executed, but it is not given explicitly. It is computediteratively instead.Di�erent approaches to parallelization (e.g., [28]) rewrite the source loop to�rst compute the number of iterations sequentially and than carry out theremainder of the body in parallel.Example 6 (Class 1 Loops).See Example 3, program 1. The while loop is static, because the values



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 36of the variables in the condition are not changed in the body. Thus, thenumber of iterations of the while loop does not change during its execution,but it is not given explicitly and is not computable in O(1). We cannotdetermine by looking only at the loop instruction whether the array len[i] isupdated somewhere else in the program. So the number of iterations cannotbe computed at compile time, either.Note that the `static' in the term \static while loops" has nothing to do withthe `static' in \static execution space". A static while loop always causes adynamic execution space.2.4.5 Dynamic while Loops (Class 0 Loops)In contrast to Class 1, the number of iterations of a loop in Class 0 is a�ectedby its body, i.e., a while loop of Class 0 changes its number of iterations duringits execution. In the setting of the alternative approach mentioned for Class1 this means that the subsequent parallel forall loop could be empty.In our setting we do not distinguish Class 1 and Class 0. We believe thatour result of parallelizing nests of Class 1 loops without further inspectionis not worse than the alternative, specialized approaches and yields a betterload balance of the processors.Note that with additional semantic knowledge our classi�cation collapses,as every loop may move from a more general class to a more specializedone. Looking at Class 2, we could also imagine to have convex executionspaces that are dynamic. However, to prove the convexity at compile timewe would need additional semantic information about the program and thedata. Some approaches examine such properties and try to parallelize theeasier loop found this way [22, 28], but this is exactly what we do not wantto consider in this classi�cation.Our approach is more general. We base our analysis on a mathematicalfoundation rather than �nding special cases ad hoc that can be parallelized.However, our method does not prevent the usage of such methods. If weknew more about our source program we possibly could use methods foreasier loop classes and exploit more parallelism this way.2.5 Consideration of the TransformationFunctionThe classes of the previous section were de�ned without considering trans-formations. We involve these at the next level of analysis.



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 37In [10] a property of space-time mappings is de�ned which guarantees scann-able target execution spaces. This property is not of interest for Classes 3and 4, because the shape of their execution spaces ensures scannable targetexecution spaces anyway.Scannable transformations ensure the following two aspects of scanning:� The execution space is only changed in a way that the target executionspace has \no holes inside".� The target loops can describe the bounds of the target execution spaceprecisely.These advantages of scannability hold for both static and dynamic executionspaces. We re�ne the static and dynamic parts of Class 2 into one that isdetermined by scannable transformations and one that contains the rest.Griebl [9] proves that for every asynchronous target program a scannabletransformation can be found. This is nearly never the case for synchronoustarget programs.Scannability implies that no target loop at level r may depend on a sourceloop at a level greater then r. Thus, if we have a one-dimensional schedulefor a synchronous target program, only the outermost source loop may be adynamic loop. Or the other way round: a valid scannable transformation fora synchronous target program is in general only possible if the dimension ofthe schedule is at least as large as the level of the innermost dynamic loopin the source loop nest.Typically this will prevent much of the parallelism allowed by the source pro-gram, and therefore a non-scannable transformation will probably be chosen.Remark. If there are if statements in the source program there is in generalno scannable transformation. if statements mean that the source executionspace \has holes" that are arbitrarily spread across the index space6. Thetarget execution space has these holes, too, and we have to test for them atrun time.To conclude this section: scannability of transformations compensates fornon-convexity of the execution space and makes it `easy' to �nd target loopbounds. Essentially the original loop bounds only have to be transformed bythe space-time mapping.The opposite side of the coin is that (at least for synchronous target pro-grams) we cannot always �nd preferable scannable transformations.6This is di�erent to the `holes' produced by strides di�erent to 1 or �1 that are spreadacross the index space in a regular pattern.



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 382.6 Additional Consideration of the TargetExecution SpaceThe target execution spaces related to a�ne and convex loops and to trans-formations that are scannable can be scanned precisely without actually look-ing at their shape. Now the question arises, what we could tell about thescannability of static target execution spaces if we knew their shape andextent in addition to the source execution space and the transformation.2.6.1 Scannable Target Execution SpaceWe can �nd target execution spaces that are scannable, though their space-time mappings are not scannable and their source execution spaces are notconvex, either.Example 7 (Consideration of Target Execution Spaces).Figure 2.10 shows on the left side the non-convex static execution space ofthe following sample program:for i := 0 to 5 dofor j := 0 to ((i� 5)2)=5 doskipendend
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Figure 2.10: The execution spaces of the program in Example 7



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 39The right side shows the target execution space determined by the space-timemapping T =  0 11 0 !.Although T is not scannable and the execution space is not convex, thescanning of the target execution space causes no problems | the targetexecution space is scannable.To get the bounds of the target loops we essentially have to compute theinverse function of the upper bound of the second loop. Therefore we haveto solve the following inequalities for p:t � (p� 5)25For the given range of p: 0 � p � 5 we get:p � 5�p5tWe can use the following target loop nest to enumerate the target executionspace: = � target program � =forall t := 0 to 5 doforall p := 0 to 5� sqrt(5 � t) doskipendend2.6.2 Minimal but not Exactly Scannable Target Exe-cution SpaceDue to non-convex execution spaces, there are cases where the smallest pos-sible scanned target space is bigger than the actual target execution space.This is possible because a loop cannot skip some iterations and then go onto continue the execution of its body.Example 8 (Minimal but not exactly scannable Target Execution Space).This example is a continuation of Example 7. We have the same program withthe same execution space, but this time we consider a di�erent transformationfunction, T =  1 10 1 !, with its corresponding target execution space(depicted in Figure 2.11). Again T is not scannable and now the targetexecution space is not scannable, either.
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Figure 2.11: The target execution space for the transformation in Example 8The light grey region represents the transformed target execution space. Thedarker grey region contains the additional points that have to be scanned,but are not in the target execution space. Filled dots represent iterationswhich have to be executed, white dots mark iterations that are scanned butmust not be executed.It is not possible to �nd a loop nest that scans a smaller region withoutloosing points belonging to the target execution space.The di�erence to the previous class is that, although we know the upperborder of the second dimension and its image, we cannot �nd a loop nestwhich scans a smaller region without omitting points of the target executionspace. Thus, we have to take care of points whose inverse images are not inthe execution space.Remark. The same holds for execution spaces that are determined by if state-ments.2.6.3 Approximatable Target Execution SpaceFor the class described in the previous subsection we had to scan too manypoints because loop nests were not powerful enough to describe the targetexecution space exactly. In addition to this, the class of approximatable targetexecution space deals with the lack of mathematical procedures or tools fordescribing the bounds of the target execution space as (closed) functions intarget loop indices and constants.



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 41For our classi�cation it does not matter whether we have no tool or whetherit is theoretically impossible to �nd a function that describes the exact targetexecution space. In both cases the consequence is that we have to approx-imate the target execution space by a superset which liberates us from theactual shape and which we can describe. This approximation can be done atcompile time for static execution spaces.For instance, a polytope may serve as an approximating superset, becausefor any polytope we have a method for enumerating its image under an a�nespace-time mapping.We use the following property of a�ne functions (omitting the proof) thatensures that we do not skip points of the target execution space if we scanthe image of a superset of the execution space.Lemma 33. Let X � XS � I and T an a�ne function T : I �! TI withT (X ) = TX and T (XS) = TS. Then: TX � TS � TIThe following example shows the characteristic features of approximatabletarget execution spaces.Example 9 (Approximatable Target Execution Spaces).Let the following program be given and assume that we have no tool to�nd the bounds of its target execution space under any transformation. Theleft part of Figure 2.12 shows the execution space, the right part shows thetarget execution space.for i := 0 to 12 dofor j := 0 to (i=2) + 2 � sin(i) doskipendendWe can approximate the execution space (light grey) by a polytope (unionof the light grey and dark grey region) yielded by the following loop nest:= � approximation � =for i := 0 to 12 dofor j := 0 to (i=2) + (5=2) doif(j <= (i=2) + 2 � sin(i))thenskipendendend
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Figure 2.12: Execution- and target execution space of the program
Since we enumerate too much, we have to take care of the points that arescanned but are not in the execution space (white points). This is done onthe y by the if clause.The altered program can now be transformed with the methods for polytopicexecution spaces.The right part of Figure 2.12 shows the target execution space (light grey),the minimal number of points which must be scanned additionally (mediumgrey). The dark grey region contains the additional points caused by theapproximation of the execution space. Again, �lled dots must be executedand white ones must not.The medium grey region is caused for the same reasons as discussed in Sub-section 2.6.2, i.e., because of the non-convex execution space.Remark. Note that the approximation by an a�ne upper bound is only anexample. In general, any function that yields a superset of the executionspace may serve as an approximation. However, it should be a function thatensures an approximation which can be scanned precisely.In contrast to the class described in Section 2.6.2, we have to go to the troubleof �nding an appropriate approximation.



CHAPTER 2. CLASSIFICATION OF EXECUTION SPACES 43Without further semantic information about the program we cannot takethe shape and extent of dynamic target execution spaces into account forour analysis, as they are only known at run time (see the dark grey box inFigure 2.1).2.7 Implementation in LooPoThe last row in Figure 2.1 shows the classes we distinguish for our imple-mentation in the automatic parallelizer LooPo.Current methods can already deal with the class of (extended) a�ne loopsthat yield polytopes and quasi-convex polytopes as execution spaces.We treat all other for loops as if they were dynamic for loops and all otherwhile loops as if they were dynamic while loops. This worst-case view ensuresthat we can put up with all kinds of sequential loops, but by nature wecannot treat all cases in the best possible way. These optimizations are upto future work and further studies.



Chapter 3Dynamic Approximation ofExecution SpacesAs we mentioned in the last chapter, we distinguish between a�ne for loopswith static execution spaces, other for loops (static or dynamic) and whileloops (always dynamic). The present stage of development of the polytopemodel is already suited for parallelizing nests of a�ne for loops. In thecurrent chapter we extend the theory to dynamic execution spaces. For theintegration of while loops we base our work on Griebl [9] and adapt it forimperfectly nested loops.Dynamic execution spaces can only be calculated at run time. In general, thiscomputation cannot be precise (see Section 2.6) but must yield a superset,the scanned target space.If we scan a superset of the target execution space, we have to take care not toexecute points whose inverse image does not belong to the source executionspace. We explain this execution analysis in Section 3.2, but �rst of all wepresent a simple example that demonstrates the problems we are facing.3.1 ExampleConsider a program with one surrounding a�ne for loop and a non-a�ne forloop that determines the second dimension of the body statement s. Assumethat the transformation we use, preserves the dependences of the loop nest.
44
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for i := 0 to 5 dofor j := 0 to a[i] dosendendThe inequalities describing the execution space of the body s would be:i � 0�i + 5 � 0j � 0� j + a[i] � 0 (8 i : 0 � i�5)As we might not know the values of a[i] at compile time7, we must omit thelast inequality and approximate the execution space by a polyhedron whosesecond dimension is unbounded. Later, when we are generating the targetcode, we have to determine an upper bound for the target loops dependingon j.Let Ts =  1 10 1 ! be the a�ne synchronous transformation. Its inverse isT�1s =  1 �10 1 !.Thus, the following inequalities de�ne the target space, where t is the indexfor the time and p the index for the space dimension:t � p � 0�t + p + 5 � 0p � 0To get a synchronous target program, we have to express p in terms of t:t � 0p � 0p � t � 5p � tThis leads to the target loop nest7If the loop of i were also non-a�ne or a while loop, we would not even know an upperbound for i at compile time.
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= � synchronous target program � =for t := 0 to ? doforall p := max(0; t� 5) to t dos0endendwhere s0 is derived from s just by expressing i and j in terms of t and p.The unknown upper bound a[i] of j in the source inequalities implies thatwe do not know an upper bound for the time t now. It would have to bemaxf�s(i; j) j 0� i�5 ^ 0�j�a[i]gWe do not know the values of a[i] and so this upper bound can only becomputed at run time step by step as the values become known. This \stepby step" can be formulated as a while loop for the time.Let us take a look at the asynchronous target program now. To achieve this,we have to express t in terms of p and we get the following description of thetarget space: p � 0t � 0t � pt � p + 5We transform the inequalities to an asynchronous target program and get:= � asynchronous target program � =forall p := 0 to ? dofor t := max(0; p) to p+ 5 dos0endendAgain we do not know the upper bound of the outermost target loop, but ifwe changed this loop into a while loop, we would have a completely sequentialtarget program, as there are no parallel while loops [9]8. We cannot compute8We do not consider partitioning in this example, but describe its implications in Sec-tion 3.5.



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 47the upper bound of the outermost loop iteratively at run time, because thesemantics of a for loop (and a forall loop) prescribes that the bounds are�xed once and for all before the body is executed; they never change duringexecution, even if the body changes the value of a variable occurring in oneof the bound expressions.We notice that now there is a problem-inherent di�erence between the timeand space dimensions; formerly, when we only had a�ne for loops, there wasonly a technical di�erence for code generation, namely that space dimensionswere enumerated by parallel forall loops whereas time dimensions were enu-merated by sequential for loops to preserve the dependences in the sourceprogram.If the second loop were a while loop, e.g,FOR j := 0 while (a[i] < 10) do body end,we also would not know the upper bound and we would have to drop the lastinequality. This would result in the same target loops as for the non-a�nefor loop. However, we shall see that the calculation of the appropriate upperbound is more complicated.Together with the implications of (un)scannability (see the previous chapter)we make three observations:1. In general (without partitioning) we can derive only synchronous targetprograms that may have while loops for enumerating the time.2. We have to take care of the termination of the target loops and callthis task termination detection.3. As target execution spaces are unscannable in general, we have to scana superset of the actual target execution space. Thus, we have to decidewhich target points must be executed and which must not. We call thisdecision execution determination.3.2 Execution DeterminationThis chapter examines how execution determination can be realized. Wechoose to describe this before termination detection, because we implementtermination detection as side e�ect of the execution determination (Sec-tion 3.3).Before we introduce a general predicate executed for every statement in asource program we include if statements in our considerations.



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 48

data dependence control dependence arbitrary dependence
(optional)

if statement

body

COND := cond

COND

Figure 3.1: Dependences related to an if statement3.2.1 Execution Condition of an if StatementIn Chapter 2 we de�ne the execution space of a statement without consid-ering if statements, because we do not want to include if statements in theclassi�cation. However, the execution space of a statement is determined notonly by the surrounding loops but also by surrounding if statements.Figure 3.1 shows an if statement with the possible dependences.The substatement COND := cond expresses that the condition is evaluatedonce and the truth value remains the same for every statement in the bodyof the if statement (COND is only read from now on) even if some statementchanges a variable occurring in cond.Data dependences can be caused by the variables in the condition. Theessential purpose of an if statement, however, is the implementation of acontrol dependence to the statements in its body. We can also put thisthe other way round: a control dependence can be implemented by an ifstatement.Like for loops we can also �nd execution conditions for if statements.De�nition 34 (Execution Condition of an if Statement).The execution condition of an if statement is the if condition itself. Denoted:ex condifk, where in this case k is a unique number for each if statement.An operation may only be executed if all surrounding execution conditionsevaluate to tt.



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 49In Chapter 4 we describe the implementation of if statements in LooPo.3.2.2 General Predicate executed for each StatementUntil now we have considered the execution conditions caused by loops andif statements only dimension by dimension. In this section we combine theseseparate conditions to one condition for each statement that determineswhether an operation of this statement is to be executed or not.De�nition 35 (Predicate executed).Let s 2 SP be a statement in source program P and ds the dimensionality ofs. LetM be the number of surrounding if statements of s. Then the predicateexecuteds : Is ! f�; ttg determines whether an operation of statement s isexecuted at a given iteration. We de�ne:executeds(i1; : : : ; ids) := ex condl1 ^ : : : ^ ex condlds ^ex condif1 ^ : : : ^ ex condifMwhere ex condlk := ((ex condfk ^ is for(ik)) _ (ex condwk ^ is whl(ik))),1 � ik � ds.Remark. The sequence of the various execution conditions does not matterfor the theoretical de�nition. However, for the implementation we have tointerleave the execution conditions of if statements with those of the loopsaccording to their original nesting order in the source program.All the de�nitions concerning execution conditions are phrased only in termsof the source side. In the target program, however, the source indices are nolonger visible.Since we consider only bijective a�ne transformation functions in this thesis,every source index can be uniquely recomputed from an a�ne combinationof target indices and constants.Let Ts be the transformation function of a statement s and T�1s its inverse.Then: ik = �k(T�1s (i01; : : : ; i0d0s))where ik 2 Es are source indices, 1 � k � ds, and �k is the projection ontothe k-th dimension, i.e., the k-th row of the matrix T�1s .If we replace the source indices in all ex condl, ex condif and executeds bythese expressions we can check whether a target point must be executed ornot.



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 50We have presented a way to ensure that only target operations of a statementare executed that have an inverse image in the respective source executionspace. In the next section we take care of the bounds of the target loops andshow their termination and that they enumerate a large enough target space.3.3 Termination DetectionExample 3.1 shows that we have to �nd `suited' bounds for the target loops.Obviously this is not possible with the original loop instructions, so we pro-pose a rewriting of the source program to get index spaces we can handle.Unfortunately these new index spaces are not equal to the old ones, butbigger in general. Thus, we have to take care of the additional points asdescribed in Section 3.2.3.3.1 Scanning Execution Spaces of Dynamic for LoopsIn this section we describe how we transform dynamic for loops to yield indexspaces we can handle.Figure 3.2 depicts the changed for instruction for a non-a�ne for loop9.Essentially two things have changed:1. We have got a new substatement in the part of the for instruction whichcomputes the new upper bound of the loop.2. We guard the original body with the execution condition of the originalloop.The new substatement max ubr := max(max ubr; UBr) is responsible for the`inexact' iteration space but yields the bene�t of getting a monotone functionfor the upper bound. The upper bound of an instance of the loop is at leastas high as the maximum of the upper bounds of all previous instances of thisloop. This monotony is one of the reasons why a�ne bound expressions areso suitable for parallelization. It enables us to compute the minimum andmaximum easily: we �nd the extrema of a monotone function either at thebeginning or at the end of the source domain.The price for a convenient shape of the new index space is �rstly the e�ortthat must be taken to prevent the execution of operations that do not belongto the execution space. By guarding the body with the original execution9Note that Figure 3.2 only shows the situation for a positive stride. If STr is negativethe computation of the maximum has to be replaced by the computation of the minimum.
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data dependence control dependence arbitrary dependence
(optional)

non-affine for instruction

(i1,...,ir-1)
=

(i1,...,ir-1)’

max_ubr :=
max(max_ubr , UBr)

ir := ir + STr

LBr ≤ ir ≤ max_ubr

ir := LBr

UBr := ubr

LBr := lbr

new body

bodyr

ex_condfr (i1,...,ir)

Figure 3.2: Changed non-a�ne for loop with a new upper boundcondition we ensure that the execution space of the body statements remainsthe same, although the number of iterations of the loop has changed (see alsoSection 3.2).Secondly, the computation of the maximum introduces a new sequentialitythat might not have existed in the original source program. Note that in-stances of a loop at level r can still be executed in parallel, if this has alsobeen possible in the original program. The sequentiality is a�ecting the loopat level r � 1.If we look at Figure 3.2, however, we notice that there is no dependence froman instance of the max ubr-statement to its next instance. This is possible,



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 52because we have some degree of freedom here.In the model, the missing dependence allows all operations of the max ubr-statement to be executed in parallel. This approach makes sense, because theorder in which the values are compared is not important and we can leaveit up to the hardware (or the memory management) to synchronize thesememory accesses. The calculation of the maximum of n values is done inone step of time from the view of the model, but its real duration naturallydepends on the value of n and re�nes the time steps. As a consequence, fromnow on there is no (strong) correlation between the schedule and the runningtime of a program anymore.If the target program is intended to run on an asynchronous target machine,we have to ensure that all updates of max ubr that are scheduled at the sametime are done before the new upper bound is used.3.3.2 Scanning Execution Spaces of while LoopsWhile the number of iterations of an instance of a for loop is known beforethe �rst operation is executed, the number of iterations of a while loop iscalculated during its execution. This is the main di�erence between non-a�ne for loops and while loops. The consequences are examined in thissection.In contrast to for loops, the upper bound of a while loop is not given as avalue but as a condition. When we are dealing with a while loop, we have tocompute an upper bound (a number) that is increasing monotonously overall instances of this loop. Figure 3.3 shows the changes of a while loop inorder to achieve this goal.Similar to non-a�ne for loops (Section 3.3.1), we need a new variable thatexpresses the upper bound. For consistency reasons we also call it max ubr.It is shared by all instances of one while loop.In the beginning max ubr is set equal to the lower bound. This means thatevery instance of the while loop evaluates the predicate executed at least onceand this is equivalent to the semantics of a while loop, which prescribes thatthe condition is evaluated at least once.As long as the condition LBr � ir � max ubr holds, the respective instanceof the loop is iterating. ir � max ubr means that every instance is runningat least as long as the previous instance. If the current instance turns outto execute more iterations than the previous one, max ubr is incremented by1 at every new iteration (see the darker grey box in Figure 3.3). Thus, atany given point in time, max ubr stores the maximum number of iterationswhich an instance of the loop has carried out up to now.



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 53
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while instruction

bodyr

ir := ir+1

ir := LBr

max_ubr := LBr

LBr ≤ ir ≤ max_ubr

LBr := 0

ex_condwr(i1,...,ir)

max_ubr :=
max(max_ubr , ir+1)

Figure 3.3: Changed while loop with an upper bound



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 54Since every instance of the loops runs at least as long as the previous one,some instances run longer than they would have done originally. This is thereason for the di�erence between the iteration and the execution space andtherefore we have to take care of execution determination expressed by thetruth value of executed.3.3.3 Bounds and TerminationWe have presented how we want to change the original source program andclaim that we can handle the changed program. Before we provide the proofsof correctness and applicability, let us look at the following lemma.Lemma 36.Let s be a statement in the body of a non-a�ne (for or while) loop at levelr and max ubr(�s(�x)), �x = (�i1; : : : ;�ids), the value of max ubr at time �s(�x).Then the currently known value of the upper bound of loop r, UBr(�i1; : : : ;�ir),is already considered for the calculation of max ubr at a time earlier than�s(�x). Further, we can abstract from the inductive computation of max ubr(Figures 3.2 and 3.3) by looking at the values which are actually considered.Formally:(8 x = (i1; : : : ; ids); �x = (�i1; : : : ;�ids) : x; �x 2 Is ^ �s(x) � �s(�x) :max ubr(�s(�x)) = maxfUBr(i1; : : : ; ir)g)Remark. For a for loop at level r UBr(i1; : : : ; ir) = UBr(i1; : : : ; i0r) =UBr(i1; : : : ; ir�1), where ir; i0r 2 Z. while loops need the last coordinate ir, asthe upper bound changes during execution. To be uniform we choose to useit for for loops, too.Proof (Sketch).The (transitive) dependences from the max ubr-statement to every bodystatement ensure that the operation hmax ubr; (�i1; : : : ;�ir)i is executed ata time earlier than �s(�x), i.e., that the UBr(�i1; : : : ;�ir) are considered \earlyenough". As for the result of a max-instruction, the order in which the valuesare considered does not matter; at a given time �s(�x) the variable max ubrcontains the speci�ed value.In the following part of the thesis we explain how and prove (partly infor-mally) that we can �nd expressions for the bounds of the target loops. Forsimplicity, we assume that the lower bounds of non-a�ne loops are smallerthan the respective upper bounds, i.e., that the strides are positive. This



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 55requirement is not a limitation of our method, but it eliminates some casedistinctions.First of all we need some requirements to be satis�ed by the source program,the scheduler and the allocator:� Requirement 1: The lower bounds of non-a�ne loops have to be a�neexpressions in the indices of surrounding loops and parameters (we shallsee later that this is not a severe limitation).� Requirement 2: Let ir and i0r be two values of the loop index of anon-a�ne loop at level r and bodyr its body. Then we require:(8 s : s 2 bodyr :ir� i0r , �s(i1; : : : ; ir; : : : ; ids) � �s(i1; : : : ; i0r; : : : ; ids))This means that statements in the body of a non-a�ne loop must notbe enumerated in opposite order, even if the dependences allow this.For while loops, this requirement is always satis�ed because of the whiledependence, but since we do not insert a similar dependence into forinstructions, Requirement 2 must be imposed on non-a�ne for loops.� Requirement 3: Upper bounds of non-a�ne for loops must not be con-sidered as known, i.e., there is no inequality that limits the upper boundof the index of a non-a�ne for loop.With these requirements, it is always possible to �nd lower bounds for thetime loops that do not depend on the upper bounds of non-a�ne loops (whichwe do not know at compile time).De�nition 37 (Minimum/Maximum of Time for a Statement).Let s 2 SP a statement in program P and �s the a�ne schedule of s. Thenmin ts := min f�s(x) j x 2 Ssgmax ts := maxf�s(x) j x 2 Ssgare the minimal and maximal values for the time at which an operation of sis executed.Lemma 38 (Lower Bounds for Time Loops).Let �s be the a�ne schedule of a ds-dimensional statement s in the body ofa loop nest with non-a�ne loops and let NAL be the set of loop indices that



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 56belong to a non-a�ne loop. Then the lower bound of the range of time forthe operations of s is:min ts = minf�s(MB1; : : : ;MBds) j(8 r : 1�r�ds : (r 2 NAL ) MBr = LBr) ^(r 2 f1; : : : ; dsg nNAL ) MBr 2 fLBr; UBrg))gProof.According to the two conjuncts, we prove the lemma in two parts:Part 1: (8 r : r 2 NAL : MBr = LBr) for minimal �s(MB1; : : : ;MBds).We prove by contradiction.(9 r : r 2 NAL : (9MBr : MBr > LBr :�s(MB1; : : : ;MBr; : : : ;MBds) � �s(MB1; : : : ; LBr; : : : ;MBds)))) f � is total g(9 r : r 2 NAL : (9MBr : MBr > LBr ::(�s(MB1; : : : ; LBr; : : : ;MBds) � �s(MB1; : : : ;MBr; : : : ;MBds))))) f Requirement 2 g(9 r : r 2 NAL : (9MBr : MBr > LBr : :(LBr � MBr)))) f � is total g(9 r : r 2 NAL : (9MBr : MBr > LBr : (MBr < LBr)))) f contradiction to the assumption g�Part 2: (8 r : r 2 f1; : : : ; dsg nNAL : MBr 2 fLBr; UBrg) for minimal�s(MB1; : : : ;MBds). We prove by contradiction.(9 r : r 2 f1; : : : ; dsg nNAL : (9MBr : LBr < MBr < UBr :�s(MB1; : : : ;MBr; : : : ;MBds) � �s(MB1; : : : ; LBr; : : : ;MBds) ^�s(MB1; : : : ;MBr; : : : ;MBds) � �s(MB1; : : : ; UBr; : : : ;MBds)))) f de�nition of the lexicographical order �; let l be the �rst dimensionwhere the values of �s(: : :) are di�erent and clk : 0 � k � ds be thecoe�cients in the l-th dimension of �s g(9 r : r 2 f1; : : : ; dsg nNAL : (9MBr : LBr < MBr < UBr :cl1MB1 + � � � + clrMBr + � � � + cldsMBds + cl0< cl1MB1 + � � � + clrLBr + � � � + cldsMBds + cl0^ cl1MB1 + � � � + clrMBr + � � � + cldsMBds + cl0< cl1MB1 + � � � + clrUBr + � � � + cldsMBds + cl0))) f arithmetic g



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 57(9 r : r 2 f1; : : : ; dsg nNAL : (9MBr : LBr < MBr < UBr :clrMBr < clrLBr ^ clrMBr < clrUBr))) f range of MBr g(9 r : r 2 f1; : : : ; dsg nNAL : (9MBr : LBr < MBr < UBr :clr < 0 ^ clr > 0))) f arithmetic g�The time for the �rst operation of a statement in the body of a loop nestwith non-a�ne loops still depends on the lower and upper bounds of a�nefor loops but only on the lower bounds of non-a�ne loops.To �nd this minimum we need Requirement 1. It ensures that the expressionfor the minimum consists only of a�ne subexpressions. Thus, we can applyexisting methods (like [6], [8] or [27]) for �nding the minimum.The next step is to show that our time loops are running long enough. Inthe proof we apply the following lemma.Lemma 39 (Positive Coe�cients).Let �s a dts-dimensional a�ne schedule for statement s and r : 1 � r � ds anon-a�ne dimension. Then the r-th column *cr in the coe�cient matrix of�s contains only values that are greater or equal to 0, i.e.,(8 r; �s : r 2 NAL :�s satis�es Requirement 2 , *cr�*0)Proof.Let x = (x1; : : : ; xr; : : : ; xds) 2 X s and x0 = (x1; : : : ; x0r; : : : ; xds) 2 X s.xr < x0r, f Requirement 2 g�s(x) � �s(x0), f �s is an a�ne function g*c0 + *c1 x1 + : : : + *cr xr + : : : + *cds xds� *c0 + *c1 x1 + : : : + *cr x0r + : : : + *cds xds, f lexicographical order g*cr xr �*cr x0r, f arithmetic g*cr (xr � x0r) �*0, f arithmetic g*cr�*0



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 58Lemma 40 (Enumerating Enough Time).Let s and �s as usual. The time at which an operation of s is executed is neverlater then the maximum value of the schedule with respect to the executionspace known at that time step. Formally:(8 x : x = (i1; : : : ; ids) 2 X s : (8 l : l 2 f1; : : : ; dsg :�s(x) � maxf�s(MB1; : : : ;MBds) j (l 2 NAL ) MBl = max ubl(�s(x))) ^(l 2 f1; : : : ; dsg nNAL ) MBl 2 fLBl; UBlg)))Proof.Let *cl, 0 � l � ds, the l-th column in the coe�cient matrix of �s. Lemma 36implies(8 x : x = (i1; : : : ; ids) 2 X s : (8 r : r 2 NAL : ir � max ubr(�s(x))))) f Lemma 39 g(8 x : x = (i1; : : : ; ids) 2 X s : (8 r : r 2 NAL :*cr ir � *crmax ubr(�s(x))))) f let MBk 2 fLBk; UBkg the values that contribute to the maximum g(8 x : x = (i1; : : : ; ids) 2 X s :(8 r : r 2 NAL : *cr ir � *crmax ubr(�s(x))) ^(8 k : k 2 f1; : : : ; dsg nNAL : *ck ik � *ckMBk))) f arithmetic g(8 x : x = (i1; : : : ; ids) 2 X s :(8 r : r 2 NAL : Pr *cr ir � Pr *crmax ubr(�s(x))) ^(8 k : k 2 f1; : : : ; dsg nNAL : Pk *ck ik � Pk *ckMBk))) f arithmetic g(8 x : x = (i1; : : : ; ids) 2 X s : (8 r; k : r 2 NAL; k 2 f1; : : : ; dsg nNAL :Pr *cr ir +Pk *ck ik � Pr *crmax ubr(�s(x)) +Pk *ckMBk))) f arithmetic g(8 x : x = (i1; : : : ; ids) 2 X s :(8 l; r; k : l 2 f1; : : : ; dsg; r 2 NAL; k 2 f1; : : : ; dsg nNAL :Pl *cl il � Pr *crmax ubr(�s(x)) +Pk *ckMBk))) f arithmetic g(8 x : x = (i1; : : : ; ids) 2 X s :(8 l; r; k : l 2 f1; : : : ; dsg; r 2 NAL; k 2 f1; : : : ; dsg nNAL :Pl *cl il+ *c0 � Pr *crmax ubr(�s(x)) +Pk *ckMBk+ *c0))) f de�nition of the *cl and \� implies �" g(8 x : x = (i1; : : : ; ids) 2 X s : (8 l : l 2 f1; : : : ; dsg :(l 2 NAL ) MBl = max ubl(�s(x))) ^(l 2 f1; : : : ; dsg nNAL ) MBl = MBl) ^(�s(x) � �s(MB1; : : : ;MBds))))



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 59) f de�nition of MBl and analogous application of Part 2 of the proofof Lemma 38, where �, < and > are replaced by �, > and <,respectively g(8 x : x = (i1; : : : ; ids) 2 X s : (8 l : l 2 f1; : : : ; dsg :�s(x) � maxf�s(MB1; : : : ;MBds) j (l 2 NAL ) MBl = max ubl(�s(x)))^ (l 2 f1; : : : ; dsg nNAL ) MBl 2 fLBk; UBkg)))Lemma 41 (Termination of Time Loops).The time loops terminate after a �nite number of steps if the source loopsterminate, i.e., after some time step �t the bounds max ubr of non-a�ne loopsdo not change anymore:(9 �t : �t�min ts : (8 t : t>�t : max ubr(t) = max ubr(�t)))Proof. (Sketch)We prove this assertion informally.max ubr(t) = maxfUBr(x1; : : : ; xr) j �s(x1; : : : ; xds)� tgmax ubr(�t) = maxfUBr(x1; : : : ; xr) j �s(x1; : : : ; xds)��tgIf the two sets contain the same elements, both maxima are sure to be equal.What sets are possible? The number of elements in the set of all di�erentupper bounds fUBr(i1; : : : ; ir) j LBk� ik�UBk ^ 1�k� rg is �nite if allsurrounding loops terminate. This means that there has to be an instant oftime (�t) where all di�erent upper bounds UBr are considered. For all t� t̂,the set of upper bounds does not change and so the maximum of this setdoes not change, either.Since the max ubr are the only values in the expression for the maximum oftime that change over time and there is a point in time at which this valuesdo not change anymore, the loops that enumerate the time dimension mustterminate after a �nite number of time steps.Lemma 41 means that, if we replace the original upper bound ubr of a loopby max ubr, we can �nd bounds for the time loops of the target program.However, the polyhedron model is based on solving systems of linear in-equalities | and max ubr is not a linear expression. For the parallelizationsteps of dependence analysis and computing schedules and allocations for theoperations of the statements in a source program, we can replace the newupper bound of non-a�ne loops by a structure parameter that represents a



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 60\large enough" value10 (Requirement 3). A constant parameter is an a�neexpression, and so all parallelization steps can be carried out as usual.When generating the target code, we have to replace this new inserted arti-�cial parameter by its `proper' value. In the expressions of the target loopbounds this is max ubr. The previous proofs and explanations show that, atany given time, this value is large enough. We only have to take care not toread values of max ubr at a time at which no operation of a statement in thebody of the loop is executed, i.e., max ubr must contain a valid value. Thisproblem can be solved by holding a (global) ag valid ubr that is initializedwith � and is set to tt by the processor that is assigning to max ubr for the�rst time. We implement the administration of the ag valid ubr as a sidee�ect of the loop instructions (see Chapter 4 and especially Section 4.2).The set of points that are to be executed in the same time step is called atime slice. Lemma 41 implies that there is a �nite number of such time slicesof a statement.Remark. Every single time slice of a statement contains a �nite number ofoperations.As all for loops terminate11, they enumerate a �nite number of operations.Thus, the number of operations executed at a given time step must be �nite,too. For while loops the �niteness of time slices is proved in [11].Now we know that, at a given instant of time, we only have to address a �nitenumber of processors. The following lemmata ensure that we can describethis set of processors and that it is large enough.Lemma 42 (Lower Bounds for Space Loops).The lower bounds of the space loops can be computed as in the polytope model.Proof.Let *LBs= 0BB@ LB1...LBds 1CCA the ds-dimensional vector of the lower bounds of theloops surrounding statement s and p = (p1; : : : ; pdps ) the values of the spacecoordinates. For a point in TSs at a given time step �t = (�t1; : : : ; �tdts), thefollowing condition must be satis�ed:*LBs � T�1s (�t; p) (3.1)10It is assumed to be positive if the stride STr is positive and negative if the stride isnegative.11PASCAL-like loop semantics.



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 61where each row in T�1s represents a source index corresponding to the re-spective lower bound.As the expressions in *LBs are all a�ne and T�1s is also an a�ne function,this system of inequalities can be solved to express p1 in dependence on �t,p2 in dependence on �t and p1, etc. This can be done by applying one of thealgorithms in [6], [8] or [27].We have to show that we can also �nd the other bound of the range of thespace indices.Lemma 43 (Upper Bounds for Space Loops).The upper bounds of the space loops can be computed by allocators based onthe polytope model.Proof (Sketch).Let *UBs= 0BB@ UB1...UBds 1CCA the ds-dimensional vector of the upper bounds of theloops surrounding statement s and p = (p1; : : : ; pdps ) the values of the spacecoordinates. For a point in TSs at a given time step �t = (�t1; : : : ; �tdts) thefollowing condition must be satis�ed:T�1s (�t; p) � *UBs (3.2)where each row in T�1s represents a source index corresponding to the re-spective lower bound.Again T�1s is an a�ne function, but now the expressions for UBr, where1 � r � ds and r 2 NAL, are given by max ubr and these are non-a�ne.Therefore, in this form the inequalities cannot be solved by the algorithmsused for the the lower bounds.If we take a look at Lemma 36, we notice that the values of max ubr form afunction of time. As in Lemma 42, in our synchronous view, time is �xed forthe space dimensions and so the values of UBr can be considered constantby the allocator. Constants are a�ne and so the algorithms for calculatingthe lower bounds can be applied.When generating the target code, we only have to replace this arti�cial con-stant by the real value of max ubr.Remark. The same arguments would hold for Lemma 42, too, i.e., Require-ment 1 would not be necessary for allocations, if we introduced a min ubr fornon-a�ne lower bounds. However, for �nding lower time bounds, we needthe lower source bounds to be a�ne (and Requirement 2).



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 62In Lemmata 42 and 43, we state which bounds for the space loops we wantto use. However, we modi�ed the source loop bounds and so we have to showthat we are enumerating enough (virtual) processors.Lemma 44 (Enumerating enough Space).Let s 2 SP a statement in the source program P and Ts the transformationfor s. Then: (8 x : x 2 X s :Ts(x) = (�t; p) satis�es conditions 3.1 and 3.2)Proof.T�1s (Ts(x)) = x, as we only consider bijective transformations. We have toshow (8 x : x = (i1; : : : ; ids) 2 X s : x satis�es Conditions 3.1 and 3.2).Condition 3.1 is trivially satis�ed, since the de�nition of for loops and whileloops implies that (8 r : 1 � r � ds : LBr � ir) and we do not change thelower bounds.Since we have changed the upper bounds of non-a�ne loops, we have to takea closer look at Condition 3.2.Case 1: ir is the index of an a�ne for loopis for(r)) f semantics of for loops gir � UBrCase 2: ir is the index of a non-a�ne loopr 2 NAL) f we changed the upper bound gir � max ubr) f Lemma 36 gir � max ubr(�s(x))I.e., at a given point in time, we enumerate enough processors. Since UBr �max ubr, in general we enumerate too many.



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 633.3.4 Di�erent Methods for Termination DetectionThe basis of the termination detection described in this thesis is the calcu-lation of the maximum of upper bounds, max ubr. In [1] and [11] two othermethods are presented: the signaling scheme [11] for distributed-memorycomputers and the counter scheme [1] for shared-memory computers. Theirgoal is to avoid as many communications and overhead as possible (withinthe scope of the respective machine model).In our thesis we concentrate on the \synchronous parallelism on a shared-memory machine" point of view, since this view is closest to the usual sequen-tial way of thinking and since we wanted to learn about parallel executionat an abstract level. Further, in [5] methods for mapping parallel shared-memory programs to distributed-memory machines are described. These arealso implemented in LooPo [13]; so the decision for generating shared-memoryprograms does not restrict the choice of target machine. However, we expectthat, for distributed-memory machines, the signaling scheme yields betterresults than the adapted methods for shared-memory machines. Anyway,we think that many of the theoretical results in this thesis are valid for thesignaling scheme, too.In the present section, we compare the counter scheme [1] to the way wedescribe termination detection in this thesis, which we call the maximumscheme.In the counter scheme, a global shared counter is incremented before a new`tooth' (an instance of a loop) starts (in any arbitrary dimension) and isdecremented when a tooth terminates. The program terminates when everytooth has terminated, which is the case when the counter is 0 again. [1]also describes possible optimizations to prevent the counter from becominga bottleneck.The main advantage of the counter scheme is the reduction of synchroniza-tion by one dimension. The management of the counter does not a�ect theinnermost dimension which causes a considerably decrease in run time over-head; the more iterations the instances of the innermost loop execute, thebigger the gain.To generalize the counter scheme for the execution of non-perfect generalloop nests, essentially for every tooth of a for loop (that is not the innermostloop) the counter must be incremented by the number of iterations the loopwill execute. This is the number of teeth of the next inner loop which willstart into the next dimension. When an instance of a for loop terminates,the counter has to be decremented by 1 in the same way as for while loops.However, the target execution space is not the same for all statements that



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 64have the same source execution space, so it is not possible to say precisely\when an instance of a loop terminates". Consider two statements withthe same dimensionality r in the body of a loop nest. An instance of thesurrounding loop terminates only when all operations of the statement whoseschedule yields the largest values have been executed. It must be ensuredthat this statement decrements the counter (as side e�ect). We suspect that,for non-perfect loop nests where every statement has its own transformation,it is hard to �nd this statement at compile time; but we refer to possiblefuture studies on this.Another drawback is the reduced information the counter scheme stores.Only the number of currently executing loop instances is known and thatleads to a very inexact scanning of the space dimensions. As partitioning(see also Section 3.5) divides a space dimension into a space dimension forthe really existing processors and a time dimension, this rough approximationcosts also time.A generalization of the counter scheme has to store larger numbers than themaximum scheme. The latter stores only the maximum of the upper boundsof non-a�ne loops, whereas the former stores the number of instances of allkinds of loops. This might cause practical problems.The transformation of the counter scheme for distributed-memory machinescauses a lot of time-consuming communication which can be used to calculatethe max ubr as well. This provides more information and makes an explicitcounter unnecessary.We illustrate the di�erences between the spaces scanned by the counter andthe maximum scheme by means of the following �gures. Consider the spacesshown in Figure 3.4.The left part shows the source index space of statement s, e.g., given by thesource program of Section 3.1. The right part shows the target index spacedetermined by the transformation Ts =  1 10 1 !.Note that the j-dimension of the source index space has no upper boundin the polyhedron model. Accordingly, both dimensions of the target indexspace have no upper bounds, either (expressed by the dark grey color shadingo� into white).The following three �gures show di�erent sample target execution spaceswith their respective scanned target spaces.For Figure 3.5 the values of a[i] happen to be 5; 3; 2; 2; 1; 1. We notice that thecounter scheme enumerates one more (virtual) processor than the maximumscheme, but the latter enumerates considerably more time.The region containing the horizontal dashed lines contains the points whichwould be scanned additionally by the maximum scheme if the target index
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Figure 3.4: The index spacesspace (known at compile time) was not considered. Since our maximumscheme considers the intersection of the target space and the space thatwould be scanned if only the max ub values were used (without concerningthe index space), the dashed region is cut o� the scanned target space.This is an example where the di�erence between both schemes becomes veryclear and the counter scheme delivers better results. The reason is thatthe �rst tooth is the longest and the upper bound of j is monotonouslydecreasing.Figure 3.6 shows a case that is more common. The values of a[i] are 1, 1, 3,2, 4, 1.Because the longest tooth is close to the end, the maximum scheme is aboutas good as the counter scheme; it only needs one additional time step. Thespace dimension is scanned more precisely by the maximum scheme. Theadditional information given by the max ub values causes the `jagged', thusmore precise, left border of the target space scanned by the maximum scheme.Again the dashed region is actually not scanned.Figure 3.7 depicts a target space that is supported best by the maximumscheme. Both methods yield minimal possible time, but only the maximumscheme scans the space dimension precisely. We can say that the maximumscheme yields the same run time as the counter scheme if the upper boundof the j-dimension is increasing monotonically. Then the maximum scheme,in general, scans a smaller subset of the target index space than the counterscheme.
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Figure 3.5: The scanned target spaces: counter vs. maximumSummary of the results:� Both schemes depend heavily on the actual target execution space. Ifthere is statistical knowledge about the values occurring at run timethen it is possible to decide which scheme to use.In general: monotonically increasing upper bounds are supported bet-ter by the maximum scheme whereas with virtual processors the timedimensions are scanned more precisely by the counter scheme.� The usage of a greater number of real processors has a greater e�ectwith the counter scheme than with the maximum scheme. However,naturally the latter one is improved, too.� No method can be said to be \best", but a combination of both methodsis better than any of the two alone. It scans the intersection of both
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Figure 3.6: The scanned target spaces: counter vs. maximumscanned target spaces and this is smaller than any individual scannedtarget space.We choose to use the maximum scheme for termination detection, becauseit constitutes a more consequent generalization of the existing method fora�ne for loops. Additionally we avoid the necessity of �nding that statementamong all statements with the same execution space whose schedule yieldsthe largest values.It may turn out that the biggest (practical) advantage of the maximumscheme is the comparatively small storage overhead for the values ofmax ubr.Further studies will have to deliver more concrete and measurable results.
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Figure 3.7: The scanned target spaces: counter vs. maximum3.4 \By-Statement View"All our deliberations so far have only been concerned with perfect loop nestswith only one body statement, or rather with a body that is subject to oneand the same transformation function for all statements. This is how thescheduling and allocation method by Lamport [18, 26] can treat bodies ofperfectly nested loops. Thus, all operations of di�erent statements at thesame iteration are mapped to one instant in time and one processor, and thewhole body of one iteration is executed sequentially. Only di�erent iterationsare executed in parallel.Modern scheduling and allocating techniques [2, 4, 7, 21, 26] calculate ana�ne schedule and allocation for each individual statement. This implies thatoperations of di�erent statements and di�erent iterations can be executed inparallel and that loops do not have to be perfectly nested.The disadvantage is that, in general, every statement has a di�erent target



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 69execution space even if the source execution spaces are equal. These targetexecution spaces must be scanned by one common target loop nest, i.e., theymust be merged.Wetzel [25] o�ers a method for merging target execution spaces of statementsin the body of loop nests with only a�ne loops.Since we base our code generation technique on the output (created by theso-called \synchronous run time method") of Wetzel's code generator, webriey explain its basics here without considering special cases.Roughly, the transformation of the source execution spaces yields as manyd-dimensional target polytopes as there are statements (say n) in the sourceprogram. One dimension of the union of all these n target polytopes isenumerated by one single target loop, a sequential one if it is a time dimensionand a parallel one if it is a space dimension. The lower bound of the loopfor some target dimension is determined by the minimum of the n minimaof the respective dimension. Analogously, the upper bounds are determinedby the \maximum of all maxima".Example 10 (Merging the Target Execution Spaces).Consider the following source program:for i := 0 to 5for j := 0 to 2s1s2endendLet T1 =  1 00 1 !, T2 =  1 01 1 !, T�11 =  1 00 1 !, T�12 =  1 0�1 1 !be the transformation functions and their inverses of statement s1 and s2,respectively. The two target execution spaces are depicted in Figure 3.8 (left)and can be described by the following inequalities:Statement 1 Statement 20 � t � 50 � p � 2 0 � t � 5t � p � t + 1Next we have to compute the minimum and maximum of every dimensionfor every statement. This is very simple in this example:
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additionally scanned iterationsFigure 3.8: Target execution spaces (left) and scanned execution space (right)
Dimension Statement 1 Statement 2min max min maxt 0 5 0 5p 0 2 t t + 2The last step is to compute the minimum and maximum of t and p over allstatements. These values are the new target loop bounds:min(0; 0) � t � max(5; 5)min(0; t) � p � max(2; t+ 2)The union of all grey regions in Figure 3.8 represents the scanned targetspace. It is not exactly the union of the two execution spaces. Thus, thereare points at which no, one or two operations have to be executed, e.g., (4; 3),(3; 1), (1; 2), respectively.To prevent the execution of points that are not in the execution space of astatement, every statement in the target program is guarded by its trans-formed predicate executed.Note the two di�erent levels at which an inexact scanning of the target exe-cution spaces can occur:



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 711. As described in Sections 3.2 and 3.3 and as considered in Chapter 2, thetarget execution space of a statement may not be precisely scannable.2. In this section we see that the union of the target execution spaces ofdi�erent statements is not precisely scannable | even if the individualtarget execution spaces were precisely scannable.As predicate executed of a statement describes its execution space exactly, itsolves both problems at one go.The execution predicates here are the same for both statements, since bothstatements are in the same loop nest and have the same level (namely 2):executeds1(i; j) � executeds2(i; j) �0 � i � 5 ^ (i� 0)%1 = 0 ^ 0 � j � 2 ^ (j � 0)%1 = 0Since every statement has its own transformation, we get two predicatesexecuted on the target side, one for each statement:Statement 1 Statement 2targ-executeds1(t; p) � targ-executeds2(t; p) �0 � t � 5 ^ (t� 0)%1 = 0 ^0 � p � 2 ^ (p� 0)%1 = 0 0 � t � 5 ^ (t� 0)%1 = 0 ^t � p � t + 2 ^ (p� t� 0)%1 = 0With t as time and p as processor dimension we can construct the targetprogram: for t := min(0; 0) to max(5; 5)forall p := min(0; t) to max(0; t + 2)if targ-executeds1(t; p) thens01endifif targ-executeds2(t; p) thens02endifendends01 and s02 are the transformed statements, where i and j are expressed interms of t and p.



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 72This target program ensures the scanning of a large enough space and avoidsexecution of operations at inappropriate iterations.Remark. The example illustrates only the basic steps of target code genera-tion �a la Wetzel. [25] describes a number of extensions, e.g., the handling ofnon-bijective and non-unimodular transformations, not mentioned here.3.5 Implications of FinitenessExample 3.1 illustrates that it is not always possible to generate an asyn-chronous parallel target program, because the upper bounds of the spaceloops may not be known at the beginning of the execution. On the otherhand, there are machines that work asynchronously and consequently needasynchronous programs. The logical implication would be that, in general,only parallel synchronous or sequential asynchronous target programs arederivable.However, this scenario does not take into account that we have only a �nitenumber (say n) of processors and must apply a partitioning algorithm (e.g.,[23]) to map the virtual processor coordinates onto real processors.Essentially when partitioned, one virtual processor loop becomes a nest oftwo loops. One of them enumerates all n processors in some dimension andthe other counts the number of steps each of the n processors has to makein order to enumerate the whole (virtual) dimension.Example 11 (Partitioning).Let the program for p := 0 while cond do body endenumerate a space dimension in the target program that could be executedin parallel if its upper bound were known. Further let n be the number of(real) processors in the respective dimension. Partitioning would change theloop as follows: for pp := 0 to n� 1 dofor pt := pp while cond step n dop = pp+ ptbodyendend



CHAPTER 3. DYNAMIC APPROX. OF EXECUTION SPACES 73The while loop still does not o�er the opportunity for more parallelism| butthe new for loop does. Since all statements in the body may be carried out inparallel, we can change the for loop into a forall loop and exploit the maximumparallelism our machine o�ers. The second loop would be sequential in anycase (also if it was a for loop), because we do not have more than n processorsin the respective dimension. Thus, no more parallelism is possible.With a �nite number of processors we can have partially parallel while loopswith a speed-up of n.The theoretically interesting conclusion of this section is that, in practice,we can also derive asynchronous target programs that exploit the maximumparallelism that is o�ered by a given multi-processor machine. It does notexploit the maximum theoretical parallelism o�ered by the source program.



Chapter 4Implementation in LooPoLooPo [13] is a prototype of an automatic parallelizer for sequential sourceprograms which are written in a loop language. It o�ers a variety of methodsfor dependence analyses, for �nding (piecewise a�ne by-statement) sched-ules and allocations and for generating synchronous or asynchronous targetprograms for distributed-memory or shared-memory machines. It also pro-vides a graphical tool to view the source and target execution spaces of thedi�erent statements.At present, LooPo can deal with (possibly 0-dimensional) arrays as datastructures and a�ne for loops as control structures. Within the scope of thisdiploma thesis we implement an extension to LooPo which makes it capableof dealing with if statements and all types of for and while loops.In Chapter 3 we described the theoretical basis of our method. However,for historical reasons the current implementation of LooPo lacks structuresthat are general enough to express programs with general loop nests: sincethe execution conditions of a�ne for loops can be evaluated at compile time,there was no need to �nd schedules and allocations for loop instructions sofar.The execution condition of a general loop, however, must be evaluated atrun time. In Chapters 2 and 3 we saw that a loop instruction consists ofseveral substatements whose results are part of the respective execution con-dition. We have to �nd schedules and allocations for these substatements,to be able to evaluate the execution condition at run time. Therefore, andto meet the needs of the parallelization tools like the dependence analysis,scheduler, allocator and the present code generator that we want to use asfar as possible, we have to transform the source program.This program transformation (at the source level) is called normalization,because it puts all loops in a similar form. Note that our normalization |74



CHAPTER 4. IMPLEMENTATION IN LOOPO 75in contrast to other normalizations that can be found in the literature, e.g.,[20] | does, in general, not preserve the semantics of the source program:the execution spaces of statements are changed. We will also transform ifstatements and insert new statements, so that the program can be handledby the \other tools". Since normalization does not preserve the semantics,we have to retransform the program during code generation, i.e., we have torestore the original execution spaces.4.1 NormalizationWe describe the normalization in �ve steps. These are implemented in thenormalization module (see Figure 0.2).Input: a program as described in Chapter 1, i.e., with all kind of loopsand with if statementsOutput: � a program with di�erent semantics, only a�ne for loops and noif statements, but with additional (user-de�ned control) depen-dences and� a list of records that establish a relation between every statementand the execution conditions of its surrounding non-a�ne loopsand if statements. This list also contains information of whethera statement was an ordinary statement in the source programor whether it originates from an if statement, from a while loopor from a non-a�ne for loop.1. The for loops with a non-a�ne lower bound are normalized to have alower bound that is 0, i.e., a for loopfor i := lb to ub step ST dobodyendis changed to LB[indlist] := lbfor i := 0 to (ub� LB[indlist]) step ST dobody0end



CHAPTER 4. IMPLEMENTATION IN LOOPO 76where in body0 all occurrences of i are replaced with i+LB[indlist]. Theassignment before the for instruction is necessary, because some state-ment in the body may change values occurring in lb and a subsequentevaluation of i+ lb would yield the wrong result. Furthermore, thisallows lower bounds with side e�ects. indlist is the list of all enclosingloop indices. The usage of an array ensures that no possible parallelismis destroyed.Remark. LB must be unique within the source program.With regard to parallelization, we have to ensure that the new assign-ment is executed before all the body statements. We can achieve thisby inserting user-de�ned dependences from the new assignment to allstatements in the body of the loop.After this step, we have only for loops with a�ne lower bounds. Thus,requirement 1 in Chapter 3 is satis�ed.Note that this step preserves the semantics of the source program.2. All for loops with a non-a�ne upper bound are changed toboolean validfubb := �integer maxfubb := 0: : :UB[indlist] := ubmaxfubb := max(maxfubb; UB[indlist])for i := lb to FUBB step ST doif (lb <= i <= UB[indlist] and (i� lb)%ST = 0) thenbodyendifendIf the stride is negative, then we have to replace the calculation ofmaxfubb by minfubb := min(minfubb; UB[indlist]).This step alters the semantics of the program. The upper bound willbecome greater than it was in the source program, i.e., the index spaceof the body is enlarged. During code generation, we must take care toobtain the correct execution space.Again new dependences from both new assignments to every bodystatement have to be inserted.



CHAPTER 4. IMPLEMENTATION IN LOOPO 77maxfubb is the same as max ub for a for dimension in the last chapterand computes the new upper bound of the loop. It is initialized withan arbitrary value. validfubb is a boolean ag that indicates whether avalue of maxfubb is already written. If so, maxfubb does not contain anunde�ned value and may be read from now on. validfubb is initializedwith �.FUBB (For loop Upper Bound Blob) is a new constant parameterwhose value has to be assumed to be in�nite by the other tools. Itmust be replaced by the value of the respective maxfubb during codegeneration to ensure the termination of the target program. We cannotsimply replace FUBB bymaxfubb, because this would yield a non-a�nebound which cannot be handled by the other tools.Remark. The variablesmaxfubb and validfubbmust be unique for everynon-a�ne for loop within the source program.3. We change while loops as described in Chapter 3:while cond do body endis changed to integer maxwubb := 0: : :for new i := 0 to WUBB doif (executed[indlist]) thenbodyendifendWhat applies to FUBB and maxfubb also applies to WUBB (Whileloop Upper Bound Blob) and maxwubb. The latter is declared andinitialized here but is only introduced into the target program duringretransformation (see Section 4.2). We do not need a validwubb fora while loop, because we know the lower bound. It is 0 for every in-stance of the loop and does not depend on any other values. Initializingmaxwubb with 0 means that every normalized while loop executes atleast one iteration, which is necessary to check the while condition atleast once.



CHAPTER 4. IMPLEMENTATION IN LOOPO 78The single if statement is not powerful enough to ensure the correctexecution space of the body. It has to check the execution condition ofthe while loop and this is more complex (see Section 2.1.2). We haveto take care of this when we retransform the target program.We still have to eliminate the if statements.4. There are three kinds of if statements in the source program:(a) Standard if statements are transformed as follows:if cond then body endifis changed to new if [indlist] := condbodyThe value of the condition must be stored for the same reasons asthe bounds of non-a�ne for loops.This transformation changes the execution space of the body, as itwould be executed unconditionally this way. We must take care ofthat during code generation. Therefore we must record to whichbody every statement originally belonged.We insert dependences from the new assignment to every state-ment in the body of the original if statement.(b) If the if statement results from a while loop, we have to insertadditionally the while dependence from an operation of the newassignment to the operation at the next iteration of new i. Thereason for this dependence is the calculation of executed. The newassignment (together with the new for loop) represents the whileloop in the normalized source program.(c) An if statement originating from a non-a�ne for loop can onlyhave a condition of the form:lb <= i <= UB[indlist] and (i� lb)%ST = 0 orlb <= i <= (UB[indlist]� LB[indlist]) and (i� lb)%ST = 0As the values occurring in these expressions are already storedand never written again, we need not insert the new assignment.The dependences we inserted for the UB[indlist] statement andLB[indlist] statement already contain the control dependencesfrom the if statement to its body. Note that this is just an opti-mization to save memory.



CHAPTER 4. IMPLEMENTATION IN LOOPO 79We must record the origins of if statements to be able to make the casedistinctions described above.Remark. The new inserted user-de�ned dependences embody the control de-pendences shown in Figures 2.2, 2.3, 2.4, 3.1 and 3.2.We illustrate the normalization by means of the following example and returnto this example again later to describe the retransformation during codegeneration.Example 12 (Parallelization of Dynamic Execution Spaces).Given the following source program, which contains an a�ne for loop, a non-a�ne for loop, an if statement, and a while loop and which is not perfectlynested, we apply the normalization steps \one by one" and \inside out", i.e.,we begin with a loop or if statement at an innermost level, apply all �ve stepsand continue with the next outer level./* source program */for i := 0 to 4 doif (a[i] = 0) thenfor j := b[i] to b[i] + c[i] do1 : b[i] := b[i] + 12 : c[i] := c[i] + 1endendifwhile (a[i] > 0) do3 : a[i] := a[i]� 1endendAfter applying the normalization steps we get the following result:



CHAPTER 4. IMPLEMENTATION IN LOOPO 80/* normalized source program */boolean validfubb := �integer maxfubb := 0integer maxwubb := 0for i := 0 to 4 do7 : new if 1[i] := (a[i] = 0)4 : LB[i] := b[i]5 : UB[i] := abs(c[i])6 : maxfubb := max(maxfubb; UB[i])for j := 0 to FUBB do1 : b[j + LB[i]] := b[j + LB[i]] + 12 : c[j + LB[i]] := c[j + LB[i]] + 1endfor k := 0 to WUBB do8 : new if 2[i; k] := (a[i] > 0)3 : a[i] := a[i]� 1endend inserted dependencessource target h-transformation7 4 � 1 0 �564 1 � 1 0 0 �25 1 � 1 0 0 �26 1 � 1 0 0 �28 8  1 0 00 1 �1 !3  1 0 00 1 0 !Note that we did not insert dependences 7�1 and 7�2, although statements 1



CHAPTER 4. IMPLEMENTATION IN LOOPO 81and 2 belong to the body of the if statement. This is legal, because we knowthat we insert, e.g., dependences 7�4, 4�1 and 4�2 which contain dependences7�1 and 7�2 in their transitive closure.This optimization can be done because we know the normalization algorithm.It does not eliminate arbitrary transitive dependences in source programs.These are treated by the dependence analysis afterwards.Remark. The inserted dependences describe only a temporal sequence andcorrespond to the control dependences shown in Figures 3.1, 3.2 and 3.3. Itis still up to the dependence analysis to identify the data dependences.As stated above, the normalization yields a relation, we call it STATEC(STAtement ordered Table of Execution Conditions), between each state-ment (in the normalized program) and the execution conditions of its non-a�ne dimensions. These are the execution conditions of non-a�ne for loopsand if statements. Additionally we remember the origin of each statement:types of originsordinary the statement was an ordinary statement in the sourceprogramif the statement was an if statement that was normalizedto a new if arrayUB[] the statement is the new assignment of the originalnon-a�ne upper bound of a non-a�ne for loopmaxfubb the statement is the new assignment which calculates themaximum of the upper bounds of a non-a�ne for loopwhile the statement is a new if statement originating from thenormalization of a while loopNote that we do not have to store the % expressions concerning the stridesand the conditions of a�ne for loops, as these are already considered by thecode generator for a�ne loop nests.We use relation STATEC to retransform the target program (see Section 4.2).Example 13 (STATEC).This example is a continuation of Example 12 and shows relation STATECfor the normalized source program.



CHAPTER 4. IMPLEMENTATION IN LOOPO 82
STATEC for the normalized programstatement conditions origin7 | if4 new if 1[i] = tt ordinary5 new if 1[i] = tt UB[]6 new if 1[i] = tt maxfubb1 new if 1[i] = tt ordinary0 � j � UB[i]2 new if 1[i] = tt ordinary0 � j � UB[i]8 | while3 new if 2[i; k] = tt ordinaryEach row expresses the relation between a statement and the conditions thatdetermine the dimensions of its execution space.After the normalization, the source program meets the requirements we haveimposed on the retransformation, and we can send it through the \paral-lelization pipeline" of LooPo.4.2 RetransformationWe base our method on the \synchronous run time" target program pro-duced by the method described in [25]. This computes already the targetloop bounds and executed predicates for the normalized (and therefore a�neportions of the) execution spaces. So we only have to restore the changesmade during normalization.Remark. The retransformation part could also be implemented as an integralcomponent of the target generator by applying the extensions described inthe previous chapter.See Example 14 for an accompanying illustration of the retransformationsteps.Input: � the (partitioned, tiled) target code generated by the \synchronousrun time method" of the target code generator by Wetzel [25],� a list of records that establish a relation between every statementand its (non-a�ne) dimensions.



CHAPTER 4. IMPLEMENTATION IN LOOPO 83Output: the retransformed synchronous target program with the samesemantics as the source program1. Retransformation of the Target Loops:Scan the target program for target loops. Sequential loops (for loops)are time loops and parallel loops (parfor loops) are space loops.(a) Time Loops:A time loop looks as follows:for t := min(tlb1; : : : ; tlbn) to max(tub1; : : : ; tubn) step ST do: : :endt is the index of the time loop, n is the number of program parts inthe target program generated by the target generator of Wetzel.tlbk (tubk), 1 � k � n, are the lower (upper) bounds of the re-spective dimension of the scanned target space for program partk. The tlbk and tubk are ordered according to the sequence ofthe program parts in the target program and each pair (tlbk,tubk)corresponds to exactly one program part.In the last chapter, we have shown that a lower bound of a timedimension never depends on an upper bound of a non-a�ne loop.Thus, no expression tlbk can contain a FUBB or WUBB.Consequently we only have to change the upper bounds of timeloops. Let tubk be an upper bound that contains some WUBBsand FUBBs, denotedtubk(FUBB1; : : : ;FUBBl;WUBBl+1; : : : ;WUBBm)We have to replace the FUBBs and WUBBs by the respectivevariablesmaxfubb andmaxwubb, introduced during normalizationand computed at run time. This means that the upper boundchanges during the execution of the target program and can betaken into account by changing the for loop into a while loop.The values of maxfubb, however, are not valid from the beginningof the execution, so we must prevent them from being read \tooearly" for the evaluation of the upper bound of time.



CHAPTER 4. IMPLEMENTATION IN LOOPO 84If some invalid maxfubbs occur in a tubk expression, this meansthat no operation of the corresponding statement has to be exe-cuted yet (ensured by the dependences pointing from the maxfubbstatements to all the body statements). The tubk should appearas if it was not used for calculating the upper bound of the timeloop. We can achieve this by using the upper bound, say tubo, ofany other program part which is sure not to contain any FUBBs.The upper bound of the respective time dimension of the maxfubbstatement belonging to the outermost non-a�ne for loop in theloop nest of statement k meets this requirement since it is not inthe body of any non-a�ne for loop.To decide whether some maxfubbs are valid or not, we utilize therespective validfubbs in combination with the `cond?a : b' opera-tor. It corresponds to the conditional operator known from theprogramming language C and evaluates to `a' if `cond' is tt and to`b' if `cond' is �.The substitute for tubk is:(validfubb1 and : : : and validfubbl ?tubk(maxfubb1; : : : ; maxfubbl; maxwubbl+1; : : : ; maxwubbm) : tubo)If k is the only statement whose upper bound of the time dimen-sion depends on FUBBs and WUBBs, the whole time loop lookslike this:for t := min(tlb1; : : : ; tlbn)while t <= max(tub1; : : : ; tubk�1;validfubb1 and : : : and validfubbl ?tubk(maxfubb1 ; : : : ;maxfubbl;maxwubbl+1; : : : ;maxwubbm) :tubo;tubk+1; : : : ; tubn) step STdo : : :end(b) Space Loops:A space loop looks as follows:parfor p := min(tlb1; : : : ; tlbn) to max(tub1; : : : ; tubn) step ST do: : :end



CHAPTER 4. IMPLEMENTATION IN LOOPO 85p is the index of the space loop, n is again the number of programparts in the target program. tlbk (tubk), 1 � k � n, are the lower(upper) bounds of the respective dimension of the scanned targetspace for statement k.The upper bounds of space loops must be handled the same way asthe upper bounds of time loops. However, space loops (accordingto the proof of Lemma 43 in the previous chapter) do not have tobe changed to while loops.In contrast to time loops, also the lower bounds of space loops maydepend on FUBBs and WUBBs, so these must be considered, too.Let tubk be such a lower bound, denoted bytlbk(FUBB1; : : : ;FUBBl;WUBBl+1; : : : ;WUBBm)Again the WUBBs are changed to the respective maxwubbs.Instead of using the tubo if the occurring validfubbs are �, we usethe respective tlbo for lower bounds of space loops.The substitute for a tlbk is:(validfubb1 and : : : and validfubbl ?tubk(maxfubb1; : : : ; maxfubbl; maxwubbl+1; : : : ; maxwubbm) : tlbo)The explained steps must be repeated for every element in the min andmax expressions of the target loop bounds and for every target loop.2. Retransformation of the executed Predicates:Scan the target program statement by statement. Each statement isguarded by an if statement of the form:if scond1 and : : : and scondp thens0endifs0 is the transformed statement s and the scondq, 1 � q � p, aresubconditions depending on the values of the target indices. They donot contain or/and operators.If the source program contained only a�ne loops, these if statementswould describe the execution spaces of the statements in their bodies.



CHAPTER 4. IMPLEMENTATION IN LOOPO 86However, since we changed the original loop bounds, we do not get theoriginal execution spaces now. In this step, we correct these executedpredicates.For every statement, we have to look at the subconditions of the sur-rounding if statement and at the source execution spaces. Accordinglywe distinguish several cases:(a) The Statement Belongs to the Bodies of if Statements in the SourceProgram.During normalization we introduce a new if array that stores thevalues of the condition of each if operation. Since the executionspaces of the statements in the body of if statements depend onthese values, we have to guard the current statement by another ifstatement whose condition checks whether the surrounding trans-formed new if arrays all contain the value tt.(b) No Subcondition Contains a FUBB or WUBB.This implies that the target execution space of the correspondingstatement does not depend on the bounds of non-a�ne loops.Nothing has to be done.(c) A Subcondition Contains FUBBs.This means that the execution space of the corresponding state-ment depends on the upper bound of a non-a�ne for loop. Letscondq(FUBB1; : : : ;FUBBl) be such a subcondition.The FUBBs must be replaced by the real values of the upperbounds of the respective loops computed by the UB statementsthat were introduced during normalization. The source indices inthe index lists of UB arrays must be replaced by their image un-der the transformation function for the current target statement.These can be computed from the inverse transformation.The dependences from the UB statements to all body statementsensure that the UB arrays are always computed before they areneeded. However, since the target execution spaces cannot bescanned exactly, the target program references array elements thatare not written yet or do not exist at all.To prevent accesses to unde�ned array elements, we guard thewhole program part by a new if condition that checks whetherthe respective values of all valid UB arrays (see also Item 3a)yield tt. If so, the referenced values of the UB arrays may be



CHAPTER 4. IMPLEMENTATION IN LOOPO 87read. Otherwise, the respective elements of the UB arrays were notwritten before and the whole program part must not be executed.The substitute for the current program part looks like this:if valid UB1 and : : : and valid UBl thenif scond1 and : : : andscondq(UB1; : : : ; UBl) and : : : and scondpthens0endifendifThe UBk are the new arrays that were introduced during the samenormalization step as the corresponding FUBBk.(d) A Subcondition Contains WUBBsIn this case the current target statement belongs to the body of awhile loop. Let scondq(WUBB1; : : : ;WUBBl) be such a subcondi-tion.Like in the target loop bounds, we replace each WUBBk, 1 � k �l, by its corresponding maxwubbk This yields the whole scannedtarget space for this statement.If the statement is a new if statement originating from a whileloop, the actual execution space does not matter, i.e., the state-ment may be executed for every scanned iteration (see the addi-tional descriptions for new if statements originating from a whileloop in Item 3c).Is the current statement an `ordinary' statement (not originatingfrom a while loop), then we have to guard it by the value of therespective new if statement, just as if it were in the body of aregular if statement.3. Retransformation of the Program Part Bodies:In this step we insert the code for the administration of the new vari-ables UB[:::], validfubb, maxfubb and maxwubb.(a) The Current Statement is a UB Statement that Computes the Up-per Bound of a Non-A�ne for LoopTo indicate the elements of the UB arrays that contain valid val-ues, we introduce an additional boolean array valid UB for each



CHAPTER 4. IMPLEMENTATION IN LOOPO 88UB array. It is indexed with the same indices and an element isset to tt if the corresponding element in the UB array contains avalid value and to � in all other cases. The new program partlooks like this:if : : : then == as in the original partUB[indlist] := : : : == as in the original partvalid UB[indlist] := tt == new assignmentendifWe describe how we handle accesses to the new boolean arrays(valid UB and new if ) in Section 4.3.(b) The Current Statement is a maxfubb Statement Originating froma Non-A�ne for Loop:These statements must take care of the administration of thevalidfubb variables. Thus, if the corresponding maxfubb is writtenfor the �rst time, the validfubb must be set to tt. Since not everyprocessor needs to do this, we choose to select the one with theminimal space coordinates.The following piece of code is inserted behind the current state-ment:if (validfubb = � and p1 = tlbp1 and : : : and pdp = tlbpdp ) thenvalidfubb := ttendifdp is the number of space loops. The indices of the space loops arethe ps, and the tlbs are the lower bounds of the respective spacedimensions for the current statement.(c) The Current Statement is a new if Statement Originating from awhile Loop:These statements serve to calculate the execution conditions ofthe respective while loops by following De�nition 29 in Chapter 2on page 26.The only di�erence is that the source indices are expressed by therespective (a�ne) combination of the target indices, according tothe inverse transformation (see also Example 14).If the execution condition yields tt, the value of the respectivemaxwubb must be updated: maxwubb = max(maxwubb; i + 1)where i is the index of the respective while loop (see also Fig-ure 3.3).



CHAPTER 4. IMPLEMENTATION IN LOOPO 89We do not need any barrier statements as described in [1], because we do notcalculate an explicit terminated predicate. The synchronous model ensuresthat all values are changed before the next time step is initiated.The following example illustrates the various retransformation steps.Example 14 (Retransformation).This example is a continuation of Example 12. The Darte-Vivien scheduler[2, 21] yields the following schedules and allocations:statement transformation inverse transformation7 t0 = 0p1 = ip2 = 0 i = p145 t0 = 1p1 = ip2 = 0 i = p16 t0 = 2p1 = ip2 = 0 i = p112 t0 = 3p1 = ip2 = j i = p1j = p28 t0 = 2 � kp1 = ip2 = 0 i = p1k = t0=23 t0 = 2 � k + 1p1 = ip2 = 0 i = p1k = (t0 � 1)=2We illustrate the retransformation by means of the \synchronous run time"output of our target generator [25] for the given schedules and allocations./* synchronous run time output */for t0 := ceil(min(0; 1; 1; 2; 3; 3; 0; 1)) tooor(max(0; 1; 1; 2; 3; 3; 2 �WUBB; 2 �WUBB+ 1)) doparfor p1 := ceil(min(0; 0; 0; 0; 0; 0; 0; 0)) tooor(max(4; 4; 4; 4; 4; 4; 4; 4)) doparfor p2 := ceil(min(0; 0; 0; 0; 0; 0; 0; 0)) tooor(max(0; 0; 0; 0;FUBB;FUBB; 0; 0)) do



CHAPTER 4. IMPLEMENTATION IN LOOPO 90if ( 0 <= t0 and t0 <= 0 and t0%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then7 newif1[p1] := (a[p1] = 0)endifif ( 1 <= t0 and t0 <= 1 and (t0 � 1)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then4 LB[p1] := b[p1]endifif ( 1 <= t0 and t0 <= 1 and (t0 � 1)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then5 UB[p1] := abs(c[p1])endifif ( 2 <= t0 and t0 <= 2 and (t0 � 2)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then6 maxfubb := max(maxfubb; UB[p1])endifif ( 3 <= t0 and t0 <= 3 and (t0 � 3)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= FUBB and p2%1 = 0)then1 b[p2 + LB[p1]] := b[p2 + LB[p1]] + 1endifif ( 3 <= t0 and t0 <= 3 and (t0 � 3)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= FUBB and p2%1 = 0)then2 c[p2 + LB[p1]] := c[p2 + LB[p1]] + 1endif



CHAPTER 4. IMPLEMENTATION IN LOOPO 91if ( 0 <= t0 and t0 <= 2 �WUBB and t0%2 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then8 newif2[2 � p1=2; t0=2] := (a[2 � p1=2] > 0)endifif ( 1 <= t0 and t0 <= (2 �WUBB+ 1) and (t0 � 1)%2 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then3 a[2 � p1=2] := a[2 � p1=2] � 1endifendendendThe functions ceil, oor, abs, min and max are prede�ned and compute thenext greater integer, the next smaller integer and the absolute value of anumber and the minimum and maximum of a tuple of numbers, respectively.The �rst target loop is a time loop whose upper bound depends on the upperbound of a while loop in the source program, indicated by the WUBB in itsupper bound:for t0 := ceil(min(0; 1; 1; 2; 3; 3; 0; 1)) tooor(max(0; 1; 1; 2; 3; 3; 2 �WUBB; 2 �WUBB+ 1)) do: : :endAccordingly we must change this loop to a while loop whereWUBB is replacedwith the new variable maxwubb:for t0 := ceil(min(0; 1; 1; 2; 3; 3; 0; 1))while t0 <= oor(max(0; 1; 1; 2; 3; 3;2 �maxwubb; 2 �maxwubb + 1)) do: : :endThe second target loop is a space loop. No bound depends on a non-a�neloop in the source program, so nothing has to be done here.



CHAPTER 4. IMPLEMENTATION IN LOOPO 92The third target loop is again a space loop, but this time the upper bounddepends on the upper bound of the non-a�ne for loop in the source program.We have to replace FUBB by maxfubb and guard it by the `?:' operator.The statements corresponding to the elements of the max expression thatdepend on the FUBB are statement 1 and 2. The outermost non-a�nefor loop is the loop with index j and the respective maxfubb statement isstatement 6. As statement 6 corresponds to the fourth program part in thetarget program, we set the second branch of the '?:` operator to the fourthelement in the max expression, i.e., to 0:parfor p2 := ceil(min(0; 0; 0; 0; 0; 0; 0; 0)) tooor(max(0; 0; 0; 0;validfubb ?maxfubb : 0;validfubb ?maxfubb : 0; 0; 0)) do: : :endWe have retransformed the target loops to enumerate the target space de-scribed in the last chapter. The execution conditions must still be retrans-formed. This is done statement by statement.The execution space of statement 7 only depends on the range of an a�nefor loop, so nothing needs to be done here.The execution spaces of statements 4, 5 and 6 depend additionally on thevalue of the if condition evaluated by statement 7. These statements mayonly be executed if the respective evaluation of the if condition yielded tt.So we have to check this value. It is stored in new if 1[i], where i must berecomputed from the inverse of the transformation function.We can gather from the table at the beginning of Example 14 that the valueof i equals the value of p1, so we must replace i by p1 in new if 1[i] and getnew if 1[p1]. The new program part for statements 4 and 5 is:
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if (new if 1[p1] = tt) thenif ( 1 <= t0 and t0 <= 1 and (t0 � 1)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then4 LB[p1] := b[p1]endifendifif (new if 1[p1] = tt) thenif ( 1 <= t0 and t0 <= 1 and (t0 � 1)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then5 UB[p1] := abs(c[p1])valid UB[p1] := ttendifendifAs statement 5 evaluates the UB array for the upper bound of the non-a�nefor loop, we added the additional assignment valid UB[p1] := tt to indicatethat the value of UB[p1] was written.Statement 6 is the statement that calculates the maximum of the upperbounds of the non-a�ne for loop. It also serves to indicate that maxfubb isvalid after it received its �rst value:if (new if 1[p1] = tt) thenif ( 2 <= t0 and t0 <= 2 and (t0 � 2)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then6 maxfubb := max(maxfubb; UB[p1])if validfubb = � and p1 = 0 and p2 = 0 thenvalidfubb = ttendifendifendif



CHAPTER 4. IMPLEMENTATION IN LOOPO 94The execution spaces of statements 1 and 2 depend (besides the i-loop) onthe range of the non-a�ne for loop with index j and on the value of the ifcondition new if [i].The dependence on the if condition is handled like for statement 4. Theexecution conditions computed by the target code generator contain a FUBBbecause the statements belong to the body of a non-a�ne for loop.We have to exchange the FUBB by the variable for the real upper bound ofthe respective instance of the j-loop. This must be done for both statementsUB[p1], as i = p1 (see the table at the beginning of Example 14). To preventuninitialized elements of UB[p1] from being accessed, we check the respectivevalue of valid UB[p1] (second if statement).The transformed program parts for statements 1 and 2 appear as follows:if (new if 1[p1] = tt) thenif (valid UB[p1] = tt) thenif ( 3 <= t0 and t0 <= 3 and (t0 � 3)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= UB[p1] and p2%1 = 0)then1 b[p2 + LB[p1]] := b[p2 + LB[p1]] + 1endifendifendifif (new if 1[p1] = tt) thenif (valid UB[p1] = tt) thenif ( 3 <= t0 and t0 <= 3 and (t0 � 3)%1 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= UB[p1] and p2%1 = 0)then2 c[p2 + LB[p1]] := c[p2 + LB[p1]] + 1endifendifendifThe next statement is statement 8. Its execution space depends on the i-loopand the while loop with new index k. It was not really an if statement, butoriginates from the while loop and has to compute the execution conditionfor the other statements in the body.The upper bound of the target index t0 depends on the arti�cial constantWUBB. We must replace it by the proper value maxwubb.



CHAPTER 4. IMPLEMENTATION IN LOOPO 95Then the if statement around statement 8 expresses its scanned target space.To get the target execution space, we have to implement the rest of theexecution condition. With k = t0=2 from the table at the beginning ofExample 14, we get the following part for statement 8:if ( 0 <= t0 and t0 <= 2 �maxwubb and t0%2 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)thenif (t0=2 = 0 and a[2 � p1=2] > 0)then81 new if 2[2 � p1=2; t0=2] := ttmaxwubb = max(maxwubb; t0=2 + 1)if (validwubb = �) then validwubb := tt endifelseif (t0=2 > 0 and new if 2[2 � p1=2; (t0=2)� 1] = tt anda[2 � p1=2] > 0)then82 new if 2[2 � p1=2; t0=2] := ttmaxwubb = max(maxwubb; t0=2 + 1)else83 new if 2[2 � p1=2; t0=2] := �endifendifendifWe still have statement 3 to consider. It is an ordinary assignment whoseexecution space depends on the a�ne for loop and the while loop. We haveto change the upper bound of t0 in the if statement as we did for statement8. This again yields the scanned target space. To get the target executionspace, we must check the value of the execution condition of the while loop.It is stored in new if 2[i; k]. For this statement, i = p1 and k = (t0 � 1)=2.We get the result:if (new if 2[p1; (t0 � 1)=2] = tt) thenif ( 1 <= t0 and t0 <= 2 �maxwubb + 1 and (t0 � 1)%2 = 0 and0 <= p1 and p1 <= 4 and p1%1 = 0 and0 <= p2 and p2 <= 0 and p2%1 = 0)then3 a[2 � p1=2] := a[2 � p1=2]� 1endifendif



CHAPTER 4. IMPLEMENTATION IN LOOPO 96If we put all these program parts together we obtain the retransformed targetprogram that executes only the operations that belong to the target executionspace of a statement.4.3 The Size of the New ArraysDuring normalization and retransformation we have introduced various newarrays for storing lower bounds, upper bounds and the values of conditions.However, we did not consider the size of these arrays so far.We index them with the indices that may belong to dynamic loops. In thiscase | as for the execution spaces | we cannot give a precise size at compiletime. For non-a�ne dimensions we must assume an initial range. If it turnsout to be too small at run time, it is necessary to resize the array. This isan expensive operation and it shows the omnipresent tradeo� between runtime and memory consumption: if the ranges of non-a�ne dimensions areby chance estimated large enough no resizing is necessary and no run timeoverhead is caused.We want to present a possible high-level way to handle the accesses to suchdynamic arrays, but leave the concrete implementation up to the target out-put module that maps the internal representation to a real programminglanguage.4.3.1 Dynamic boolean ArraysA new dynamic boolean array is used to indicate either which elements of acorresponding integer array may be accessed (valid UB[]) or which instancesof an execution condition yield tt or � (new if []).We propose the following data structure for controlling the accesses to thesedynamic arrays.
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structure dynamic boolean arraybegininteger lb1 := DEFAULT LB1;: : :lbd := DEFAULT LBd;ub1 := DEFAULT UB1;: : :ubd := DEFAULT UBd;boolean dyn array[ub1 � lb1] : : : [ubd � lbd]endThe structure stores the current upper bounds of the contained arraydyn array. This enables the functions get() and set() to check whether thereferenced element is inside the current range of the arrays bounds. If so,and if the value passed to set() equals tt, the referenced element is set equalto value.Remark. By convention all elements are considered to be initialized to �(even the elements that are currently not in the range of the array). So �values do actually not have to be written.If the value tt should be written into an element that does not exist yet, theresize() function must be called. It has to allocate a boolean array that islarge enough to include the new element. The values of the old elementsmust be copied into the new array. The additional elements must be set to�. After that, the old array can be deleted and replaced by the new array.The respective values of the bounds, lb1; : : : ; lbd and ub1; : : : ; ubd must beadjusted to the new bounds.
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function set(dynamic boolean array array; boolean value;integer 1st; : : : ; integer dth)beginif (value = �) thenreturnendifif (array:lb1 <= 1st� (array:lb1) <= array:ub1) and : : : and(array:lbd <= dth� (array:lbd) <= array:ubd)thenarray:dyn array[1st� (array:lb1); : : : ; dth� (array:lbd)] := valueelseresize(array; 1st; : : : ; dth)array:dyn array[1st� (array:lb1); : : : ; dth� (array:lbd)] := valueendifendFunction get() returns the value of the speci�ed array element if it is insidethe current extent of the array, else � is returned.function get(dynamic boolean array array;integer 1st; : : : ; integer dth) : booleanbeginif (array:lb1 <= 1st� (array:lb1) <= array:ub1) and : : : and(array:lbd <= dth� (array:lbd) <= array:ubd)thenreturn(array:dyn array[1st� (array:lb1); : : : ; dth� (array:lbd)])elsereturn(�)endifendThe construction we presented ensures that arbitrary elements of our dy-namic boolean arrays may be referenced and the program reacts with a de-�ned behavior, even if a referenced element does not exist.4.3.2 Dynamic integer ArraysThe second type of dynamic array we introduce during normalization storesthe values of the lower and upper bounds of non-a�ne for loops (LB[] and



CHAPTER 4. IMPLEMENTATION IN LOOPO 99UB[]). This might also be indexed with the loop indices whose range dependson non-a�ne dimensions and therefore its size cannot be predicted at compiletime.For dynamic integer arrays the de�nition of the structure changes slightly,namely the type of the dyn array elements changes to integer:structure dynamic integer arraybegininteger lb1 := DEFAULT LB1;: : :lbd := DEFAULT LBd;ub1 := DEFAULT UB1;: : :ubd := DEFAULT UBd;integer dyn array[ub1 � lb1] : : : [ubd � lbd]endIn contrast to dynamic boolean arrays, the set() function for dynamic integerarrays must write each value passed to it.function set(dynamic integer array array; integer value;integer 1st; : : : ; integer dth)beginif (array:lb1 <= 1st� (array:lb1) <= array:ub1) and : : : and(array:lbd <= dth� (array:lbd) <= array:ubd)thenarray:dyn array[1st� (array:lb1); : : : ; dth� (array:lbd)] := valueelseresize(array; 1st; : : : ; dth)array:dyn array[1st� (array:lb1); : : : ; dth� (array:lbd)] := valueendifendFor this kind of array, we ensure (by using the surrounding if statements)that only previously written elements are read: every read value is a validvalue, unread elements may contain unde�ned values. This means that theget() function does not have to check the current range of the referenceddynamic integer array.
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function get(dynamic integer array array;integer 1st; : : : ; integer dth) : integerbeginreturn(array:dyn array[1st� (array:lb1); : : : ; dth� (array:lbd)])endThe resize function should extend the size of the arrays in as large as possiblesteps to keep the probability of write accesses to not existing elements assmall as possible.We have described all steps and elements of the implementation of ourmethod for estimating dynamic execution spaces at run time now. The lastchapter gives an overview of the thesis, some prospects on possible futurework and some general thoughts.



Chapter 5ConclusionLet us summarize the major concepts and their correlation in the setting ofparallelization in the polyhedron model. The main task in our thesis was todescribe (dynamic) target execution spaces by loop nests at compile time.Three problems arose:1. In general, loop nests are too weak to describe these spaces exactly(scannability).2. There are types of execution spaces whose shape cannot be predictedat compile time.3. There are types of execution spaces whose shape and extent cannot bepredicted at compile time.Point 1 implies that we must enumerate iterations at which no operationshave to be executed, and this leads to the distinction between index andexecution space. Since we scan too much, we must �nd a way to �lter theiterations at which some operation has to be executed. This is done by theexecution conditions and the executed predicate described in Chapter 3.Point 2 alludes to the kind of static execution space that may be knownentirely at compile time, however, the shape of its corresponding target ex-ecution space cannot be described by loop bounds | due to technical ortheoretical reasons. For this kind of execution space, there is an index spacewhose shape can be described by target loop bounds and which contains theactual execution space as a subset. Execution determination must be appliedbut no termination detection is necessary.Finally there are the dynamic execution spaces (Point 3) whose shape andextent cannot be predicted at compile time, but must be estimated at run101



CHAPTER 5. CONCLUSION 102time. Since the approximation may not be precise, we must care for executiondetermination and have to establish the extent via termination detection.The processing of dynamic execution spaces is the main topic of this thesisand one method is described in Chapter 3.We can imagine some extensions to our classi�cation (in Chapter 2). Onecase we do not consider is the kind of execution space that needs terminationdetection but no execution determination. Consider the following loop nest:while (cond) dofor i := 0 to 10 dos;endendAlthough there is a dynamic dimension, we know the shape of the executionspace | it is a (rectangular) polytope. However, we do not know the extentof the �rst dimension. We know that polytopes belong to the class of a�neexecution spaces and can be scanned precisely, so we only have to applytermination detection.Without further examination, we believe that only this kind of loop nest(the outermost loop is a while loop, all inner loops are a�ne for loops) con-tains execution spaces that need termination detection but not executiondetermination.Another conceivable extension to the classi�cation is a class that containsa cross between static and dynamic execution spaces; we call them semi-dynamic execution spaces.Unlike static execution spaces, there are dependences pointing to the boundexpressions, but the sources of these dependences are in the execution spacejust scanned, i.e., they are not caused by a statement that belongs to thebody of the current loop nest. Thus, although the shape and extent of thecurrent execution spaces are not known at compile time, they are knownbefore the execution of the loop nest starts. The assessment of possiblepositive implications on target code generation is left for future work.Let us recall that the classi�cation in Chapter 2 is only done with respectto the execution space of one single statement. These separate spaces mustbe merged to one complete target space that contains at least the union ofall separate target execution spaces; this means scanning on a di�erent level.Although each separate execution space is scannable the union may not be.The e�ects are the same: non-scannability requires execution determination.



CHAPTER 5. CONCLUSION 103The scannability of the separate target execution spaces of each statement isonly a necessary condition, but if we want to exploit the bene�t of scannabil-ity the union of all execution spaces must be scannable, too. This is nottaken into account in the classi�cation and that is why (separate) scannabletransformations do not yield as much bene�t as they seem to promise at�rst sight: they ensure easier termination detection but still need executiondetermination because of the necessity of merging.We want to make another remark on merging here. In our thesis merging isviewed as �nding a perfect target loop nest that enumerates the union of ex-ecution spaces. However, we can imagine merging methods that yield imper-fectly nested target loops. This would mean that (parts of) an unscannabletarget execution space can be divided into scannable subsets. Thus, someparts of the execution determination are already incorporated in the targetloop bounds and need not be evaluated as separate execution predicates.Maybe this would allow for better run time results.We implement termination detection as side e�ect of execution determina-tion. However, the correlation is not necessarily as close as this suggests.The implication is: if there are no operations executed now and in the futurethen the target program can be terminated.If someone gives us a better method for termination detection (maybe hard-ware-supported) then we can remove the code for managing the validfubbs,maxfubbs and maxwubbs and change the target loops according to the newmethod.Another option would be to iterate time for a given number of steps (sayn) and then check if the program should already have terminated. Thedisadvantage of this method is that the program runs longer than necessary.On the other hand, it may be possible that the overhead for terminationdetection can be decreased to 1=n-th (compare also to a clever resizing of thedynamic arrays). Enumerating too much time does not a�ect the correctnessof the results, as execution determination compensates for every inaccuracyof scanning.Let us point out some aspects of our implementation and possible modi�ca-tions. In Chapter 3 we explained that we do not need a while dependencefor non-a�ne for loops, because the sequence of computing the maxfubbs isarbitrary. This realization allows for `good' ways to compute maxima, e.g.,parallel algorithms that need only logarithmic time. However, our targetoutput module will not be able to use this facility yet, so we chose to allowthe dependence analysis to �nd the data dependence from one instance ofthe maxfubb statements to the next instance.



CHAPTER 5. CONCLUSION 104By nature, a�ne loop bounds do not cause side e�ects. Our normalizationmethod of storing the non-a�ne loop bounds and the values of if conditionsin arrays allows for loop bounds and if conditions with side e�ects.We set the lower bound of a while loop always to 0. It may turn out duringfuture studies that it might be useful to have di�erent lower bounds, e.g., toreduce communication. Our theory allows for all kinds of a�ne lower boundsfor while loops, just as for for loops.It is possible to permit the usage of indexed while loops already in the sourceprogram. In this case the lower bound must be a�ne and the index must beunique. Combined with a generalization of Section 4.3, the user may writesource programs that contain dynamic arrays | always with the `danger' ofa possibly necessary resizing.The dynamic arrays can be spread across the processors such that the resizeoperations are local to one processor: not the whole array is resized but onlythe part of the array that is located on one processor. This saves time andmemory and �ts the view of distributed memory.The valid UB arrays that indicate whether an element of a dynamic integerarray does exist and is initialized is not needed necessarily. Instead therespective value could be computed each time it is referenced: if the executedpredicate of the statement that should have written the referenced elementis tt then the value is valid and can be read. There is (as so often) a greatvariety of design decisions until a concrete realization of the theory will bereached. Di�erent implementations and performance measurements will haveto show the practical characteristics of the various implementations.For each iteration of a while loop we remember whether it is executed ornot. For non-a�ne for loops we store the range of the index instead. Thismeans reduced memory overhead, as the storage of the values of the executedpredicates is pulled to the next outer level.On the other hand: the indices of while loops show the same behavior as theindices of for loops, i.e., they also cover a range between a lower and an upperbound. The only di�erence is that the upper bound must be computed atrun time. Thus, we can use the same storage scheme as for non-a�ne forloops. The source program for i := 1 to N dowhile cond dobody;endend



CHAPTER 5. CONCLUSION 105could be normalized tofor i := 1 to N doUB[i] := cond?0 : �1;for j := 0 to WUBB step ST dobody;UB[i] = cond?UB[i] + ST : UB[i];maxwubb = max(maxwubb; UB[i]);endendIn the target loop bounds maxwubb is used as before, but now in the executedpredicates we use the new UB[i] array just as we do for non-a�ne for loops.We must also add the appropriate control dependences from the UB andmaxwubb statements to the body.Note that UB is only indexed with i and not with i and j as the new if arraywe introduce during normalization.Remark. The only advantage of this method is the memory reduction by onedimension. The computation of the bounds is still placed at the same levelas the while loop.At the very end of this thesis let us make some general | partly philosophical| remarks on the topic of parallelization which we have learned to keep inmind when we are thinking about parallelism:� The fact that an execution space is bounded does not imply that thebounds are known. Since the information about the execution spacechanges during run time, it is in general impossible to enumerate thecomplete execution space in one time step. Instead, di�erent parts of itmust be enumerated successively, i.e., the task of enumerating a spaceitself costs time.� In general, it is impossible to evaluate the quality of the whole paral-lelization by only looking at the results of one parallelization step.E.g., �nding descriptions of the target loop bounds at compile time isinherent to the polyhedron model. If this seems to destroy possibleparallelism indicated by the transformation of a statement, the reasonis not necessarily a bad implementation of the target generator, butmay also be the restricted view of the schedulers and allocators (whichis su�cient for them) on the parallelization problem.



CHAPTER 5. CONCLUSION 106Of course we have to look for ways to compute the execution spacesas e�ciently as possible and it should be possible to �nd theoreticalbounds for the degree of this e�ciency. These bounds may vary fordi�erent loop classes.� The bounds of the execution spaces, and consequently the concept oftermination detection, are central aspects in this research area. Thequality of the algorithm we utilize to �nd these bounds can only bedetermined with respect to a certain machine model, e.g., the signalingscheme [11] for distributed memory machines or the counter [1] andmaximum scheme for shared memory machines. All methods computea maximum | explicit or implicit | with di�erent accuracy.� Run time measurements are imperative to gather data on the di�er-ences between various shades of implementations of the (polyhedron)model.Maybe it is better to enumerate the target execution spaces less pre-cisely if the (less exact) bounds can be computed faster.� Virtually every decision that is made for implementing (certainly notonly) the (polyhedron) model is accompanied by the trade-o� betweenrun time and memory consumption. One is always tempted to minimizeand maximize, respectively, each aspect. However, this is not possible.We can only try to �nd a suited balance between run time and memoryconsumption.The main aim of parallelizing programs it to decrease run time. Thus, ifwe argue about the theoretical aspects of parallel execution, we shouldcompletely omit the aspect of memory, since nearly every attempt tosave memory results in increased run time. Neglecting the questionof memory consumption is also justi�ed, because the availability (anda�ordability) of large amounts of fast memory is constantly increasing.If the parallelized program is executed on a real target machine, prac-tical restrictions naturally force us to deviate from the theoreticallypossible performance. We have seen such a restriction earlier: thereare not in�nitely many processors. There is another one: there is notin�nitely much memory. So it is certainly justi�ed (and necessary)to think about the memory consumption of a certain implementation.However, this should not have the highest priority.



CHAPTER 5. CONCLUSION 107� We think that, in the end, every approach for exploiting parallelismhas to face essentially the same problems. The polyhedron model o�ersonly one way to face, learn about and solve these problems.We hope that our research contributes some interesting and useful aspects tothe examination of parallelism and to the development of automatic methodsfor exploiting existing parallelism in sequential programs.
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