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Abstract

We present an application of quantifier elimination techniques in the automatic par-
allelization of nested loop programs. The technical goal is to simplify affine inequal-
ities whose coefficients may be unevaluated symbolic constants. The values of these
so-called structure parameters are determined at run time and reflect the problem
size. Our purpose here is to make the research community of quantifier elimination,
in a tutorial style, aware of our application domain –loop parallelization– and to
highlight the rôle of quantifier elimination, as opposed to alternative techniques, in
this domain. Technically, we focus on the elimination method of Weispfenning.
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1 Introduction

Loop parallelization is a problem which occurs predominantly in high-
performance computing. It is applied to highly iterative, compute-intensive
matrix algorithms in the fields of linear algebra, numerical computation, im-
age, signal and text processing, computational physics, chemistry and biology,
etc. The algorithms are written as sequential programs and parallelism is a
device to speed up the computation dramatically, possibly using hundreds or
thousands of processors.

The polytope model [Len93,Fea96] is a powerful geometric model for the par-
allelization of nested loop programs. Since its inception, it has been extended
from polytopes to polyhedra, and is often also called the polyhedron model.

Email address: {groessli,griebl,lengauer}@fmi.uni-passau.de (Armin
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DO i=0,n

DO j=0,n

C(i+j) = C(i+j) + A(i) * B(j)

Fig. 1. A sequential source code for the polynomial product

The parallelization takes place in three steps:

1. Modelling: The sequential input program, typically but not necessarily
written in Fortran or C, is transformed to a model-based description.

2. Parallelization: The parallelization converts the source model to a target
model.

3. Code generation: The code generation transforms the target model to
an executable (parallel) program.

The following sections describe these steps in more detail and show how tra-
ditional methods of the polyhedron model solve the different mathematical
problems which arise – provided they can be described with linear formulas.
Then, we illustrate, in a tutorial style, how the application of the quantifier
elimination method by Weispfenning [Wei88,LW93,Wei94b,Wei97] can help to
overcome this proviso.

1.1 Modelling

The steps of a loop nest, iterating over an array structure, are laid out in
a multi-dimensional integer coordinate system, with one dimension per loop.
The set of points which result is called the index space. The borders of the index
space are given by the bounds of the loops. Thus, the index space is described
by a set of affine inequalities – a standard description of a polyhedron.

Directed edges between the points in the index space represent the depen-
dences between the loop iterations. There is a vibrant research area concerned
with the technology for generating these dependences automatically from the
source program [Fea91,CG99,Ami04].

Example As an example, let us look at the core part of the simple sequential
algorithm for the polynomial product (Figure 1). This code computes the
coefficients of the product (in array C) from the coefficients of the two factors
(in arrays A and B). Both factors have n+1 coefficients; n is called a structure

parameter. Dependences arise from the accesses to elements of the array C.
Several iterations of the loop nest access the same memory location, since the
expression i+ j has the same value for different instances of i and j. Thus, all
iterations (i0, j0) and (i1, j1) which satisfy the memory equation i1+j1 = i0+j0
are in mutual dependence.
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Fig. 2. Dependence structure of the polynomial product

In order to keep the representation simple, we disregard all dependences that
are a transitive combination of other dependences and consider only the rest:
the so-called spanning dependences. Starting from an iteration (i0, j0), we com-
pute those iterations (i1, j1) that, first, precede (i0, j0), second, satisfy the
memory equation i1 + j1 = i0 + j0, and third, are maximal among all solu-
tions (i1, j1) w.r.t. the lexicographic order. Solving this system of contraints,
we obtain (i1, j1) = (i0 − 1, j0 + 1).

Figure 2 depicts the index space and the spanning dependences between loop
iterations (denoted by arrows from the earlier to the later iteration accessing
the same array element); the full set of dependences is the transitive closure
of the dependences shown.

Limitations The polyhedron model comes with restrictions:

• The program must be a loop nest whose body consists of statements. The
loop nest may be imperfect, i.e., not all statements need be in the body of
the innermost loop.

• Statements are allowed to be array assignments, conditionals and sub-
program calls. In the parallelization, the latter are treated as read and write
accesses to all parameters.

• The loop bounds and array index expressions must be affine and may contain
other variables which are constant in the loop nest.

1.2 Parallelization

With techniques of linear algebra and linear programming, an automatic, op-
timizing search yields the best mapping of the loop steps to time and space
(processors) with respect to some objective function like the number of paral-
lel execution steps (the most popular choice), the number of communications,
a balanced processor load or combinations of these or others. When applied
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Fig. 3. Transformed index space and dependences of the polynomial product

to the source index space, this so-called space-time mapping specifies another
polyhedral space, the so-called target index space.

Methods based on the polyhedron model have been implemented in various
prototypical preprocessors. One for C with the message-passing library MPI is
our own loop restructurer LooPo [GL96]. These systems use a number of well
known schedulers (which compute temporal distributions) [Fea92a,Fea92b]
and allocators (which compute spatial distributions) [Fea94,DR95] for the op-
timized search of a space-time mapping. In other words, for each computation
of each statement in the loop nest, the scheduler determines its logical time
step and the allocator its logical processor. The scheduler must ensure that the
execution date increases in the direction of each dependence; this constraint
can be formulated as a finite system of inequalities that the scheduler has to
solve. The allocator tries to optimize locality by putting computations, which
access the same memory cell, onto the same logical processor; this is done by
a heuristic search.

Example For the polynomial product (Figures 1 and 2), the top-most row
of iterations in Figure 2 (j = n) can be executed first and simultaneously.
Once it is computed, all iterations of the second row can be computed, and so
on. Thus, a possible time mapping is t(i, j) = n− j. This result is also found
by solving the scheduler’s constraint system. (Another solution is t′(i, j) = i.)

Since the allocator tries to put dependent computations on the same processor,
one possible choice of time mapping t(i, j) and space mapping p(i, j) is:

t(i, j) = n− j

p(i, j) = i+ j
(1)

The target space and the dependences in the target space derived from these
mappings are depicted in Figure 3.

Limitations The only restriction w.r.t. the parallelization phase is that the
space-time mapping must be affine.
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DO PAR p=0,2*n

DO t=max(0,n-p),min(n,2*n-p)

C(p) = C(p) + A(t+p-n) * B(n-t)

Fig. 4. A parallel target code for the polynomial product

Recent extensions allow mild violations of this affinity requirement. Essen-
tially, they permit a constant number of breaks in the affinity (e.g., a time
mapping like t′′(i, j) = if i < n−j then i else n−j for our running example).

1.3 Code generation

The biggest challenge is to convert the solutions found in the model into
efficient code. Significant headway has been made recently on how to avoid
frequent run-time tests which guide control through the various parts of the
iteration space [QRW00,Bas04].

The result of the code generation is a loop nest whose loops are sequential or
parallel depending on whether the corresponding axis in the target coordinate
system represents time or space.

While the axes of the target coordinate system are unordered, the loops in
the target loop nest must be ordered. Different orders can be chosen. If the
outer loop is sequential, one obtains synchronous parallelism, i.e., all processes
iterate following the same global clock. If the outer loop is parallel, one ob-
tains asynchronous parallelism, i.e., each process iterates following its own,
local clock. However, the bound expressions of every loop may only contain
iteration variables of the outer loops. To enforce this in the code generation,
one must use a process of variable elimination, which is in essence a quanti-
fier elimination problem. Care must be taken that the system resulting from
the variable elimination has a syntactic form suitable for code generation (see
Section 2 for more detail). In simple cases, e.g., for loop nests with only one
statement, Fourier-Motzkin elimination can be used, but the general case re-
quires more advanced techniques [QRW00,Bas04].

Example From the space-time mapping, an asynchronous target program
can be synthesized, which is shown in Figure 4. To generate the asynchronous
target program, the target index space (Figure 3) described by the inequalities:

0 ≤ t ≤ n

n− t ≤ p ≤ 2 · n− t

has to be expressed differently. To generate code, i.e., for-loops which enumer-
ate every integral point in the target index space, where p is the variable of
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the outer loop and t the variable of the inner loop, we have to express the
target space as follows:

0 ≤ p ≤ 2 · n

0 ≤ t ≤ n

n− p ≤ t ≤ 2 · n− p

(2)

to derive the bounds of the for-loops from the system (compare system (2) to
the loop bounds in Figure 4).

1.4 An extension: granularity control

Methods based on the polyhedron model are elegant and work well. However,
as presented so far, the resulting parallelism is usually too fine-grained to be
efficient. An extension to the model-based parallelization phase, called tiling,
solves this granularity problem [ABRY01,GFL04]. It partitions the index space
by covering it with equally shaped and sized polyhedra, mostly parallelepipeds.
Every coordinate of a point in the index space is divided into two components:
the coordinate of the tile, and the coordinate of the local offset within the tile.

There is one limitation of the descriptive power of the current polyhedron
model, which is hindering the applicability of the tiling technique. If the target
program is not to be compiled for a fixed number of processors (which also
fixes the size of the tiles), but for an unknown, i.e., parametric number of
processors, the size of the tiles depends on parameters. Such a tiling can
only be described by an inequality system in which the respective parameters
appear as coefficients of variables. Unfortunately, the tools available for solving
the linear algebra and linear optimization problems do not handle this case;
they require coefficients which are numeric constants.

We have developed techniques for handling parametric coefficients in the poly-
hedron model. Our application is parametric tiling but, in principle, these
techniques can also be used to generalize algorithms in other areas of the
polyhedron model, e.g., the dependence analysis.

Example The target code for the polynomial product shown in Figure 4
has two drawbacks: it requires 2 · n + 1 processors and the work is unevenly
distributed between them. With tiling, we can solve both problems at the same
time, i.e., balance the work between the processors by combining smaller into
bigger chunks of work, and map several of the 2 · n + 1 “virtual” processors
onto one physical processor.
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DO PAR r=0,NP-1

DO t=0,n

DO s=ceiling(-t/(NP*B) -r/NP +(n-B+1)/(NP*B)),

floor(-t/(NP*B) -r/NP +(2*n)/(NP*B))

DO o=max(0,-t-r*B-s*NP*B+n),min(B-1,-t-r*B-s*NP*B+2*n)

DO p=max(n-t,r*B+s*NP*B+o),min(2*n-t,r*B+s*NP*B+o)

C(p) = C(p) + A(t+p-n) * B(n-t)

Fig. 5. Target code for the polynomial product after tiling

In order to achieve the desired, so-called block-cyclic tiling, we express the
virtual processor coordinate p by a coordinate triple (r, b, o); Figure 6 depicts
the situation for two real processors. A number of adjacent index points are
grouped together into a so-called block (in Figure 6, the number is 2). The
block’s number is the coordinate b. Within each block, an index point has a
unique offset, denoted by o. The blocks are distributed across the real pro-
cessors in cyclic, i.e., alternating fashion. The assigned number of the real
processor is coordinate r.

A block-cyclic tiling of a target space can always be imposed by adding the
following set of inequalities to the description of the target space:

0 ≤ r ≤ NP − 1

0 ≤ o ≤ B − 1

p = b ·B + o

b = s ·NP + r

(3)

where NP is the number of real processors available and B the block size of
the block-cyclic tiling. The last equation (with variable s) specifies the cyclic
distribution of blocks across real processors, where s ranges over the cycles.

In order to generate a loop nest, we subject this (non-linear) system to a ver-
sion of Fourier-Motzkin elimination that can deal with non-linear parameters
(cf. applications in Section 2.2.1). The resulting loop code is given in Figure 5.

As desired, this program ensures that a fixed number of processors is used (in
Figure 6: NP= 2, counted by r and indicated by the shadings), and that the
load is balanced (in Figure 6: each of the two physical processors performs two
computations per time step).

2 Quantifier elimination in the polyhedron model

Quantifier elimination is used in several places in the polyhedron model. Let
us first look at its application in the current polyhedron model, and at the
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0 0 1 1 0 0r: 1

0 1 0 1 0 1o: 0

0 0 1 1 2 2b: 3

0 0 0 0 1 1s: 1

0 1 2 3 4 5p: 6

Fig. 6. Transformed index space after a block-cyclic tiling

algorithms used (Section 2.1). Then, let us look at our generalized model,
which allows non-linear parameters, and how the need for non-linear quantifier
elimination arises.

We can distinguish the following applications on linear inequality systems:

• testing the feasibility,
• projecting,
• computing solutions.

Feasibility testing Testing the feasibility of an inequality system means
deciding the formula ϕ = ∃x1 . . . ∃xn (ψ), where ψ describes the inequality
system, i.e., is a conjunction of inequalities. Sometimes, it suffices to decide
whether R � ϕ holds but, since the variables we analyze in the polyhedron
model are integer-valued loop indices, knowing that a solution exists in the
reals is often not sufficient. For example, dependence tests can output false
dependences when they do not include a check that all the loop indices are
integral.

Projecting Projections of inequality systems are mainly needed during code
generation. To generate code which enumerates every point in a polyhedron
described by ψ, one performs quantifier elimination on the following formulas
ϕ1, . . . , ϕn−1:

ϕ1 = ∃x2∃x3 · · · ∃xn (ψ)

ϕ2 = ∃x3 · · · ∃xn (ψ)
...

ϕn−1 = ∃xn (ψ)
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This yields the quantifier-free equivalents ϕ′
1
, . . . , ϕ′

n−1
. Here, ϕ′

1
is equivalent

to a conjunction of atomic formulas describing the lower and upper bounds
for the variable x1, ϕ

′
2

describes the lower and upper bounds for x2 in depen-
dence of x1 (the conjuncts only involving x1 are ignored), and so on. Finally,
in the formula ψ, the lower and upper bounds for xn depend on x1, . . . , xn−1.
The problem with using a quantifier elimination tool to compute ϕ′

1
, . . . , ϕ′

n−1

is that such tools usually do not guarantee that the results are conjunctions
of atomic formulas, i.e., a more or less difficult post-processing effort (e.g.,
formula simplification) or the reliance on implementation details become nec-
essary.

Computing solutions Projecting an inequality system onto some of its
dimensions can be viewed as computing the complete solution set of the in-
equality system. Sometimes, however, it is sufficient to find a single solution
of a system, maybe under the constraint that the solution has some proper-
ties. For example, in dependence analysis, one can, instead of dealing with all
dependences of some equivalence class, choose the lexicographic maximum as
a representative [Fea91].

2.1 The current polyhedron model

The current polyhedron model is restricted to inequality systems which can
be described by formulas which are linear in the variables and in the struc-
ture parameters. The reason for this restriction is the fact that subproblems
encountered in many algorithms are again linear in the variables and in the
structure parameters, so this ensures a kind of “closure” property.

Feasibility testing Various algorithms and implementations thereof ex-
ist for testing the feasibility of an inequality in the reals. Most basically,
Fourier-Motzkin elimination can decide the existence of a real solution. Be-
cause of its doubly exponential complexity, Fourier-Motzkin is usually replaced
by other, simply exponential algorithms – most prominently, the Simplex
algorithm, Chernikova’s algorithm [Che68], or Weispfenning’s algorithm for
linear inequality systems [Wei94a]. Deciding the existence of integral solu-
tions is algorithmically harder and, therefore, fewer implementations exist.
For conjunctions of inequalities, PIP (Parametric Integer Programming) can
be used [FCB03]. For more general situations, the Omega test is available
[PW92,Pug92], and there are computer algebra systems which handle integral
quantifier elimination on linear formulas, e.g., the Redlog package [DS97] in
the computer algebra system Reduce [Hea04].
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Projecting To compute the projection of an inequality system (the formulas
ϕ′

1
, . . . , ϕ′

n−1
), one does not use a full quantifier elimination tool, since there

are algorithms which have been specifically designed to do so. For example, it
is at the heart of Fourier-Motzkin to compute these formulas, or Chernikova’s
algorithm can be used to compute the projections.

Example For the polynomial product, the parallelization step (using the
space-time mapping given in Equation (1)) yields the target index space de-
picted in Figure 3, which is described by the following inequality system:

0 ≤ t ≤ n

n− t ≤ p ≤ 2 · n− t
(4)

To obtain the (untiled) target code, we have to compute the inequalities shown
in system (2). As described in Section 2, we can get the bounds for the inner
loop index t directly from this inequality system (by solving each inequality for
t). The bounds for p can be obtained by computing a quantifier-free equivalent
of the following predicate:

∃t (0 ≤ t ≤ n ∧ n− t ≤ p ≤ 2 · n− t)

Using Fourier-Motzkin elimination, we obtain the result 0 ≤ p ≤ 2 ·n directly,
and it is guaranteed that any result returned is a conjunction of atomic for-
mulas. A full quantifier elimination procedure does not give such a guarantee.
For example, Redlog yields:

0 ≤ p ≤ n ∨ n ≤ p ≤ 2 · n

Of course, this is equivalent to the result computed by Fourier-Motzkin, but it
requires some suitable simplification procedure to be applied before code, i.e., a
loop nest can be generated. For example, the formula simplifier SLFQ [Bro02],
which is based on Qepcad, simplifies Redlog’s result to 0 ≤ p ≤ 2 · n.
Another way to find an equivalent conjunction is to check for every atomic
formula τ in the (negation free) result ϕ whether R � ϕ → τ holds, using
quantifier elimination. A conjunction equivalent to ϕ is then given by the
conjunction of all atomic formulas τ for which R � ϕ→ τ holds.

Computing solutions To compute a single solution of an inequality sys-
tem, we usually use the Simplex algorithm with a suitable target function;
usually, the lexicographic minimum (as computed by PIP, for example) is the
desired solution. Quantifier elimination with answer (which computes solu-
tions for existentially quantifier variables) can also be used, but our exper-
iments showed that, in the linear case, the specialized tools (like PIP) are
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faster, sometimes much faster. See Section 2.2.2 for an example application of
quantifier elimination with answer.

2.2 The polyhedron model with non-linear parameters

As our example demonstrates, some desired transformations, e.g., tiling the
target index space with a parametric tile size, cannot be described in the cur-
rent polyhedron model, since they require parametric coefficients. This case
is not handled by the algorithms mentioned in the last section. We have de-
veloped a generalization of the model to allow parameters in the coefficients
of variables. The significant difference to the current model is that the most
basic operation on equations and inequalities, namely solving for a variable,
can, in general, not be performed uniformly for all parameter values, but a
case distinction on the sign of the coefficient must be made, which can depend
on the parameters. Therefore, algorithms which return a single answer in the
current model (e.g., Fourier-Motzkin elimination) need to return a case dis-
tinction (with conditions on the parameters) and a separate solution for every
case as result.

There are two ways of obtaining algorithms for the generalized model. First,
we can look for a way to transform an existing algorithm into an algorithm
for the generalized model; this is addressed in Section 2.2.1. Second, we can
try to use a full quantifier elimination tool (which is not limited to formulas,
which are linear in the variables and parameters, as are the tools mentioned
in Section 2.1) to solve some problems; see Section 2.2.2. We review both
approaches and refer the reader to our previous publications for the details
[GGL04,Grö03].

Since the theory of integers with addition and multiplication is undecidable,
we cannot, in general, apply the generalization technique presented in Sec-
tion 2.2.1 to obtain algorithms for integral problems. Constructing such algo-
rithms, which work for the cases usually encountered in the polyhedron model,
is a subject of current research.

2.2.1 Generalizing algorithms by program transformation

The current polyhedron model uses a rich set of algorithms. Since some of
them have been developed with the polyhedron model in mind, it is desireable
to be able to transform these algorithms into algorithms which can handle non-
linear parameters. In this section, we present our way to obtain a generalized
algorithm by a transformation.

The algorithms used in the polyhedron model work on the coefficients of the
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inequalities; in the current model, they work on rational or integral numbers.
As a very simple example of an algorithm which is used to manipulate the
coefficients, let us consider the following function abs which computes the
absolute value of its argument:

abs : Q → Q

abs(x) =







x if x ≥ 0

abs(−x) if x < 0

We use recursion on purpose, since it turns out to be the problematic issue in
the transformation.

For every argument x of abs, the conditions x ≥ 0 and x < 0 can be eval-
uated and it can be determined whether to continue the computation with
returning x or with computing abs(−x). In the generalized polyhedron model,
the coefficients of the variables are polynomials or rational functions in the
structure parameters. Therefore, in the generalized model, this algorithm has
to deal with arguments f ∈ Q[p1, . . . , pm]. But now, f ≥ 0 and f < 0 cannot
be evaluated, since their truth value depends on the parameters p1, . . . , pm,
in general. The generalized version absg of abs, which we are about to con-
struct, has to return a data structure which describes the value of abs(f) in
dependence of the structure parameters. It seems that absg can be obtained
very simply. Just replace the case distinction of x ≥ 0 vs. x < 0 in the algo-
rithm’s code by a case distinction in the (generalized) algorithm’s result data

structure.

To represent case distinctions which return results of type α as a data struc-
ture, we use decision trees, denoted by the data type Tree α. This data type
has (among others) the following constructors:

• Leaf : α→ Tree α to represent a result of type α as a decision tree.
• GeCond : Q[p1, . . . , pm]×Tree α×Tree α→ Tree α to represent a binary

case distinction. GeCond (g, t1, t2) means that, if g ≥ 0 (for some given
values of the parameters), then t1 represents the result, otherwise t2.

For example, we would like the absolute value of the polynomial f to be
represented by the following expression:

GeCond (f,Leaf f,Leaf (−f))

In our depiction of the decision tree, we label each edge with the condition
which guards the subtree suspended from it (here, the subtrees are leaves):

f
≥0

��
��

��
��

<0

@@
@@

@@
@@

f −f
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Unfortunately, we must do some work to obtain this result. By transferring
the case distinction from the code to the result data structure, we obtain the
following implementation of absg:

absg : Q[p1, . . . , pm] → Tree Q[p1, . . . , pm]

absg(f) = GeCond (f,Leaf f, absg(−f))

Alas, in the evaluation of absg(f), the recursive call absg(−f) is evaluated
repeatedly ad infinitum, which yields the following infinite tree:

f
≥0

~~
~~

~~
~~

<0

HHHHHHHHHH

f −f
≥0

vv
vv

vv
vv

v
<0

KKKKKKKKKK

−f −(−f)
≥0

tttttttttt
<0

FF
FF

FF
FF

F

−(−f) . . .

We observe that, when f < 0 holds, −f < 0 cannot hold, but −f ≥ 0 must
hold. I.e., the right child of the root node could be replaced by the leaf −f ,
but our transformed algorithm does not do so!

This example shows that a näıve transformation of algorithms to handle non-
linear parameters is not sufficient, since recursive functions can produce infi-
nite decision trees. Only after simplification (i.e., elimination of branches with
contradictory conditions), the resulting decision tree may be finite. On the
other hand, our transformational approach ensures that the results computed
by the generalized algorithm are correct by construction, provided that the
algorithm subject to the transformation is correct. Two questions must be
answered:

(1) How can the simplification of the decision trees be performed?
(2) Does the simplification guarantee that only finite decision trees are con-

structed?

The answer to Question 1 is simple. Since the coefficients of the variables
in the generalized polyhedron model are polynomials or rational functions in
the parameters, and the algorithms manipulate the coefficients using addition,
subtraction, multiplication, and division as algebraic operations and use the
natural ordering relation, all the conditions in the decision trees can be written
as fρ 0 where f ∈ Q[p1, . . . , pm] and ρ ∈ {=, 6=, <,≤,≥, >}. Thus, real quan-
tifier elimination can be used to decide the feasibility of the conjunction of the
conditions guarding a branch (in the reals). We use Redlog [DS97] (a quan-
tifier elimination package for the computer algebra system Reduce [Hea04]),
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which implements Weispfenning’s elimination-by-virtual-substitution method
[Wei88,LW93,Wei97], and Qepcad [Bro04], which implements quantifier elim-
ination through partial cylindrical algebraic decomposition. By performing a
top-down search for contradictions this way, we avoid running into the in-
finite branch in the absg example, since the infinite branch is cut off when
f < 0 ∧ −f < 0 is found to be infeasible. Using real quantifier elimination,
although the structure parameters are from Z, turns out not to be a problem,
since the structure of the problems (like tiling) implies that quantifier elimina-
tion in the reals is sufficient. For example, we have proved that tiling the index
space of one statement with congruent parallelepipeds as tiles yields a target
code which requires no case distinctions in the parameters at all [GGL04].

Question 2 is more difficult to answer. There are algorithms which produce
infinite decision trees even with the best possible top-down tree simplification.
For example, the following function:

pos : Q → Q

pos(x) =







x if x ≥ 0

pos(x+ 1) if x < 0

is generalized to:

posg : Q[p1, . . . , pm] → Tree Q[p1, . . . , pm]

posg(f) = GeCond (f,Leaf f, posg(f + 1))

which produces (for some input f) the following decision tree:

f
≥0

}}
}}

}}
}}

}
<0

EE
EE

EE
EE

E

f f+1
≥0

yy
yy

yy
yy <0

EE
EE

EE
EE

f+1 f+2
≥0

{{
{{

{{
{{

{
<0

BB
BB

BB
BB

f+2 . . .

But every finite prefix of the infinite branch is consistent. So algorithm pos
cannot be generalized by our transformation – even with simplification.

Termination (i.e., the construction of a finite decision tree) is guaranteed if
every infinite branch has a finite prefix which is inconsistent. This condition
ensures that searching top-down for contradictions and cutting off branches
with infeasible conditions eliminates the infinite branch. Note that it does not
suffice that, for any given values of the parameters, only a finite prefix of the
tree is used. In posg, this is the case – yet the tree cannot be made finite.
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Applications We have used this transformation to generalize Fourier-
Motzkin elimination and the Simplex algorithm to non-linear parameters. For
both algorithms, one can prove that top-down simplification ensures that only
finite trees are generated. This gives us the ability to solve each of our three
main applications (feasibility testing, projection, computing a solution).

Proving the termination of Fourier-Motzkin is rather simple. Since the num-
ber of case distinctions is bounded by the number of variables and inequalities
in the input system, Fourier-Motzkin produces finite trees even without sim-
plification. But simplification is still necessary to reduce the –in principle–
exponential size of the decision trees to trees with few or no case distinctions
in practical applications. E.g., for the tiling example, it turns out that no case
distinction is ever needed.

The trees produced by the generalized Simplex are infinite, because they must
also describe cyclic computations. But we can prove that the use of Bland’s
minimal index rule for choosing pivots [Bla77] ensures that top-down tree
simplification cuts off every infinite branch. Assume that there is an infinite
branch labelled with the conditions (ϕi)i∈N such that no prefix (ϕi)0≤i≤k (k ∈
N) is inconsistent. Since Simplex together with Bland’s rule specifies only a
finite number of case distinctions for every pivoting step and the number of
pivoting steps performed in an acyclic computation is bounded by the number
of variables and inequalities in the input system, the branch must describe a
cyclic Simplex computation. But this is a contradiction, since the pivots are
chosen using Bland’s rule and, therefore, no consistent prefix of the branch can
contain a cycle. Thus, no infinite branch with only consistent finite prefixes
can exist.

Let us summarize our transformational approach to obtaining algorithms for
the generalized polyhedron model:

• Start with an existing algorithm for the current polyhedron model.
• Replace every case distinction in the algorithm’s code by a case distinction

in the result data structure (by replacing the code for the case distinction
by an application of a suitable decision tree constructor like GeCond).

• Change the result type from α to Tree α in the type signature.

To make the principle clearer, we have omitted some technical details [Grö03].

Example An application of our generalized Fourier-Motzkin implementa-
tion (which uses our generalized Simplex algorithm to eliminate redundant
bounds) to the conjunction of systems (3) and (4) yields a system of projec-
tions which correspond directly to the loop bounds of the code in Figure 5.
No case distinctions are needed to represent the result.
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2.2.2 Using quantifier elimination directly to solve some problems

Some problems in the generalized polyhedron model can be formulated as
quantifier elimination problems. For example, testing the feasibility of an
inequality system ψ is simply asking the quantifier elimination tool for a
quantifier-free equivalent of ∃x1 . . . ∃xn (ψ).

Computing the lexicographic minimum of an inequality system is an example
in which quantifier elimination with answer can be used. Given an inequality
system ψ, the following formula:

µ := ψ ∧ ∀y1 . . . ∀yn

(

ψ[x1 :=y1, . . . , xn :=yn] → (x1, . . . , xn) ≤lex (y1, . . . , yn)
)

describes that (x1, . . . , xn) is the finite lexicographic minimum of ψ’s solution
set. Quantifier elimination with answer can now compute a quantifier-free for-
mula (in the parameters) of the form

∨

χi which is equivalent to ∃x1 . . . ∃xn (µ)
and, for the different cases χi, values for (x1, . . . , xn) are computed such that
µ holds, i.e., the lexicographic minimum is computed.

In order to compare this approach with the generalization of existing algo-
rithms (Section 2.2.1), we used a generalized Simplex algorithm for computing
the lexicographic minimum. It turns out that the generalized Simplex is by
orders of magnitude more efficient than the direct encoding described in this
section. The reason is that the Simplex algorithm is tuned to its application
domain, whereas quantifier elimination cannot make use of domain-specific
information.

A second drawback of using quantifier elimination directly is that not all prob-
lems in the polyhedron model can be described easily this way. For example,
it is not guaranteed that the projection of a polyhedron with non-linear pa-
rameters can be described by a conjunction. Consider the following formula:

0 ≤ x ≤ y ∧ p · y ≥ 0 ∧ y ≤ 10

with non-linear parameter p. If we assume nothing about p, Redlog’s answer
to the question ∃y (0 ≤ x ≤ y ∧ p · y ≥ 0 ∧ y ≤ 10) is:

(x = 0 ∧ p 6= 0) ∨ (0 ≤ x ≤ 10 ∧ p ≥ 0) (5)

This formula cannot be written as a conjunction of atomic formulas. To gen-
erate code, the conditions on the loop indices must be joined by conjunctions.
The given problem can be solved by applying our generalized Fourier-Motzkin
to:

0 ≤ x ≤ y ∧ p · y ≥ 0 ∧ y ≤ 10
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to eliminate y:

p
≥0

sssssssssss

<0

EE
EE

EE
EE

E

0 ≤ x ≤ 10 x = 0

The question now is: can we find the conditions p ≥ 0 and p < 0 and the
respective solutions 0 ≤ x ≤ 10 and x = 0 from the quantifier elimination’s
answer to ∃y (0 ≤ x ≤ y ∧ p · y ≥ 0 ∧ y ≤ 10) ?

In this example, one can find a suitable case distinction by extracting the two
conditions p 6= 0 and p ≥ 0 from the two disjuncts of (5). This yields a total
of four possible cases:

1. p 6= 0 ∧ p ≥ 0: x = 0 ∨ x ≥ 0

2. p 6= 0 ∧ ¬(p ≥ 0): x = 0

3. ¬(p 6= 0) ∧ p ≥ 0: x ≥ 0

4. ¬(p 6= 0) ∧ ¬(p ≥ 0): x ∈ ∅

After simplification (Case 4 is impossible and Cases 1 and 3 can be combined
since both have x ≥ 0 as solution) and computing conjunctive equivalents
for the formulas describing x in each case, we get, as desired, the following
decision tree:

p
≥0

sssssssssss

<0

EE
EE

EE
EE

E

0 ≤ x ≤ 10 x = 0

Example Instead of using our generalized Fourier-Motzkin, one can also
use Redlog and SLFQ to compute the tiled target code (Figure 5), because
we have proved that the projections are equivalent to conjunctions of atomic
formulas [GGL04]. As described in Section 2, for every loop index, Redlog is
used to project the input system onto the respective prefix of the loop indices.
The resulting formulas are fed to SLFQ to simplify them to a conjunction of
atomic formulas from which the loop bounds can be derived. Unfortunately,
2GB of heap are not enough for SLFQ to simplify the formula describing
the innermost loop with the bounds for p. We can also compute the required
bounds using the simpler technique of checking, for every atomic formula in
Redlog’s result, whether it is implied by the whole formula. In our example,
this works for all loop indices, including p.

17



3 Conclusion

Automatic, model-based parallelization requires powerful mathematical tools,
e.g., for optimization, projection or feasibility tests. The traditional limitation
in this research area is the linearity of the expression, but this is too restrictive
even for problems which are quite simple but relevant in practice.

The basis for the solution presented here is a powerful and, at the same time,
efficiently implemented mathematical tool. Quantifier elimination, e.g., the
method by Weispfenning as implemented in the Redlog package of Reduce,
provides us with the necessary functionality. We discovered that generalizing
an existing algorithm (like the Simplex algorithm or Fourier-Motzkin elim-
ination) using quantifier elimination to simplify the resulting decision trees
usually performs better than expressing the problem as a logical formula and
using quantifier elimination alone to solve it. Combining quantifier elimination
with existing algorithms enables a much desired feature, namely non-linear pa-
rameters. This way, quantifier elimination is making a significant contribution
to bringing parallelization in the polyhedron model closer to the realm of
practice.
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