
Comparing Program Comprehension of Physically and
Virtually Separated Concerns

Janet Siegmund
∗

University of Magdeburg,
Germany

Christian Kästner
Philipps University Marburg,

Germany

Jörg Liebig, Sven Apel
University of Passau,

Germany

ABSTRACT
It is common believe that separating source code along con-
cerns or features improves program comprehension of source
code. However, empirical evidence is mostly missing. In this
paper, we design a controlled experiment to evaluate that
believe for feature-oriented programming based on main-
tenance tasks with human participants. We validate our
experiment with a pilot study, which already preliminarily
confirms that students use different strategies to complete
maintenance tasks.

Keywords
Separation of Concerns, Program Comprehension, Feature-
House, Ifdef

1. INTRODUCTION
Separation of concerns is an essential strategy to imple-

ment understandable and maintainable software [21]. Be-
sides classic programming mechanisms, such as procedures
and objects, many novel mechanisms for separation of con-
cerns have been proposed in the past: components [10],
aspects [14], hyper-modules [23], and so forth. Similarly,
feature-oriented programming (FOP) advocates to structure
software along the features it provides (i.e., user-visible char-
acteristic of a software system) [5, 22]. That is, features
are made explicit in design and code in the form of feature
modules—one feature module implementing one feature.

In our field, it is common to believe that separating code
along features improves program comprehension. However,
program comprehension is an internal cognitive process that
we cannot observe directly [15]. Thus, it is not sufficient to
rely on plausibility arguments in the debate of whether some
concept or mechanism improves program comprehension.
Instead, we need controlled experiments to measure it [3, 8].

In this paper, we set out to evaluate whether separat-
ing features into separate feature modules improves program

∗The author published previous work as Janet Feigenspan.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FOSD’12, September 24–25, 2012, Dresden, Germany.
Copyright 2012 ACM 978-1-4503-1309-4/12/09 ...$15.00.

comprehension. In particular, we concentrate on the mech-
anism of FOP as implemented in the tool FeatureHouse [2].
In FOP, developers can trace each feature to one physi-
cally separated feature module. We compare the effect of
physical separation on program comprehension to an imple-
mentation in which features are annotated with conditional-
compilation directives such as #ifdefs. We speak of virtual
separation, because the #ifdef directives allow developers to
trace a feature to its scattered implementation throughout
the source code.

To this end, we designed a controlled experiment, in which
we observe how participants comprehend source code dur-
ing maintenance tasks. As material, we used two compara-
ble software systems—one decomposed physically in terms
of feature modules and one annotated with preprocessor di-
rectives. Based on experimental results, we can give rec-
ommendations on which technique of separating code along
features is suitable for which task and how to improve them.

Our contributions are twofold:
• We design a reusable experiment to evaluate the im-

pact of physical separation with FeatureHouse on pro-
gram comprehension.

• We conducted a pilot study to validate the experiment
and prepare a large scale run.

We plan to execute the experiment with a larger sam-
ple in the fall term. We appreciate feedback and addi-
tional research questions to evaluate. We also invite oth-
ers to conduct this or similar experiments. Therefore, we
provide all necessary material online at http://fosd.net/

experiments.

2. PHYSICAL VS. VIRTUAL SEPARATION
To separate crosscutting concerns, several programming

techniques were developed, including aspect-oriented pro-
gramming [14] and FOP [22], which aim at dividing the
source code into modules regarding concerns or features.

FOP as implemented by AHEAD [5] and FeatureHouse [2]
separates code belonging to different features physically into
separate folders, one folder per feature (and per interac-
tion). Each folder may contain multiple packages and (par-
tial) classes that implement the corresponding feature. To
generate a product for a specific feature selection, the code
from the selected features is composed, such that classes and
methods that have the same name are merged by superim-
position [2].

As a base line for comparison, we use virtual separation
with #ifdef directives, in which features are merely mapped
to code fragments with annotations in the source code. A

common mechanism is to use #ifdef directives in the source
code to indicate which code fragments belong to which fea-
tures. To generate a product for a specific feature selection,
a preprocessor removes the code of all deselected features. In
this approach, code belonging to a feature may be scattered
over multiple classes and may be tangled with code of other
features. The name virtual separation comes from separate
tools that can create views on the source code of specific
features, thus emulating modules [13]; these views are not
further considered in this paper, because they deserve an
evaluation of their own.

Both strategies, physical and virtual separation, allow a
tracing from features to code fragments. Using physical sep-
aration, each feature can be traced to one directory, whereas,
using virtual separation, we can trace a feature to multiple
code locations using a global search.

To illustrate virtual and physical separation, we show ex-
ample in Figure 1. Both excerpts show code from Mobile-
Media, a software for the manipulation of media on mobile
devices [9]. On the left, we show virtual separation imple-
mented with #ifdef directives; on the right, an implemen-
tation of the same code with FeatureHouse.

In prior work, we and others discussed trade offs between
physical and virtual separation [3, 12, 13, 17, 18]. Physical
separation has been claimed to improve code comprehension,
because, by separating features into folders, the amount of
information is limited; only relevant code of a feature is
present. Hence, developers might be less distracted and can
focus on the code of a single feature during maintenance
tasks. However, we also made the experience that (poten-
tially due to the lack of interfaces), to understand code of a
feature, base code also has to be understood. Hence, there
might be important information missing, which developers
have to look up in different folders. This might slow devel-
opers down compared to virtual separation, in which infor-
mation of base code and feature code (but also code of other
features) is present in one file. To evaluate whether physical
separation of concerns indeed improves program comprehen-
sion, we designed a controlled experiment, described next.

3. EXPERIMENT DEFINITION
To evaluate whether physical separation of concerns à

la FeatureHouse has a benefit on program comprehension,
we designed a controlled experiment. To describe the set-
tings and results, we use the guidelines provided by Jedl-
itschka and others [11]. To support replication, we pro-
vide all material of the experiment at the project’s website
(http://fosd.net/experiments).

3.1 Objective
With our experiment, we target the question whether par-

ticipants understand physically separated source code (fea-
ture modules) different than source code that is virtually
separated (preprocessor directives). To understand our re-
search question, we need to understand how humans pro-
cess information. To process information from the outside
world, we use our working memory, which holds information
we perceive and makes it available for further processing [4].
However, working memory capacity is limited to only few
items, which are units of information, for example, digits of
a telephone number or objects on a shopping list [19]. By
structuring information, we can store more information. For
example, we can group information of a shopping list into

groceries and clothing and then memorize few items of the
groceries and few items of the clothing category. In physi-
cally separated source code, the amount of information pre-
sented in one place is smaller and more clearly structured,
so the working memory of participants might not be stressed
too much.

However, when the present information is not enough to
understand code, participants need to search relevant in-
formation. Hence, they might need more time, and during
their search, they have to keep in mind where their search
started. For that, they need more working memory capacity.
Our first research questions are the following:

RQ1/2: Does physical separation of concerns improve pro-
gram comprehension in terms of correctness/response
time?

Additionally, we are interested in the search behavior of
participants. In virtually separated code, files are larger, be-
cause they typically contain code of several features. Thus,
participants may use the search function often to find infor-
mation. In physically separated code, one file contains in-
formation of only one feature; hence, relevant code may be
easier to find without using the search or using the search
less frequently. However, the information presented in one
file might not be enough to understand the code, so partic-
ipants might use a global search (i.e., across modules) more
often. Thus, we state a second research question:

RQ3: Is there a difference in the search behavior between
physically and virtually separated concerns?

Furthermore, there might be a difference in the strategy
participants use to find a bug. Different strategies require
different amount of time and cognitive resources, so an effi-
cient strategy can improve program comprehension. In the
ifdef version, participants might start by using the global
search function to locate code of the relevant feature, be-
cause according code is scattered across the project. In the
FeatureHouse version, participants might start by opening a
file in the relevant feature module, because according code is
located only in that module and files are short compared to
the ifdef version. Thus, we state a third research question:

RQ4: Is there a difference in the first action to find a bug?

3.2 Material
As material, we use MobileMedia, which was implemented

by Figueiredo and others with the help of students in Java
ME with the preprocessor Antenna, which enables ifdef di-
rectives in Java ME code [9]. We use MobileMedia, because
it was carefully developed and evaluated regarding standard
coding techniques and design principles, so we can be sure
to have minimized confounding effects due to badly imple-
mented code. Furthermore, MobileMedia is often used in
research to compare physically and virtually separated code
(e.g., [9]). Thus, our results provide further data on the
effect of physically and virtually separated code based on
MobileMedia or similar systems. Of course, in future work,
we need to consider additional software systems to generalize
our results.

From the preprocessor version of MobileMedia, we created
another version based on FeatureHouse.1 We selected Fea-
tureHouse, because we had the opportunity to work with
1There is also an AspectJ version of MobileMedia, which
uses physical separation of concerns. However, AspectJ syn-

1 // #if includeMusic || includeVideo
2 ...
3 public class MusicMediaUtil extends MediaUtil {
4 public byte[] getBytesFromMediaInfo(MediaData ii)
5 throws InvalidImageDataException {
6 try {
7 byte[] mediadata = super.
8 getBytesFromMediaInfo(ii);
9 if (ii.getTypeMedia() != null) {

10 //#if (includeMusic && includeVideo)
11 if ((ii.getTypeMedia().equals(MediaData.MUSIC)) ||
12 (ii.getTypeMedia().equals(MediaData.VIDEO)))
13 //#elif includeMusic
14 if (ii.getTypeMedia().equals(MediaData.MUSIC))
15 //#elif includeVideo
16 if (ii.getTypeMedia().equals(MediaData.VIDEO))
17 //#endif
18 { ... }
19 }
20 return mediadata;
21 } catch (Exception e) { ... }
22 }
23 //...
24 //#endif

(a) Virtual Separation

1 public class MusicMediaUtil extends MediaUtil {
2 private boolean isSupportedMediaType(MediaData ii) {
3 return false;
4 }
5
6 public byte[] getBytesFromMediaInfo(MediaData ii)
7 throws InvalidImageDataException {
8 try {
9 byte[] mediadata = super.getBytesFromMediaInfo(ii);

10 if (ii.getTypeMedia() != null) {
11 if (isSupportedMediaType(ii))
12 { ... }
13 }
14 return mediadata;
15 } catch (Exception e) { ... }
16 }
17 ...
18 }

(b) Feature Music OR Video

19 class MusicMediaUtil {
20 private boolean isSupportedMediaType(MediaData ii) {
21 return original(ii) ||
22 ii.getTypeMedia().equals(MediaData.MUSIC);
23 }
24 }

(c) Feature Music

25 class MusicMediaUtil {
26 private boolean isSupportedMediaType(MediaData ii) {
27 return original(ii) ||
28 ii.getTypeMedia().equals(MediaData.VIDEO);
29 }
30 }

(d) Feature Video

Figure 1: Virtual and physical separation using the preprocessor Antenna (a) and FeatureHouse (b-d).

students who are familiar with it at the same level as with
preprocessors. Thus, we do not need a training session and
can keep the time for the experiment as short as possible.

To ensure that both versions differ only in the underlying
programming technique, two reviewers realized the refac-
torings. They evaluated the work of the other reviewer on
few code fragments. We explicitly encourage other experi-
menters to evaluate the comparability of both versions and
give us feedback.

An important difference between both versions is caused
by the technique, such that in the FeatureHouse version,
there are more folders, because for every feature or feature
combination, a new folder is created, in which files are stored
according to the declared packages. In the ifdef version,
there are no folders for features or feature combinations,
but only those folders defined by the package declarations
(which are also present in the FeatureHouse version).

To evaluate our research questions, we use a between-
subjects design, so we give one group of participants the
ifdef version, and the other group the FeatureHouse version.
This way, we can compare the performance of participants
of both groups. For the first research question, we ana-
lyze response time and correctness for maintenance tasks.
Response time is logged automatically, and correctness de-
termined manually by an expert.

For the second research question (regarding the search be-
havior), we log how participants use the search function dur-

tax requires considerable training, so we use FeatureHouse
instead, and leave evaluation of physical separation of con-
cerns á la AspectJ for future work.

ing solving maintenance tasks. Participants can use either a
local search, that is, within a file, or a global search, that is,
in all files and folders of the complete project. Both searches
uses strings (no pattern matching or syntactical search).

For the third research question, we log the behavior of
participants, that is opening and closing files, switching be-
tween files, and using local or global search including the
search term.

To control for programming experience, one of the major
confounding parameters in program comprehension experi-
ments, we apply a questionnaire to measure it [6]. Based on
the value in the questionnaire, we can apply a control tech-
nique (e.g., create two groups with comparable programming
experience). In addition to measuring program comprehen-
sion, the search behavior, and first action for a task, we use
a questionnaire to assess the opinion of participants regard-
ing difficulty of tasks and motivation to solve a task (both
on a five-point Likert scale [16]). This way, we get more
information to interpret our data.

To present source code, tasks, and the questionnaire to
participants, we use the tool PROPHET [7]. It lets exper-
imenters create tasks, specify how participants see source
code, and logs the data (e.g., response time, actions of par-
ticipants). Furthermore, it automatically sends the data to
a specified e-mail address.

3.3 Tasks
We developed five bug fixing tasks, such that we can eval-

uate the claimed benefit of physical separation of concerns.
Hence, the class in the FeatureHouse version that contains

the bug is relatively small compared to the ifdef version. To
get an impression of how short source code has to be to pro-
vide a benefit (if any), we introduced the bugs in classes of
different size. All tasks were designed to have comparable
difficulty, so that it does not confound the results. We en-
courage other researchers to evaluate the comparability of
both tasks and give us feedback. Additionally, we evaluate
whether comparing similar statements of different features
helps to find a bug (Task 2). Furthermore, we analyze how
the need to consider two classes of different features affects
program comprehension (Task 5). We designed only 5 tasks
to avoid a too long duration. In our experience, 2 hours is the
upper limit for an experiment; after that, participants lose
motivation and/or concentration, and/or become fatigued.

To present the tasks, we gave participants a bug descrip-
tion as a user might provide it. Additionally, we provided
the feature that is present when the bug occurs, so that par-
ticipants can focus on feature code. This way, we can evalu-
ate our research question, because cohesion refers to feature
code only. In Table 1, we provide an overview of all tasks. To
complete a task, participants are instructed to determine the
class and line number of the bug, describe why the problem
occurs, and suggest a solution as verbal description. We use
all information to determine whether a task was solved cor-
rectly. To measure comprehension, we analyze correctness
and response time of a solution. The more correct answers
and the smaller the response time of participants, the better
they understood source code. Next, we describe each task in
detail, show relevant code fragments with bugs highlighted,
and discuss whether the FeatureHouse or ifdef version might
provide benefits for comprehension.

Task 1
In this task, instead of setting the counter to the actual
value, it is set to 0. To illustrate this bug, we show relevant
source code in Fig. 2. The class that contains the bug is
considerably smaller in the FeatureHouse version, such that
the complete class fits on one screen. However, the original
method definition in the base feature might be relevant to
understand the bug. Thus, participants of the FeatureHouse
group might be faster, if they do not look at the base code,
or slower, if they do not look at the base code.

Task 2
In Task 2, a false identifier is used (SHOWPHOTO instead of
PLAYVIDEO). We show an excerpt in Figure 3. Like in Task
1, the FeatureHouse version is considerably shorter. How-
ever, in the Ifdef version, source code for other features (e.g.,
Photo) are visible, which participants might compare with
feature Video and, thus, may help them to recognize that
SHOWPHOTO is the wrong identifier to play a video. Another
difference is the location at which the command is defined.
In the FeatureHouse version, command definition and usage
appears on the same screen, but not in the ifdef version.
Thus, we can argue both in favor of and against a benefit
for program comprehension in the FeatureHouse version.

Task 3 and 4
Task 3 and 4 are similar to Task 1, so we do not show source
code here. In Task 3, the target is class in the FeatureHouse
version is too large to fit on one screen. Thus, a possible
benefit due to shorter classes might not occur here or be
weaker.

1 public class MediaUtil {
2 // 73 lines of additional code
3 public MediaData getMediaInfoFromBytes(byte[] bytes)
4 throws InvalidArrayFormatException {
5 // 64 lines of additional code
6 MediaData ii = new MediaData(x.intValue(),
7 albumLabel, imageLabel);
8 // 5 lines of additional code
9

10 // #ifdef includeSorting

11 ii.setNumberOfViews(0);

12 // #endif
13 // 62 lines of additional code

(a) Ifdef

1 class MediaUtil{
2 private MediaData createMediaData(String iiString, String fidString,
3 String albumLabel, String imageLabel) {
4
5 // 16 Lines of additional code
6 MediaData ii = original(iiString, fidString,
7 albumLabel, imageLabel);
8

9 ii.setNumberOfViews(0);

10 return ii;
11 }
12
13 // 10 lines of additional code

(b) FeatureHouse–Sorting

1 public class MediaUtil {
2 // 121 additional lines of code
3 private MediaData createMediaData(String iiString, String fidString,
4 String albumLabel, String imageLabel) {
5
6 Integer x = Integer.valueOf(fidString);
7 MediaData ii = new MediaData(x.intValue(), albumLabel, imageLabel);
8
9 return ii;

10 }
11 // 47 additional lines of code

(c) FeatureHouse–Base

Figure 2: Bug location for Task 1 (bug highlighted).

Task 5
In Task 5, we implemented the additional feature Access-
Control to observe how participants can trace source code.
The feature introduces rights to manage pictures, so if users
have no rights to delete a picture, they cannot delete it. As
bug, we use a wrong label for deleting a picture, such that
the check for according rights is never executed and a user
can delete a picture without according rights (Figure 4).
The definition of the correct label is in another class, so two
classes have to be looked at to locate the bug. In the Fea-
tureHouse version, the two classes are located in different
feature modules, which might slow down participants.

Additionally, we designed a warming up task to let par-
ticipants familiarize with the experimental setting. In this
task, participants should count the occurrence of a feature
(ifdef version) or how often a class is refined (FeatureHouse
version). The result of this task is not analyzed.

3.4 Analysis Methods
To analyze the data, we use descriptive statistics (mean,

standard deviation, frequencies, and boxplots) to describe
response time, correctness, search behavior, and first action
for a task. This way, we get an overview of how that data are

Task Bug Description Feature

1 When converting media, the counter that describes how often a medium was looked at
is always set to 0 instead of the actual value.

Sorting

2 When a video should be played, the according screen (”Play Video”) is not shown.
Nothing is happening

Video

3 When clicking on ”View Favorites” in the menu, no favorites are shown, although there
are favorites and the according functionality is implemented

Favourites

4 When pictures should be shown sorted by number of views, they appear unsorted anyway. Sorting
5 Although a user has no rights to delete a picture, she can delete it anyway. AccessControl

Table 1: Overview of maintenance tasks

1 public class MediaListScreen extends List {
2 // #ifdef includePhoto
3 public static final int SHOWPHOTO = 1;
4 //#endif
5 // #ifdef includeVideo
6 public static final int PLAYVIDEO = 3;
7 //#endif
8 // 64 additional lines of code
9 public void initMenu() {

10 // #ifdef includePhoto
11 if (typeOfScreen == SHOWPHOTO)
12 this.addCommand(viewCommand);
13 //#endif
14 // 7 additional lines of code
15 // #ifdef includeVideo
16 // [NC] Added in the scenario 08

17 if (typeOfScreen == SHOWPHOTO)

18 this.addCommand(playVideoCommand);
19 //#endif
20 // 32 additional lines of code

(a) Ifdef

1 class MediaListScreen {
2 public static final Command playVideoCommand =
3 new Command(”Play Video”, Command.ITEM, 1);
4 public static final int PLAYVIDEO = 3;
5
6 public void initMenu() {
7 original();
8

9 if (typeOfScreen == SHOWPHOTO)

10 this.addCommand(playVideoCommand);
11 }
12 }

(b) FeatureHouse

Figure 3: Bug location for Task 2 (bug highlighted).

distributed. To evaluate the first research question, we ana-
lyze whether there is a difference in correctness and response
time. For correctness, we use a χ2 test, since we compare
frequencies. For response time, we use either a t test, or,
if our sample is smaller than 30 participants and response
times are not normally distributed, a Mann-Whitney-U test
(all tests are described in Anderson and Finn [1]).

For the second research questions, we compare the fre-
quencies of local and global search within groups and be-
tween groups with a χ2 test. For the third research ques-
tion, we can either use a qualitative analysis, or compare
frequencies of different actions with a χ2 test, if expected
frequencies are larger than 3.5 (cf. [1]).

1 public class MediaController extends MediaListController {
2 // 14 additional lines of code
3 public boolean handleCommand(Command command) {
4 // #ifdef includeAccessControl

5 if (label.equals(”Delete Label”))

6 if (!AccessController.hasDeleteRights()) {
7 gotoAccessDeniedScreen();
8 return true;
9 // 467 additional lines of code

(a) Ifdef

1 class MediaController {
2 public boolean handleCommand(Command command) {
3 if (label.equals(”Delete Label”))

4 if (!AccessController.hasDeleteRights()) {
5 gotoAccessDeniedScreen();
6 return true;
7 // 16 additional lines of code

(b) FeatureHouse–AccessControl

1 public class MediaController extends MediaListController {
2 // 8 additional lines of code
3 public boolean handleCommand(Command command) {
4 // 43 additional lines of code
5 /** Case: Delete selected Photo from recordstore * */
6 } else if (label.equals(”Delete”)) {
7 String selectedMediaName = getSelectedMediaName();
8 // 169 additional lines of code

(c) FeatureHouse–Base

Figure 4: Bug location for Task 5 (bug highlighted).

4. PILOT STUDY
To evaluate the feasibility of our design and provide some

first data to evaluate our research question, we conducted
a pilot study. Our participants were 8 students (graduates
and undergraduates) from the University of Passau with a
mean age of 23. They were enrolled in the course Contem-
porary Programming Paradigms, in which preprocessors and
FeatureHouse were taught with comparable level of detail.
Thus, participants have comparable, necessary knowledge
regarding both technqiues to complete the tasks. No partic-
ipant was familiar with MobileMedia. All were aware that
they took part in an experiment and that their performance
does not affect their grade for the course. Participants vol-
unteered to take part and did not receive compensation for
their participation.

To create two comparable groups, we applied a program-
ming-experience questionnaire a few weeks before the exper-
iment [6]. Not all participants who completed the question-
naire showed up for the experiment. Thus, both groups dif-
fer in their programming experience. We discuss this prob-

3

2
3
5
3
5

1
5

0 % 100 %80 %60 %40 %20 %

1

2

5

4

3

Ifdef

FeatureHouse
Ifdef

Ifdef

Ifdef
FeatureHouse

FeatureHouse

Ifdef

FeatureHouse

FeatureHouse 2

12

3

14

 Correct Incorrect

Figure 5: Number of correct answers per group and
task.

lem in Section 5. Furthermore, we assessed participants’
experience with Java on a scale from 1 to 5; both groups
have a medium experience (3).

We conducted the experiment at the University of Pas-
sau in one computer lab instead of a lecture session. Before
the experiment, we gave participants an introduction about
what to expect. After all questions were answered, partici-
pants started to work on the tasks on their own.

4.1 Results
First, we evaluate program comprehension by analyzing

correctness, response time, search behavior, and first action
for each task to shortly address the research questions. To
separate reporting data from interpreting them, we only re-
port the data here and discuss them in Section 4.2, in which
we also discuss the feasibility of our design.

4.1.1 Correctness
First, we look at correctness. In Figure 5, we give an

overview of the number of correct solutions. The third and
fourth task appear to be easy, because all participants found
the correct solution. The first task appears to be too difficult
for the FeatureHouse group, because no participant found
the correct solution. The same counts for the second task
for participants of the ifdef group.

4.1.2 Response Time
Second, we look at the response times. In Table 2, we

show how long participants needed to solve each task and all
tasks together (in minutes).2 For most of the tasks, the ifdef
group was faster; only for the second task, the FeatureHouse
group was faster. The difficulty seems to vary, because the
response times differ between tasks.

4.1.3 Search Behavior
In Table 4, we show how often participants used the search

feature (local, global, and combined). Participants of the
ifdef group used the search considerably more often than
participants of the FeatureHouse group. For the local search,
participants always used it more often than the global search.

4.1.4 First Action
In Table 3, we summarize how participants started to solve

a task. Participants of the ifdef group most often used a

2Since our sample consists of only 8 participants, we do not
compute standard deviations. Instead, the interval between
minimal and maximal value can be used as estimator for
dispersion.

Task Group RT Min Max

1 Ifdef 12.41 3.86 16.17
FH 14.03 7.84 17.42

2 Ifdef 22.79 9.53 48.14
FH 13.06 10.86 14.41

3 Ifdef 8.2 7.29 9.49
FH 12.77 8.98 16.53

4 Ifdef 4.16 2.14 7.86
FH 9.53 6.47 11.42

5 Ifdef 7.27 2.95 12.27
FH 12.38 6.08 18.08

All Ifdef 54.83 42.17 66.58
FH 61.77 53.99 69.60

RT: response time in minutes, Min: fastest re-
sponse time, Max: slowest response time, All
(last row): response time for all task combined.

Table 2: Response times of participants per task.

Task Group Local Global Combined

1 Ifdef 166 21 187
FH 32 13 45

2 Ifdef 152 25 177
FH 28 13 41

3 Ifdef 106 11 117
FH 39 19 58

4 Ifdef 21 5 34
FH 16 7 23

5 Ifdef 73 8 91
FH 25 12 37

Table 4: Search behavior of participants per task.

global search to find code fragments of the relevant feature,
whereas participants of the FeatureHouse group most often
opened a file in the relevant feature. Additionally, in tasks
where a label of a button is mentioned in the bug description,
some participants searched for that label. However, they
did not start to search for the label in the first task where
it is mentioned (Task 2), but only for the subsequent tasks.
Furthermore, two participants of the FeatureHouse group
started in a wrong feature (SortPhoto). We believe this is
caused by the fact that also feature SortPhoto (in addition
to Sorting) sounds relevant for the task.

4.1.5 Opinion of Participants
Regarding the opinion of participants, we find a tendency

that the ifdef group found the tasks easier to solve, except for
Task 2. For motivation, there is a tendency that participants
of the ifdef group are more motivated to solve a task. This
tendency might be caused by the fact that two participants
of the FeatureHouse group were unhappy to be in that group
(as they told us). Thus, the FeatureHouse version appears
more difficult to participants and they did not like it. This
can affect their performance, such that they work slower [20].

4.2 Interpretation
Since our sample is too small and the ifdef group is more

experienced, we cannot meaningfully interpret the effect of
physically and virtually separated concerns. Except for Task
2, the faster response time of the ifdef group could be caused

Task Group Open file in base Open file in
relevant feature

Open file in wrong
feature

Global search for
relevant feature

Global search
for label

1 Ifdef - - - 5 -
FH 1 1 - 1 -

2 Ifdef 1 - - 4 -
FH - 2 - 1 -

3 Ifdef - - - 3 2
FH - 1 - - 2

4 Ifdef - - - 2 3
FH - - 2 - 1

5 Ifdef - - - 5 -
FH - 2 - 1 -

Table 3: First action participants used to solve each task.

by the higher experience. Thus, our interpretation is only a
suggestion for future experiments.

Regarding the search behavior, we found that participants
of the ifdef group used the search function considerably more
often than participants of the FeatureHouse group. Addi-
tionally, all participants used the local search more often
than the global search. There are two interesting facets
regarding the search behavior of the FeatureHouse group.
First, for the second task, in which the class containing the
bug consists of only few lines, participants used the global
search more often. Second, for the last task, in which two
classes in two different folders needed to be located to find
the bug, the global search is used only half as much as the
local search (similar to the search behavior for the other
tasks). Thus, this tracing task seems to have comparable
effort compared to the other tasks. Based on our data, we
can split our third research question regarding the search
behavior into three questions:

RQ3−1: Do participants of the ifdef group use more search
than participants of the FeatureHouse group?

RQ3−2: Do participants of the ifdef group use more local
search than participants of the FeatureHouse group?

RQ3−3: Do participants of the ifdef group use less global
search than participants of the FeatureHouse group?

Regarding the first action to solve a task, participants
of the ifdef group most often search for feature code with
a global search, whereas participants of the FeatureHouse
group opened a file in the relevant feature (or features that
appear relevant). Thus, we might conclude that participants
use different strategies to solve a task.

Nevertheless, we found evidence about the feasibility of
our design. Participants always understood the tasks and
questionnaire and knew what they had to do. Only on two
occasions, participants talked to each other, but the experi-
menter reminded them to work for themselves. Furthermore,
two participants mentioned being unhappy to be in the Fea-
tureHouse group. Thus, when conducting the experiment,
it might be useful to motivate participants of the Feature-
House group about the benefits of FeatureHouse. However,
we have to take care not to bias participants toward pre-
ferring FeatureHouse or preprocessors, because this might
bias the results. Besides that, no problems occurred. Thus,
the task descriptions and questionnaires seem to be clear to
participants.

However, we found that two tasks (3 and 4) appear to be
too easy, because all participants solved it correctly. Hence,
when replicating the experiments, it might be useful to in-
crease the difficulty of these tasks. For example, for Task
3, providing the label might have made the task too easy,
because it occurs only 2 times in the complete project. For
Task 4, we can provide an erroneous implementation of bub-
ble sort, instead of a TODO in the empty method body. Fur-
thermore, we found that one participant spent 48 minutes
on Task 2. Thus, it might be useful to set a time limit for
each task, for which the response times in Table 2 can be
used as orientation.

5. THREATS TO VALIDITY
When designing and conducting experiments, threats to

validity are unavoidable and have to be reported. In our de-
sign, several threats occur. One threat is how we obtained
the modular version of MobileMedia. Basically, it was de-
rived from the AspectJ version by refactoring. Although the
refactorings and the resulting code have been reviewed care-
fully, it is unclear whether designing and implementing a
system like MobileMedia from scratch in a feature-oriented
way would have led to a different more favorable decompo-
sition, possibly making use of more effective modularization
patterns. Exploring such patterns and related anti-patterns
empirically is an avenue of further work.

A second threat is caused by the sample. When compar-
ing techniques, we have to ensure that participants have
comparable familiarity with them. Otherwise, we would
measure differences in familiarity, not in the comprehensibil-
ity of both techniques. To control this threat, we recruited
students from a course in which FeatureHouse and prepro-
cessors were taught. Thus, we can assume that all partic-
ipants have comparable knowledge of the evaluated tech-
niques. However, we have to be aware that recruiting stu-
dents means that our results are only valid for students. If
we want to draw conclusions about experts on FeatureHouse
and preprocessors, we need to recruit expert programmers.

For the pilot study we conducted, our sample is too small
to draw sound conclusions regarding how research questions.
Thus, we used the data as evidence for the feasibility of our
design rather than to evaluate our research questions. Fur-
thermore, the FeatureHouse group is less experienced than
the ifdef group and mostly unhappy to work with the Fea-
tureHouse version. Thus, worse program comprehension of
the FeatureHouse group may be caused by lower experience

or happiness, not the underlying technique. To avoid misin-
terpreting the data, we only carefully described tendencies
regarding benefits and drawbacks of physically and virtually
separated code.

6. CONCLUSIONS
Separation of concerns is supposed to improve program

comprehension. However, there are no empirical studies that
evaluate comprehensibility of physically separated code. To
close this gap, we presented an experimental design to com-
pare program comprehension of physical and virtual sepa-
ration of concerns. We refactored the ifdef version of Mo-
bileMedia (virtually separated) to a FeatureHouse version
(physically separated). In a pilot study with 8 students,
we showed the feasibility of our design. Our next step is to
replicate the experiment with a larger sample. Furthermore,
we encourage other researchers to replicate our experiment.
With sound empirical results, we can give recommendation
on which technique of separating code is suitable for which
task and how separation of concerns can be improved.

7. ACKNOWLEDGMENTS
Thanks to the reviewers who helped to improve this paper.

Siegmund’s work is funded by BMBF project 01IM10002B,
Kästner’s work partly by ERC grant #203099, and Apel’s
work by the German Research Foundation (AP 206/2, AP
206/4, and LE 912/13).

8. REFERENCES
[1] T. Anderson and J. Finn. The New Statistical Analysis

of Data. Springer, 1996.

[2] S. Apel, C. Kästner, and C. Lengauer. FeatureHouse:
Language-Independent, Automatic Software
Composition. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 221–231. IEEE, 2009.

[3] S. Apel, C. Kästner, and S. Trujillo. On the Necessity
of Empirical Studies in the Assessment of
Modularization Mechanisms for Crosscutting
Concerns. In ACoM ’07: Proceedings of the 1st
International Workshop on Assessment of
Contemporary Modularization Techniques, pages 1–7.
IEEE, 2007.

[4] A. D. Baddeley. Is Working Memory still Working?
The American Psychologist, 56(11):851–864, 2001.

[5] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
Step-Wise Refinement. IEEE Trans. Softw. Eng.,
30(6):355–371, 2004.

[6] J. Feigenspan, C. Kästner, J. Liebig, S. Apel, and
S. Hanenberg. Measuring Programming Experience. In
Proc. Int’l Conf. Program Comprehension (ICPC),
pages 73–82. IEEE, 2012.

[7] J. Feigenspan and N. Siegmund. Supporting
Comprehension Experiments with Human Subjects. In
Proc. Int’l Conf. Program Comprehension (ICPC),
pages 244–246. IEEE, 2012.

[8] J. Feigenspan, N. Siegmund, and J. Fruth. On the
Role of Program Comprehension in Embedded
Systems. In Proc. Workshop Software Reengineering
(WSR), pages 34–35, 2011.

[9] E. Figueiredo, N. Cacho, M. Monteiro, U. Kulesza,
R. Garcia, S. Soares, F. Ferrari, S. Khan, F. Filho,

and F. Dantas. Evolving Software Product Lines with
Aspects: An Empirical Study on Design Stability. In
Proc. Int’l Conf. Software Engineering (ICSE), pages
261–270. ACM, 2008.

[10] G. Heineman and W. Councill. Component-Based
Software Engineering: Putting the Pieces Together.
Addison Wesley, 2001.

[11] A. Jedlitschka, M. Ciolkowski, and D. Pfahl.
Reporting Experiments in Software Engineering. In
Guide to Advanced Empirical Software Engineering,
pages 201–228. Springer, 2008.

[12] C. Kästner and S. Apel. Integrating Compositional
and Annotative Approaches for Product Line
Engineering. In McGPLE ’08: Proceedings of the
GPCE Workshop on Modularization, Composition and
Generative Techniques for Product Line Engineering,
pages 35–40. Department of Informatics and
Mathematics, University of Passau, 2008.

[13] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 311–320. ACM,
2008.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Mae-da,
C. Lopez, J.-M. Loingtier, and J. Irwin.
Aspect-Oriented Programming. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), pages
220–242. Springer, 1997.

[15] J. Koenemann and S. Robertson. Expert Problem
Solving Strategies for Program Comprehension. In
Proc. Conf. Human Factors in Computing Systems
(CHI), pages 125–130. ACM, 1991.

[16] R. Likert. A Technique for the Measurement of
Attitudes. Archives of Psychology, 22(140):1–55, 1932.

[17] R. Lopez-Herrejon, D. Batory, and W. Cook.
Evaluating Support for Features in Advanced
Modularization Technologies. In ECOOP ’05:
Proceedings of the 19th European Conference on
Object-Oriented Programming, pages 169–194.
Springer, 2005.

[18] M. Mezini and K. Ostermann. Variability
Management with Feature-Oriented Programming and
Aspects. In FSE ’04: Proceedings of the 12th
International Symposium on Foundations of Software
Engineering, pages 127–136. ACM, 2004.

[19] G. Miller. The Magical Number Seven, Plus or Minus
Two: Some Limits on our Capacity for Processing
Information. Psychological Review, 63(2):81–97, 1956.

[20] D. Mook. Motivation: The Organization of Action.
W.W. Norton & Co., second edition, 1996.

[21] D. Parnas. On the Criteria To Be Used in
Decomposing Systems into Modules. Commun. ACM,
15(12):1053–1058, 1972.

[22] C. Prehofer. Feature-Oriented Programming: A Fresh
Look at Objects. In Proc. Europ. Conf.
Object-Oriented Programming (ECOOP), pages
419–443. Springer, 1997.

[23] P. Tarr and H. Ossher. Hyper/J: Multi-Dimensional
Separation of Concerns for Java. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 729–730. IEEE,
2001.

