
E F F I C I E N T P R E O P T I M I Z AT I O N S E Q U E N C E S F O R P O L LY

christoph woller

Bachelor’s Thesis

Programming Group
Department of Informatics and Mathematics

University of Passau

Supervisor: Prof. Lengauer, Ph.D.

Tutor: Dr. Armin Größlinger
August 2014

Christoph Woller: Efficient Preoptimization Sequences for Polly, Bachelor’s Thesis, © August
2014

A B S T R A C T

The LLVM compiler framework comes with a plugin called Polly that enables polyhe-
dral optimization on the LLVM intermediate representation (IR). The LLVM-IR code
has to match a canonical form, called a SCoP (Static Control Part), such that Polly can
transform it into the polyhedral model for later optimization. Consequently, the im-
provements Polly can achieve depend on the amount of code that is detected as SCoPs.
LLVM analysis and transformation passes can increase the amount of code which is rec-
ognized to be a SCoP, but the optimal sequence of preoptimizations that maximizes the
number of SCoPs is unknown.

This thesis discusses four different heuristic approaches, two genetic algorithms, a
hill climbing algorithm, and a greedy algorithm, that all aim to generate good preopti-
mization sequences. We define an objective function as a measure for the quality of a
preoptimization sequence. We compare the heuristic approaches with present preopti-
mization sequences and the effects of different optimization passes are examined. From
the sequences found using heuristics we extract a partial order on the individual passes
and by an exhaustive search on the possible topological sortings of this order find a new
fixed preoptimization sequence for Polly that provides better results than the currently
used preoptimization sequence.

iii

A C K N O W L E D G M E N T S

I have to thank the following people for their help throughout this thesis:
Dr. Armin Größlinger and Andreas Simbürger for supporting and guiding me through

this thesis. All members of the Programming Group for providing helpful tips.

v

C O N T E N T S

i background and fundamentals 1

1 introduction 3

1.1 Basic Understanding of a Compiler . 3

1.2 Phase-Ordering Problem . 5

1.3 Motivation . 6

1.4 Outline of the Thesis . 6

2 polly 7

2.1 LLVM Framework . 7

2.1.1 Compilation with LLVM . 7

2.1.2 LLVM Command-line Tool opt . 8

2.2 Polyhedral Optimization in LLVM . 9

2.3 Basic Definitions . 10

2.4 Static Control Parts in LLVM-IR . 11

2.5 Preparing Passes of Polly . 15

2.6 Examples that Polly cannot handle . 17

ii preoptimization sequences for polly 19

3 generating custom preoptimization sequences 21

3.1 Problem Formulation . 21

3.2 Heuristic Approaches . 23

3.2.1 Hill Climbing . 23

3.2.2 Greedy Algorithm . 26

3.2.3 Genetic Algorithms . 28

4 experiments 35

4.1 Experimental Framework . 35

4.1.1 Sample passes . 35

4.1.2 Sample programs . 36

4.2 Experimental Setup . 37

4.2.1 Experiment 1 - Fitness of fixed sequences . 37

4.2.2 Experiment 2 - Fitness comparison of fixed and custom sequences 38

4.2.3 Experiment 3 - Optimization of generated custom sequences 40

4.2.4 Experiment 4 - Effect of pass -mem2reg . 45

4.2.5 Experiment 5 - Custom sequences with selected passes 49

4.2.6 Experiment 6 - Construction of a new fixed preoptimization sequence 51

5 conclusion 61

iii appendix 63

a selected passes of the -o3 optimization sequence 65

b fitness comparison of optimization sequences 69

vii

viii contents

c abbreviations for the detection statistics 73

d effect of -mem2reg 75

e fitness comparison of optimization sequences 83

f fitness of -polly-canonicalize and new fixed preoptimization se-
quences 85

bibliography 87

L I S T O F F I G U R E S

Figure 1 A basic compiler . 4

Figure 2 Compilation with LLVM . 8

Figure 3 Architecture of Polly [11, p. 4] . 9

Figure 4 The CFG for the code in Listing 1 with marked regions 11

Figure 5 The CFG for the code in Listing 3 . 17

Figure 6 Course of evaluation function v over the candidate sequences 25

Figure 7 Fitness comparison of fixed preoptimization sequences 38

Figure 8 Fitness comparison of fixed and custom preoptimization sequences 39

Figure 9 Relative frequency of the pass occurrences 43

Figure 10 Fitness comparison of custom sequences with selected optimiza-
tion passes . 50

Figure 11 Dependency graph of the selected optimization passes 55

Figure 12 Fitness comparison of -polly-canonicalize and -polly-preopt 57

Figure 13 Fitness comparison of -polly-canonicalize and the two new sequences 58

Figure 14 Fitness change of new sequences compared to -polly-canonicalize . . 59

L I S T O F TA B L E S

Table 1 Passes induced by -polly-detect . 16

Table 2 Passes induced by -polly-canonicalize 16

Table 4 Real-world programs used for the studies of optimization sequences 36

Table 7 Effect of -mem2reg . 46

Table 8 Comparison of sequences with and without mem2reg for 7za 47

Table 9 Comparison of sequences with and without mem2reg for floyd-
warshall . 47

Table 10 Comparison of sequences with and without mem2reg for lulesh . . 48

Table 11 Subsequences that occur in the sequences of G with a relative fre-
quency of at least 20% . 53

Table 12 Optimization passes and their predecessors 54

Table 13 Changes due to omitted optimization passes 58

Table 14 Set of -O3 passes used for the research 67

Table 15 Column names and referred preoptimization sequences 69

Table 16 Fitness comparison of sequences of experiment 1 and 2 in section 4.2 71

Table 17 Abbreviations used in Tables 8, 9, and 10 74

Table 18 Comparison of sequences with and without mem2reg 81

ix

Table 19 Assignment of column name to optimization sequence 83

Table 20 Fitness comparison of sequences of experiment 5 in section 4.2.5 . . 84

Table 21 Fitness comparison of experiment 6 in section 4.2.6 86

L I S T O F A L G O R I T H M S

1 Hill Climbing . 24

2 Greedy Algorithm . 27

3 Genetic Algorithm - Variant 1 . 30

4 Genetic Algorithm - Variant 2 . 32

5 Shortening . 41

L I S T I N G S

Listing 1 Simple example program . 10

Listing 2 A SCoP in LLVM-IR . 13

Listing 3 C code with non single entry in a for-loop 17

Listing 4 LLVM-IR code of code shown in Listing 3 17

Listing 5 Source-code with non canonical induction variable 18

Listing 6 LLVM-IR code of code shown in Listing 5 18

Listing 1 Sample C code . 45

Listing 2 LLVM-IR version of code in Listing 1 45

Listing 3 LLVM-IR code of Listing 2 after applying -mem2reg 46

Listing 4 Loop in LLVM-IR with PHI node . 47

x

Part I

B A C K G R O U N D A N D F U N D A M E N TA L S

1
I N T R O D U C T I O N

This chapter explains the topic of this thesis and the motivation behind it. The first
part of the chapter describes the basic structure of a compiler and introduces the phase-
ordering problem in compilers. The second part points out the benefits of an examina-
tion of the phase-ordering problem with regard to Polly. The last part gives an overview
of how this thesis is organized.

1.1 basic understanding of a compiler

Modern computer programs are mostly written in high-level programming languages.
On the one hand, this approach makes it easier for people to learn coding but, on the
other hand, a computer does not understand high-level constructs. Hence, a program
has to be translated into a representation understandable for a computer. This translation
is done by compilers.

A compiler is a program that takes as input a program written in one language, the
source language, and translates it into a program in another language, the target lan-
guage, while preserving the semantic of the input program [7, p. 1], [13, p. 1]. The
compilation process is a series of different phases. Aho et al. divide these phases in
an analysis part and a synthesis part [7, p. 4f.]. The analysis part, or front end, of the
compiler performs syntax and semantic analysis on the source program. The front end
checks the consistency of the syntax and the semantic with the language definition. The
front end informs the user if any phase detects an error in the source code. The analysis
part ends with the generation of an intermediate representation of the code. The synthe-
sis part or back end takes as input this intermediate representation and translates it into
the target code. The single phases often share resources with each other. For example,
the back end often requires information provided by previous analysis phases to create
the target code. Each phase possibly works on a different representation of the source
code. For example, the syntax analysis is often performed on a tree-like intermediate rep-
resentation called syntax tree [7, p. 8]. So there may be different representations of the
source code that are used during the compilation process. In this thesis such represen-
tations are also called intermediate representations, or short IR, of the source program.
Figure 1 shows the basic structure of a translation process. The different phases take as
input different intermediate representations which are illustrated by the IR_x labels on
the arrows, where x is the number of the respective IR.

3

4 introduction

����������	�
� ��
��� ��
���� ��� ��
���� �
�	�������

��� ���� �����

��������

Figure 1.: A basic compiler

The division of the translation process into phases helps to understand the logical
structure of a compiler, but implementations often group activities from different phases
to a single pass that reads an input file and writes an output file [7, p. 11]. For exam-
ple, the analysis phases may be combined to one pass or the generation of the target
program is an own pass. Modern compiler frameworks such as LLVM are built around
a well specified, low-level intermediate language and provide a large set of tools and
passes that work on this IR. If you have a set of n source languages that should be trans-
formed to a target language, you only have to implement n front ends that translate the
source languages into the intermediate language and one back end that translates the
intermediate language into the target language. This is a huge advantage over writing
a back end for each source language because the translation of a source language di-
rectly into a target language is often more difficult than the detour over an intermediate
representation and you do not have the overhead of n different back ends.

optimizations Aho et al. describe the opportunity of performing code optimiza-
tions on the intermediate representation prior to the generation of the target code [7,
p. 10]. So, an optimization phase takes as input an intermediate representation of the
source program, performs analyses and/or code transformations, and provides the pos-
sibly modified representation as output. An optimization is often implemented as a pass
of its own or combined with other optimizations to a single pass. In this thesis, an op-
timization is a transformation or an analysis that aims to improve the resulting target
code, for example regarding execution speed, code size, or energy efficiency. The terms
optimization, optimization phase, and optimization pass are used interchangeably. Most
modern compilers come with a large set of optimizations. Users of compilers such as
clang (see [4]) or gcc (see [5]) have the opportunity to enable different optimizations by
setting the corresponding command-line flags.

1.2 phase-ordering problem 5

1.2 phase-ordering problem

As explained in the previous section, modern compilers such as clang or gcc come with
a large set of optimizations and the user of the compiler can enable an optimization by
setting the corresponding command-line flag. Assume the following scenario. There are
n different command-line flags available. Each of these flags enables a distinct optimiza-
tion phase. The user of the compiler has a source code file and wants to translate it into
some target language. Additionally, the user wants to get the best performing target pro-
gram that is possible. Which of the n optimization flags should the user set? In which
order should the user set the flags? Should he set a certain flag more than once? These
questions lead to the problem of finding the best sequence of optimization phases for a
given application which is better known as the phase-ordering problem in compilers [14,
p.1]. The aspects that contribute to the complexity of this problem are summarized in
the following list:

• A compiler may provide n optimization phases, but not all of these phases have
to improve the resulting target code.

• Research has shown that one optimization phase can increase/decrease the oppor-
tunities for the next phases. So optimizations are dependent on other phases [14,
p. 1].

• Some compilers allow the repeated application of optimization phases.

• The search space of possible optimization sequences is very large. Assume a com-
piler supports n different phases. When looking for an optimization sequence con-
taining m phases, one can select between nm different sequences.

Due to the complexity of the phase-ordering problem, many compilers offer prede-
fined, fixed optimization sequences that can also be used via command-line flags. Prob-
ably the most prominent example is the -O3 flag provided by compilers such as clang and
gcc. These predefined sequences are meant to be a good solution for each application.
However, research has shown that a single sequence of optimizations does not produce
the optimal results for the infinite number of different programs whether compiling for
speed, for space, or for other metrics [8], [9], [14], [19]. Consequently, scientists have stud-
ied the phase-ordering problem in more detail. A total exploration of the search space is
unfeasible due to the number of possible optimization sequences. Therefore, researchers
have presented different heuristic approaches meant to solve the phase-ordering prob-
lem. The heuristics often evaluate only a portion of the search space and, consequently,
are not able to provide any guarantees about the quality of the solutions obtained [14,
p. 1]. But even if this methods do not provide the best possible optimization sequence,
experiments showed that they find yet effective ones [8], [9], [14], [19]. For example in [9]
a genetic algorithm is used to find an optimization sequence that generates the smallest
possible target code for an application. In [19] a custom sequence of flags, which should
optimize the performance of a program, is created with a statistical approach.

6 introduction

1.3 motivation

Most of the heuristic approaches that generate custom optimization sequences have been
used only for finding sequences which optimize for the performance, the size or the
energy efficiency of the resulting target code up to now [8], [14]. In view of the positive
experiences with heuristic approaches to the phase-ordering problem you can assume
that heuristic approaches are also able to generate good preoptimization sequences for
other metrics.

Polly (see [6]) is an infrastructure for polyhedral optimization in LLVM. It takes as
input a program in the intermediate representation of LLVM (LLVM-IR) and searches
for parts of the application which can be optimized. These parts are called Static Control
Parts (SCoPs) and the amount of detectable code depends on the LLVM-IR. On the other
hand, the LLVM-IR depends on the sequence of optimizations previously performed on
it. But which optimizations should be applied to the LLVM-IR, so that the amount of
code that can be detected as SCoPs is as high as possible? This question directly leads
again to the phase-ordering problem described in the last section. Even though Polly
comes with an own pass that can be used to prepare the LLVM-IR code, the last section
explained that preoptimization sequences generated by heuristic approaches are able to
provide better results than a fixed preoptimization sequence does. Consequently, cus-
tom generated preoptimization sequences might be useful to gather information about
optimization passes and this information could help to create fixed preoptimization se-
quences that are better than current fixed sequences.

This thesis examines if heuristic approaches to the phase-ordering problem supply
custom preoptimization sequences that are better than the fixed sequence of Polly. In this
context, better means a higher amount of SCoPs. Beyond that, optimization sequences
are examined in detail to get information about which optimization passes are useful
for preoptimization and which are not. The gathered information about the optimization
passes is then used to create a new fixed preoptimization sequence that is better than
the current preoptimization sequence of Polly.

1.4 outline of the thesis

The next chapter lays the foundation for the second part of the thesis. The used compiler
framework LLVM is presented and Polly is explained. The latter includes some basic
definitions from the context of Polly’s SCoP detection.

The second part of the thesis covers the four heuristic approaches used, two genetic
algorithms, a greedy algorithm, and a hill climbing algorithm. Furthermore, the second
part presents the performed experiments and discusses the gathered results.

2
P O L LY

2.1 llvm framework

LLVM is a compiler framework first developed by Lattner [15], [16]. The idea Lattner
realized with LLVM was and still is to enable program optimizations at compile time,
link time, and run time [16, p. 1]. Consequently, the core of LLVM is an intermediate
representation, called LLVM-IR, that is used by all brought analysis and transformation
passes. LLVM-IR can be used in three different forms. There is an in-compiler IR, a
human readable assembly language called LLVM assembly or LLVM bytecode, and an
on-disk bitcode representation simply called LLVM bitcode [3]. The file extension for
LLVM bytecode files is usually “.ll” and “.bc” is the usual one for LLVM bitcode. The
LLVM Core libraries implement various parts of a compiler that operate on the LLVM
intermediate representation. One can use these libraries to build a new compiler or
embed them into existing ones. Additionally, LLVM comes with different command-line
tools that makes it possible to directly use library functionality [2]. For each tool one
can set different command-line flags that induces the tool to run corresponding LLVM
passes.

2.1.1 Compilation with LLVM

An easy way to explain the architecture of LLVM is on the basis of an exemplary compi-
lation that uses the LLVM tools. The example is derived from the one presented in [10, p.
8] and is depicted in Figure 2. A full description of the available LLVM tools is presented
in [2]. The example contains two source files written in the programming language C.
First, the source files must be translated into LLVM-IR by a language specific front end.
In the example, clang is used to translate the source files into LLVM bytecode. The re-
sults are written to corresponding LLVM bytecode files. In the next step the tool opt is
used to perform optimizations on the LLVM-IR files. The llvm-link tool combines the
optimized LLVM-IR files to a single module which can again be optimized by opt. The
resulting optimized LLVM-IR file is then compiled into assembly language for a speci-
fied architecture by llc. The tool llvm-mc takes this output and creates native assembly
code. In the last step a system linker generates the native executable.

7

8 polly

����� ���

	�
��������
	������������

���	��
��

��� ��� ���	�	�

��

������	������� ������	��

������	��

������	����

	�
���
	�������

	�
����
	��������

������	���

�������� �	�
�
���
����

�	�
�
��� �����������
���������

���������

�������
����

Figure 2.: Compilation with LLVM

2.1.2 LLVM Command-line Tool opt

This section discusses the LLVM command-line tool opt in more detail because it is used
all over the thesis. The tool opt is the modular optimizer and analyzer of LLVM [2]. It
reads in a LLVM-IR file and performs the specified analyses and/or transformations
on it. One can specify analysis and transformation passes by setting the corresponding
command-line flags. The available passes can be divided into three different categories.
There are the analysis passes which for example compute information that is available to
other passes. The transformation passes change the program in some way and are able
to use information provided by analysis passes. The last category is the one of the utility
passes. These passes provide functionality like writing a module to an LLVM bitcode
file.

2.2 polyhedral optimization in llvm 9

2.2 polyhedral optimization in llvm

Polly is a framework for LLVM which optimizes for data locality and parallelism
using polyhedral techniques [12, p. 4f.]. Polly works on the intermediate representation
of LLVM (LLVM-IR) which enables language independent optimizations. It is imple-
mented as a set of LLVM passes which can be divided up into front end, middle end,
and back end passes. Figure 3 shows the architecture of Polly.

Figure 1: Architecture of Polly

It is built around an advanced polyhedral library with full
support for existentially quantified variables and includes a
state-of-the-art dependency analysis. Due to a simple file
interface it is easily possible to apply transformations man-
ually or to use an external optimizer. We use this interface
to integrate Pluto [6], a modern data locality optimizer and
parallelizer. Thanks to integrated SIMD and OpenMP code
generation, Polly automatically takes advantage of existing
and newly exposed parallelism.

In this paper we will focus on concepts of Polly we believe
are new or little discussed in the polyhedral community.

2. IMPLEMENTATION
Polly is designed as a set of compiler internal analysis and
optimization passes. They can be divided into front end,
middle end and back end passes. The front end translates
from LLVM-IR into a polyhedral representation, the middle
end transforms and optimizes this representation and the
back end translates it back to LLVM-IR. In addition, there
exist preparing passes to increase the amount of analyzable
code as well as passes to export and reimport the polyhedral
representation. Figure 1 illustrates the overall architecture.

To optimize a program manually three steps are performed.
First of all the program is translated to LLVM-IR. After-
wards Polly is called to optimize LLVM-IR and finally, tar-
get code is generated. The LLVM-IR representation of a pro-
gram can be obtained from language-specific LLVM based
compilers. clang is a good choice for C/C++/Objective-C,
DragonEgg for FORTRAN and ADA, OpenJDP or VMKit
for Java VM based languages, unladen-swallow for Python
and GHC for Haskell. Polly also provides a drop in replace-
ment for gcc that is called pollycc.

2.1 LLVM-IR to Polyhedral Model
To apply polyhedral optimizations on a program, the first
step that needs to be taken is to find relevant code sections
and create a polyhedral description for them. The code sec-
tions that will be optimized by Polly are static control parts
(SCoPs), the classical domain of polyhedral optimizations.
Extending the polyhedral model and therefore Polly to more
general programs is possible as shown by Benabderrahmane
[5].

2.1.1 Region-based SCoP detection
Polly implements a structured, region-based approach to de-
tect the SCoPs available in a function. It uses a refined ver-
sion of the program structure tree described by Johnson [12].

for (i = 0; i < n + m; i++)

A[i] = i;

Figure 2: A valid syntactic SCoP. Not always a valid
semantic SCoP

A region is a subgraph of the control flow graph (CFG) that
is connected to the remaining graph by only two edges, an
entry edge and an exit edge. Viewed as a unit it does not
change control flow. Hence, it can be modeled as a simple
function call, which can easily be replaced with a call to
an optimized version of the function. A canonical region is
a region that cannot be constructed by merging two adja-
cent smaller regions. A region contains another region if the
nodes of one region are a subset of the nodes of the oth-
er region. A tree is called region tree, if the nodes of it are
canonical regions and the edges are defined by the contains
relation.

To find the SCoPs in a function we look for the maximal re-
gions that are valid SCoPs. Starting from the outermost re-
gion, we look for canonical regions in the region tree that are
valid SCoPs. In case the outermost region is a valid SCoP,
we store it. Otherwise, we check each child. After analyz-
ing the tree, we have a set of maximal canonical regions
that form valid SCoPs. These regions are now combined to
larger non-canonical regions such that, finally, the maximal
non-canonical regions that form valid SCoPs are found.

2.1.2 Semantic SCoPs
In contrast to prevalent approaches based on the abstract
syntax tree (AST), Polly does not require a SCoP to match
any specific syntactic structure. Instead, it analyzes the se-
mantics of a SCoP. We call SCoPs that are detected based
on semantic criteria semantic SCoPs.

A common approach to detect a SCoP is to analyze an AST
representation of the program, that is close to the program-
ming language it is implemented in. In this AST control flow
structures like for loops and conditions are detected. Then
it is checked if they form a SCoP. Common restrictions that
need to be met are the following. There exists a single in-
duction variable for a loop that is incremented from a lower
bound to an upper bound by a stride of one. Upper and
lower bounds need to be expressions that are a�ne in pa-
rameters and surrounding loop induction variables, where a
parameter is any integer variable that is not modified inside
the SCoP. The only valid statements are assignments that
store the result of an expression to an array element. The ex-
pression itself uses side e↵ect free operators with induction
variables, parameters or array elements as operands. Array
subscripts are a�ne expressions in induction variables and
parameters. There are various ways to extend this definition
of a SCoP, which we did not include in this basic definition.

The detection of SCoPs as shown in Figure 2 with an AST
based approach is easily possible, however as soon as pro-
grams become more complex and less canonical di�culties
arise. The AST of a modern language is often very expres-
sive, such that there exist numerous ways a program can
be represented. Sometimes di↵erent representations can be
canonicalized. However, as soon as goto based loops should

2

Figure 3.: Architecture of Polly [11, p. 4]

The division into front end, middle end, and back end passes already indicates that
Polly uses a three-step approach for the optimization:

The front end passes take a program/code in LLVM-IR and are responsible for de-
tecting parts of the code that Polly can analyze and optimize [12, p.5]. These parts are
called Static Control Parts (SCoP) and are explained in the next section. Furthermore the
front end translates these SCoPs into a polyhedral representation. For the sake of sim-
plicity, Polly detects only SCoPs that match a canonical form. Hence, the code is usually
canonicalized before the detection begins.

The dependency analysis and the polyhedral optimization take place in the middle
end. Optimizations on the polyhedral representation can be performed in two different
ways. First, there are optimizations offered by Polly itself. In addition the middle end
is able to export the polyhedral representation, that can then be manually optimized or
loaded into an external optimizer. Afterwards, the polyhedral representation can again
be reimported.

Finally, the back end passes generate new LLVM-IR code from the polyhedral repre-
sentation. While generating, Polly replaces parallel loops with OpenMP parallel loops
or SIMD instructions. The new code replaces the old LLVM-IR.

Polly can be used in two different ways [12, p.5f.]. The first possibility is to run certain
passes of Polly individually with the LLVM tool opt, which can run an arbitrary sequence
of passes on a provided LLVM-IR file. In this way only specific parts of Polly can be used,

10 polly

for example the SCoP detection. The other possibility is to use Polly as an integrated part
of a compiler. Polly can be loaded into clang and, if loaded, a predefined sequence of
Polly passes is automatically run when compiling with the option -O3. These passes
apply polyhedral optimizations during the normal compilation of a program.

2.3 basic definitions

We give some basic definitions before describing what parts of the program are recog-
nized by Polly as SCoPs. The following definitions are based on the ones provided in [10,
p. 16f.]. For all definitions assume a control flow graph (CFG) G of an arbitrary program
with G = (V ,E), where V represents the set of basic blocks and E is the set of directed
edges representing jumps in the control flow. As an example we use the code in Listing
1. The code represents a simple method containing a single for-loop and an if-condition
with two statements S1 and S2.

void f(int* A) {
for (int i = 0; i < 100; i++) {

if (i < 100 / 2)
S1: A[i] = 1 + 2 + 3;

else
S2: A[i] = i * 2;

}
} �

Listing 1: Simple example program

Definition 2.3.1 (Dominance Relation) Let i, j ∈ V of CFG G. Basic block i dominates basic
block j, iff every path which passes through j must also pass through i. The basic block i is then
called the dominator of j. It is called immediate dominator of j, if there exists no other basic block
that is dominated by i and that also dominates j.

Definition 2.3.2 (Post-Dominance Relation) Let i, j ∈ V of CFG G. Basic block j post-
dominates basic block i, iff every path that passes through i must also pass through j. The basic
block j is then called the post-dominator of i. It is called immediate post-dominator of i, if there
exists no other basic block that is post-dominated by j and that also post-dominates i.

Definition 2.3.3 (Simple Region) A subgraph R of G, R = (VR,ER) ⊆ G = (V ,E), is called
simple region, iff two basic blocks i, j, with i ∈ VR and j ∈ V \ VR, exist such that i dominates
every basic block of R and j post-dominates every basic block of R. The content of R does not
influence the control flow outside of R and, consequently, R can be modeled as a function call,
that can be replaced with an optimized version of it.

Definition 2.3.4 (Canonical Simple Region) A simple region R is a canonical simple region,
iff there are no two adjacent simple regions R1 and R2, such that R = R1 ∪ R2 holds.

Definition 2.3.5 (Contains Relation for Simple Regions) A simple region R contains an-
other simple region R ′, iff its nodes are a superset of the nodes of the other simple region, brief if
R ′ ⊆ R.

2.4 static control parts in llvm-ir 11

Definition 2.3.6 (Region Tree/Program Structure Tree) A region tree, also called refined pro-
gram structure tree, is a tree of simple regions connected by the contains relation, see Definition
2.3.5.

Definition 2.3.7 (Region) A subgraph R of G, R = (VR,ER) ⊆ G = (V ,E), is called region iff
it is not necessarily a simple region, but can be transformed into a simple region.

Definition 2.3.8 (Natural Loop) A subgraph L = (VL,EL) of the CFG G = (V ,E), L ⊆ G, is
called a natural loop of an edge (a,d) ∈ E, if d ∈ VL and if all basic blocks b ∈ V which can
reach a (including a itself) without passing through d, are in VL. The basic block d is then called
the loop header.

Figure 4 shows the corresponding CFG for the code in Listing 1. The rectangles repre-
sent the basic blocks and the different colors highlight the different regions. The green
region forms a natural loop as defined in Definition 2.3.8 and the vertex “for.body” is
the loop header.

Region Graph for 'f' function

entry

for.body

if.then if.else

for.inc

for.end

Figure 4.: The CFG for the code in Listing 1 with marked regions

2.4 static control parts in llvm-ir

After clarifying some definitions we can proceed with examining how Polly recognizes
parts of the program code as SCoPs. The previously described working method of Polly
can be summarized as follows:

Polly accepts an LLVM-IR file as input and searches for Static Control Parts (SCoPs)
[12, p.6]. The detected SCoPs are translated into a polyhedral representation and on this
abstraction of the code Polly performs its transformations and optimizations. After the
transformations new LLVM-IR code is generated from the polyhedral representation.

So the interesting question is, how must code look like to be detected as a SCoP? A
very basic example of program code that represents a SCoP is provided by the example

12 polly

code in Listing 1. The loop header consists of a single integer induction variable that is
incremented from a lower to an upper bound by a constant stride of one and the bounds
of the induction variable are both affine expressions. The condition of the if-statement is
a comparison of two affine expressions. The two statements are both assignments of the
results of an expression to an array. The array accesses are also affine expressions.

A common way to detect SCoPs in a function is to use pattern matching on a high-
level abstract syntax tree (AST) representation of the code. A definition of a SCoP that
is based on the AST representation of a program is taken from [12, p. 6f.]:

Definition 2.4.1 (Static Control Parts (SCoP)) A Static Control Part (SCoP) is a part of the
program which fulfills the following constraints:

• The part of the program contains only for-loops, while-loops, and/or if-statements and no
other control flow structures.

• Each loop has a single integer induction variable. This variable is incremented from a lower
to an upper bound by a constant stride of one.

• Upper and lower bounds are affine expressions of surrounding loop induction variables and
parameters.

• The condition of an if-statement is a comparison of the values of two affine expressions of
surrounding loop induction variables and parameters.

• All statements are assignments of an expression to an array element. There are only side
effect free operators and/or function calls in the expression. The operands and arguments
of a function call are induction variables, parameters, or array elements.

• Array indexes are affine expression of surrounding loop induction variables and parame-
ters.

• Parameters in expressions are integer variables and are not modified inside the SCoP.

The drawback of pattern matching on an AST representation is that the code must
have a certain syntactic representation to get recognized as a SCoP. The large number
of possible syntactical representations of a specific semantic makes this approach very
complex. Additionally, the AST approach is programming language specific.

Therefore, Polly takes another way to detect SCoPs. It looks directly for SCoPs in
the LLVM-IR of the program. This approach is programming language independent.
LLVM-IR is a very low-level language that has no high-level constructs like loops or
if-statements. Instead, there are jumps and goto statements. Arrays are represented by
pointers. For a full description of LLVM intermediate representation the reader is re-
ferred to [3]. Polly takes the LLVM-IR of a program and uses a region-based approach
to detect SCoPs available in a function [11, p. 2]. Polly searches in every function for
the maximal regions that are SCoPs. It starts with the outermost simple region (Defini-
tion 2.3.3) and searches for canonical simple regions (Definition 2.3.4) in the region tree
(Definition 2.3.6) that are SCoPs. If a canonical simple region is a SCoP, Polly stores it.
Otherwise, Polly checks all its children. The result of this analysis is a set of canonical

2.4 static control parts in llvm-ir 13

simple regions that are SCoPs. In the last step of the detection, Polly combines these
regions to larger non-canonical regions (Definition 2.3.7). Consequently, the final result
is a set of non-canonical regions that are SCoPs. A canonical simple region is recognized
as SCoP if the low-level code in the simple region is semantically equivalent to a SCoP,
as in Definition 2.4.1, written in a high-level language. Listing 2 contains the LLVM-IR
representation of the code from Listing 1 and represents a SCoP in LLVM-IR.

define void @f(i32* %A) #0 {
entry:

br label %for.cond

for.cond: ; preds = %for.inc , %entry
%i.0 = phi i32 [0, %entry], [%inc , %for.inc]
%cmp = icmp slt i32 %i.0, 100
br i1 %cmp , label %for.body , label %for.end

for.body: ; preds = %for.cond
%cmp1 = icmp slt i32 %i.0, 50
br i1 %cmp1 , label %if.then , label %if.else

if.then: ; preds = %for.body
%idxprom = sext i32 %i.0 to i64
%arrayidx = getelementptr inbounds i32* %A, i64 %idxprom
store i32 6, i32* %arrayidx , align 4
br label %if.end

if.else: ; preds = %for.body
%mul = mul nsw i32 %i.0, 2
%idxprom2 = sext i32 %i.0 to i64
%arrayidx3 = getelementptr inbounds i32* %A, i64 %idxprom2
store i32 %mul , i32* %arrayidx3 , align 4
br label %if.end

if.end: ; preds = %if.else , %if.then
br label %for.inc

for.inc: ; preds = %if.end
%inc = add nsw i32 %i.0, 1
br label %for.cond

for.end: ; preds = %for.cond
ret void

} �
Listing 2: A SCoP in LLVM-IR

To specify this more clearly we give a definition of a SCoP in LLVM-IR that conforms
to Definition 2.4.1 of a SCoP. The definition is derived from [12, p.8].

Definition 2.4.2 (SCoP in LLVM-IR) A SCoP in LLVM-IR is a subgraph of the CFG, which
fulfills the following constraints:

• The subgraph forms a simple region as defined in Definition 2.3.3.

• It is semantically equivalent to a syntactically defined SCoP (see Definition 2.4.1).

14 polly

With the SCoP in Listing 2 in the back of our minds, we can explain how Polly verifies
that a simple region in this LLVM-IR matches Definition 2.4.2 of a SCoP. Polly checks
if the simple region complies with the following constraints which are based on the
ones listed by Grosser in [10]. The constraints are adjusted to Polly’s current state of
development.

• The control flow in the simple region only consists of perfectly nested conditions
and natural loops (Definition 2.3.8). All if-statements with a then-branch and an
else-branch are interpreted as perfectly nested conditions. Among other things,
Polly uses for the recognition of a natural loop an analysis pass provided by LLVM.
A loop must have a single integer induction variable that is updated from a lower
to an upper bound by a constant stride of one. Unconditional branches are also
allowed in addition to conditional branches.

• The condition of a conditional branch has to be an integer comparison between
two affine expressions of surrounding induction variables and parameters or the
condition must be constant. Furthermore, the lower bound of a loop has to be
zero and the upper bound has to be an affine expression of surrounding induc-
tion variables and parameters. To verify this, Polly uses the natural loop analysis
and the scalar evolution analysis of LLVM to receive a closed form expression for
the loop bounds and expressions of the comparison. A closed form expression is
equivalent to an affine expression if it only contains integer constants, parameters,
additions, multiplications with constants and add recurrences that have constant
steps. Occurring parameters must be integer variables, must be defined outside
the simple region, and are not allowed to be modified inside this simple region. If
a loop cannot be analyzed and, therefore, its loop bounds cannot be assumed as
affine, it cannot be part of a SCoP.

• Computational instructions, vector management instructions, and type conversion
instructions in LLVM-IR are side effect free and can appear in a SCoP.

• Function calls are valid if LLVM can provide the information that the function call
is side effect free, always returns, and does not access memory. At the current stage
of development, function calls are not supported yet.

• Compiler internal intrinsics are not supported yet.

• Occurring PHI nodes must be in a canonical form. A PHI node is canonical if it
has the form phi i32 [0, %predecessor1], [%nextvalue, %predecessor]. The
result type need not be i32, it just has to be an integer.

• Exception handling instructions are not allowed in a SCoP because they describe
control flow that cannot be modeled statically.

• Base addresses must refer to distinct memory spaces or they must be identical. A
memory space in this context is the set of memory elements that can be accessed
by adding an arbitrary offset to the base address. LLVM has alias analysis passes
that provide Polly with the required information. The result of such analysis is

2.5 preparing passes of polly 15

ether that two base addresses must alias, then the base addresses are identical, or
that they do not alias, then there is no intersection of the memory spaces or that
they may alias. Base addresses that may alias are not allowed in a SCoP.

• Every scalar variable referenced must either be defined in the basic block it is
used, it must be a loop induction variable, or it must be defined outside the simple
region. This ensures that no scalar dependences exist between two different basic
blocks.

• Memory accesses are allowed as long as they behave like array accesses with affine
subscripts.

2.5 preparing passes of polly

For the rest of the thesis we use the LLVM tool opt to individually run the available
LLVM and/or Polly passes. This section shows how to basically use opt, with Polly
integrated, for SCoP detection and presents some passes that Polly uses to increase the
amount of detectable code in an LLVM-IR file [12, p. 11]. In the examples provided
below, popt represents opt with the Polly extension.

The command-line tool opt takes an arbitrary sequence of available flags that enable
certain passes and a file containing the LLVM-IR code as input1. A basic call of the opt
tool might look like as follows:

$ opt pass_sequence LLVM -IR_FILE

The variable pass_sequence represents the sequence of optimization passes to run.
The variable LLVM-IR_FILE represents the LLVM-IR file on which the optimizations
should be performed. If we want Polly to detect SCoPs in the provided LLVM-IR file,
we have to set the flag -polly-detect like shown:

$ popt -polly -detect -stats LLVM -IR_FILE

The flag -stats tells opt to print out a statistical overview of the detection results. The
detection flag induces opt to run several passes before it runs the actual detection pass.
The results of the detection will be printed to the standard output. The automatically
applied passes are listed in Table 1. The description of the passes is derived from [1].

Pass name Pass description

-no-aa Performs the default alias analysis of LLVM. It always returns
“may alias” for alias queries.

-domtree Starts a simple dominator construction algorithm for finding
forward dominators.

-postdomtree Starts a simple post-dominator construction algorithm for finding
post-dominators.

-loops Analyses natural loops.

1 For how to make Polly passes available in opt please see: http://polly.llvm.org/example_manual_
matmul.html

http://polly.llvm.org/example_manual_matmul.html
http://polly.llvm.org/example_manual_matmul.html

16 polly

-scalar-evolution Can be used to analyze and categorize scalar expressions in loops.

-domfrontier Starts a simple dominator construction algorithm for finding
forward dominator frontiers.

-regions Detects single entry single exit regions in a function.

-polly-detect Detects SCoPs in the provided LLVM-IR code.

Table 1.: Passes induced by -polly-detect

Polly offers a pass that is meant to increase the amount of LLVM-IR code that is
detected as SCoP. A point, which contributes to this, for example is the canonicalization
of the loop bounds that possibly helps the scalar evolution analysis to provide better
results. The pass can be run by setting the flag -polly-canonicalize:

$ popt -S -emit -llvm -polly -canonicalize LLVM -IR_file

The flags -S and the -emit-llvm tell opt to replace the resulting LLVM-IR code with
the old one in the file. Otherwise, opt will print the new code to the standard output.
The canonicalize pass of Polly induces opt to run several canonicalization passes. These
passes are listed in Table 2 below. The description of the passes is derived from [1].

Pass name Pass description

-domtree Starts a simple dominator construction algorithm for finding
forward dominators.

-mem2reg Promotes memory references to be register references.

-instcombine Combines instructions to form fewer, simple instructions.

-simplifycfg Performs dead code elimination and basic block merging.

-tailcallelim Performs tail call elimination.

-reassociate Reassociates commutative expressions in an order that is
designed to promote better constant propagation.

-loops Analyses natural loops.

-loop-simplify Performs several transformations to transform natural loops into
a simpler form.

-lcssa Transforms loops by placing phi nodes at the end of the loops for
all values that live across the loop boundaries.

-loop-rotate Performs a simple loop rotation.

-scalar-evolution Can be used to analyze and categorize scalar expressions in loops.

-iv-users Bookkeeping for “interesting” users of expressions computed
from induction variables.

-polly-indvars Simplifies induction variables.

-polly-prepare Prepares code for Polly.

Table 2.: Passes induced by -polly-canonicalize

2.6 examples that polly cannot handle 17

2.6 examples that polly cannot handle

In this section we discuss some examples in which Polly is not able to detect SCoPs for
some reason. The examples should help us to get more familiar with the definition of
SCoPs in LLVM-IR.

example 1 – non single entry in a loop Polly cannot detect any SCoP in the C
code shown in Listing 3 because the occurring loop has two entry blocks. This gets more
obvious if we take a look at the LLVM-IR version in Listing 4 and at the CFG shown in
Figure 5.

void f(long A[], long N) {
long i;

if (true)
goto loop;

else
goto loop;

loop:
for (i = 0; i < N; ++

i)
A[i] = i;

} �
Listing 3: C code with non single

entry in a for-loop

CFG for 'f' function

entry
T F

then else

for.i
T F

return

Figure 5.: The CFG for the code in
Listing 3

define void @f(i64* %A, i64 %N) nounwind {
entry:

fence seq_cst
br i1 true , label %then , label %else

then:
br label %for.i

else:
br label %for.i

for.i:
%indvar = phi i64 [0, %then], [0, %else], [%

indvar.next , %for.i]
%scevgep = getelementptr i64* %A, i64 %indvar
store i64 %indvar , i64* %scevgep
%indvar.next = add nsw i64 %indvar , 1
%exitcond = icmp eq i64 %indvar.next , %N
br i1 %exitcond , label %return , label %for.i

return:
fence seq_cst
ret void

} �
Listing 4: LLVM-IR code of code shown in Listing 3

18 polly

example 2 – non canonical induction variable Polly cannot detect the
SCoP in the C code shown in Listing 5 because the induction variable of the for-loop is
not in a canonical form. It should be an integer variable and not a long variable.

void f(long A[], long N) {
long i;
for (i = 0; i < N; ++i)
A[i] = i;

} �
Listing 5: Source-code with non canonical induction variable

Listing 6 shows the corresponding LLVM-IR code of the code in Listing 5.

define void @f(i64* %A, i64 %N, i64 %p) nounwind {
entry:

fence seq_cst
br label %pre

pre:
%p_tmp = srem i64 %p, 5
br i1 true , label %for.i, label %then

for.i:
%indvar = phi i64 [0, %pre], [%indvar.next , %for.i]
%indvar.p1 = phi i64 [0, %pre], [%indvar.p1.next , %for.i]
%indvar.p2 = phi i64 [0, %pre], [%indvar.p2.next , %for.i]
%sum = add i64 %indvar , %indvar.p1
%sum2 = sub i64 %sum , %indvar.p2
%scevgep = getelementptr i64* %A, i64 %indvar
store i64 %indvar , i64* %scevgep
%indvar.next = add nsw i64 %indvar , 1
%indvar.p1.next = add nsw i64 %indvar.p1, %p_tmp
%indvar.p2.next = add nsw i64 %indvar.p2, %p_tmp
%exitcond = icmp eq i64 %sum2 , %N
br i1 %exitcond , label %then , label %for.i

then:
br label %return

return:
fence seq_cst
ret void

} �
Listing 6: LLVM-IR code of code shown in Listing 5

Part II

P R E O P T I M I Z AT I O N S E Q U E N C E S F O R P O L LY

3
G E N E R AT I N G C U S T O M P R E O P T I M I Z AT I O N S E Q U E N C E S

The last chapter presented Polly and showed how to use the opt tool to prepare an
LLVM-IR file and run the SCoP detection on it. Like previously mentioned, Polly comes
with a pass called -polly-canonicalize that can be used to prepare an LLVM-IR file for
SCoP detection. The idea behind this preparation is to get the amount of code that
can be detected as SCoP as high as possible. However, -polly-canonicalize contains opti-
mization passes of which it is assumed that they have a positive effect on Polly’s SCoP
detection, but -polly-canonicalize has never been compared with other preoptimization se-
quences. Furthermore, there are no surveys that investigate which optimization passes
are useful for preoptimization and which are not. So the best preparation sequence for a
given LLVM-IR file is searched. This chapter describes this problem more precisely and
presents heuristic approaches to it.

3.1 problem formulation

Assume you have an LLVM-IR file that should be optimized by Polly. For this purpose
you want to prepare the LLVM-IR code using an optimization sequence that modifies the
code in a way Polly can detect a higher number of SCoPs. Consequently, all sequences
that are worthy for considerations have to be evaluated to find the best among them. One
could evaluate a sequence by measuring the runtime of the LLVM-IR code after applying
this sequence for preoptimization and after optimizing the LLVM-IR code with Polly.
This measure would point out how much LLVM-IR code could be optimized by Polly
after applying a certain preoptimization sequence. The drawback of this approach is that
such runtime checks would probably exceed the available time and another drawback
is that running LLVM-IR code for runtime checks often requires test inputs. Hence, the
evaluation of a sequence is as follows. First, the specified LLVM-IR file is optimized
with this sequence. Then, Polly performs a SCoP detection on the optimized LLVM-
IR. The number of detected SCoPs and the total number of regions is measured. The
difference between these two numbers indicates how many regions are not SCoPs. This
difference is used for the evaluation of a sequence. Thus, for a given LLVM-IR file, the
best sequence is that which has the lowest difference. This measure is used because one
wants SCoPs to cover as much of the LLVM-IR code as possible and this measure is
better than the ratio of the number of SCoPs to the number of regions. Assume you
have a certain LLVM-IR code and two preoptimization sequences a and b.

21

22 generating custom preoptimization sequences

Let sa be the number of SCoPs detected in the code using sequence a and let ra
be the corresponding number of regions in the code. Let sb and rb be the number of
SCoPs and the number of regions, if sequence b is used. Let sa = 1, ra = 2 and the
sequence b does nothing more than sequence a but duplicates the SCoP in the LLVM-IR
code, then sb = 2 and rb = 3 holds. If the ratio is used, the sequence b would be better
than the sequence a because sa/ra = 1/2 < 2/3 = sb/rb. This is false because b just
duplicates already existing code. If the difference is used, the two sequences are equal
because ra − sa = 2− 1 = 1 = 3− 2 = rb − sb is true.

Since the length of the best sequence is unknown, one would have to work with
variable sequence lengths. However, this would greatly increase the complexity of the
problem. Therefore, often only sequences with a fixed length as possibly solutions are
considered [14, p. 6]. The sequence length of the possible solutions is usually determined
arbitrarily. To reduce the complexity of the problem this thesis also works with fixed
sequence length.

The overall problem can be formulated more precisely as minimization problem:

Given:

1. A program p of the set P of programs in LLVM-IR that should be
prepared for SCoP detection.

2. The set O that denotes the set of the available optimizations.

3. An arbitrary chosen sequence length m ∈N, where N denotes the
naturally numbers including zero.

4. Sm = O× · · · ×O︸ ︷︷ ︸
m times

, the set of all available optimization sequences

with length m. This set is also called search space, while its elements
are called candidate solutions.

5. The evaluation function:
v : P× Sm →N, (p, s) 7→ regions(p, s) − scops(p, s)
The function regions provides the number of regions in a program
p if a sequence s is used for preoptimization and scops provides
the corresponding number of detected SCoPs in this program.

Sought: An element s0 in Sm such that v(p, s0) 6 v(p, s) holds for all s in Sm

For the remaining part of the thesis O denotes the set of available optimization passes,
Sm denotes the search space of sequences of length m ∈ N, and v is the evaluation
function. The terms evaluation function and fitness function are used interchangeable.
Consequently, the fitness value or just fitness of a sequence s for a program p refers
to the value v(p, s). It has to be noted that the fitness of a sequence depends on the
program that is optimized with this sequence. Hence, the evaluation function v assigns

3.2 heuristic approaches 23

a sequence s ∈ Sm a different fitness value depending on the program that is optimized
with this sequence.

3.2 heuristic approaches

In order to solve the minimization problem described in the past section for a program
p, one would have to perform an exhaustive exploration of the search space Sm with
m ∈N. So one would have to calculate v(p, s) for each s ∈ Sm and compare the resulting
evaluations of the candidate solutions with each other. Assume that the setO has n, with
n ∈ N, elements, then there would be nm candidate solutions who would have to be
evaluated and compared. In most cases, this is a too expensive task and because of that
heuristic approaches are used to solve the phase-ordering problem [8], [9], [14], [19].

In this thesis, a heuristic is interpreted as problem specific information that allows to
find the desired solution hopefully faster than an exhaustive search would do [20, p. 319].
With the problem specific information in mind, heuristic algorithms often evaluate only
a portion of the search space. However, this means that there is no guarantee whether
the found solution is near to the optimal solution or not. Fortunately, it has been shown
that heuristic approaches are able to generate custom optimization sequences that are
almost as good as the optimal one [8], [14]. In this thesis, a hill climbing, a greedy,
and two genetic algorithms are used to generate custom preoptimization sequences for
Polly. The choice of the algorithms is attributable to the investigations and performed
experiments presented in [8], [9], [14], where good results were obtained with these
algorithms.

3.2.1 Hill Climbing

Hill climbing is a local search technique. In general, a local search technique selects a
random candidate solution s from the search space Sm as base solution [20, p. 327 f.].
The base solution is then modified to generate another candidate solution s ′. If s ′ is
better than s, s ′ becomes the new base solution. This process is repeated till there is no
more improvement.

The special feature of hill climbing is that a hill climber does not only compare the
base solution s with a single other solution, but it calculates all the neighbors of s and
compares it with the best neighbor [8, p. 6]. The set of neighbors Ns of the base solution
s contains all candidate solutions that differ from s at exactly one position. For example
assume O = {a,b} and letm = 2. Then S2 = {(a,a), (a,b), (b,a), (bb)} is the search space.
If s = (a,a) is the base solution, its neighbors are n1 = (a,b) and n2 = (b,a), but not
n3 = (b,b), because this candidate solution differs from s at position 1 and 2. If the best
neighbor is better than s, this neighbor becomes the new base solution. This process is
repeated till there is no more improvement.

The hill climbing algorithm used in this thesis is derived from [8, p. 6] and is adjusted
according to the proposals of [14, p. 7]. The hill climber is presented in Algorithm 1.

24 generating custom preoptimization sequences

Algorithm 1 Hill Climbing

1: procedure hillclimber(p,m,O)
2: . LLVM-IR program p, Sequence length m ∈N, set of available optimizations O
3: . Keep track of the best sequence found
4: solution← ()

5: iterations← 0

6:

7: while iterations < 100 do
8: . Start with a randomly selected sequence
9: base← random element (o1, ...,om) ∈ Sm

10: stop← False

11:

12: repeat
13: . Calculate the neighbors of base
14: Nbase ← ∅
15: j← 1

16: while j 6 m do
17: for all o ∈ O do
18: neighbor← (base[1], ...,base[j− 1],o,base[j+ 1], ...,base[m])

19: Nbase ← Nbase ∪ {neighbor}
20: end for
21: j++

22: end while
23:

24: . Check if the best neighbor is better than the base sequence
25: stop← True

26: for all neighbor ∈ Nbase do
27: if v(p,neighbor) < v(p,base) then
28: base← neighbor

29: stop← False

30: end if
31: end for
32: until stop
33:

34: if iteration == 0∨ v(p,base) < v(p, solution) then
35: solution← base

36: end if
37: iterations++

38: end while
39:

40: return solution . The best solution found in 100 iterations
41: end procedure

3.2 heuristic approaches 25

The problem with hill climbing is that such an algorithm is likely to get stuck in a
local optimum and does not come closer to the global optimum. For example if the base
solution s has reached the local optimum shown in Figure 6, it evaluates its neighbors
and they are all worse solutions than s. Consequently, the hill climber gets stuck in this
local optimum even if there are better solutions near the global optimum, see Figure 6.
Whether the hill climber gets stuck in a local optimum or not, depends on the initial
base solution that is selected randomly. In order to reduce the noise of this randomness
and so reduce the probability to get a solution where the hill climber got stuck in a
local optimum, the whole hill climbing process is repeated 100 times in Algorithm 1 like
proposed in [14, p. 7].

�������

���	�	���
���������

���
������� ����
�������

���������

Figure 6.: Course of evaluation function v over the candidate sequences

Almagor, Cooper, et al. examined small search spaces and stated that 80% of the local
optima are within 5 to 10% of the optimal solution [8, p. 1]. Furthermore, they pointed
out that a search technique like multiple hill climbing runs should find good solutions
because a search space contains a large number of local optima [8, p. 4]. Consequently,
it is not fatal if a hill climbing algorithm gets stuck in a local optimum because this local
optimum is likely near to the optimal solution. Hill climbing algorithms have already
been compared with other search techniques and, indeed, a hill climber is able to find
good solutions that are close to the optimum [8], [14]. So the hill climbing algorithm
described above should be able to find good solutions that are close to the optimal one
and that are better than -polly-canonicalize.

26 generating custom preoptimization sequences

3.2.2 Greedy Algorithm

Greedy algorithms are often used for optimization problems because they obey a simple
paradigm [20, p. 324]. A greedy algorithm makes the next step based on locally available
information. Therefore, the step is chosen that promises the highest profit if a solution
for a maximization problem is looked for or the step that promises the lowest costs if a
solution for a minimization problem is looked for. The idea behind this is to reach the
optimal solution if the best possible step is made at each point in time.

Kulkarni et al. have compared the results of a greedy algorithm with the results of
other heuristic approaches and have come to the decision that a greedy algorithm pro-
vides efficient/good solutions, but they are not as good as the ones provided by other
techniques like genetic algorithms or hill climbing algorithms [14]. Nevertheless, the
custom sequences found by the greedy algorithm described in [14, p. 9] are still efficient
ones and are in most cases better than fixed optimization sequences. Hence, this greedy
algorithm is adapted to the problem described in Section 3.1.

Assume a custom optimization sequence of length m ∈N for a program p is wanted
and there are n ∈ N optimization passes available, so |O| = n. The greedy algorithm
starts with the empty sequence as initial base sequence b. In the first step the algo-
rithm generates all n sequences of length one , so all sequences s ∈ S1. The sequences
generated out of the base sequence are called its child sequences. The algorithm eval-
uates all child sequences according to the familiar evaluation function v and chooses
the sequences that have the lowest evaluation value, so all child sequences s with
v(p, s) 6 v(p, s ′) for all s ′ ∈ S1, and selects randomly one of them as new base se-
quence b. In the next step the algorithm creates for each optimization o ∈ O two new
sequences s1 and s2 by appending o to the base sequence, s1 = b‖o, and by prepending
o to the base sequence, s2 = o‖b. That way, 2n new sequences are generated. The se-
quences are again evaluated and the new base sequence is selected like in the first step.
This process is repeated till the greedy algorithm gets to a base sequence of length m.
This base sequence represents the found custom optimization sequence. Like proposed
in [14, p. 9] the algorithm is repeated 100 times to reduce the noise that may be caused
by the random point at the selection of the next base sequence. Algorithm 2 shows the
presented greedy algorithm as pseudo-code.

3.2 heuristic approaches 27

Algorithm 2 Greedy Algorithm

1: procedure greedy(p, O, m)
2: . LLVM-IR program p, available optimizations O, desired sequence length m
3: solutions← [] . Found solutions are at the beginning an empty list
4: iterations← 0

5:

6: while iterations < 100 do
7: base← () . Start with an empty base sequence
8:

9: repeat
10: . Generate child sequences by appending and prepending
11: children← ∅
12: for all o ∈ O do
13: childa ← base‖o
14: childp ← o‖base
15: children← children∪ {childa, childp}
16: end for
17:

18: . Select the children with the lowest evaluation value
19: best← ∅
20: for all child ∈ children do
21: if v(p, child) 6 v(p, child ′) for all child ′ ∈ children then
22: best← best∪ {child}
23: end if
24: end for
25:

26: . Select new base sequence randomly
27: base← random child from best

28: until length(base) == m

29:

30: solutions.append(base)
31: iterations++

32: end while
33:

34: sort solutions according to fitness from high to low
35: solution← return last element in list solutions
36: return solution . The best solution found in 100 iterations
37: end procedure

28 generating custom preoptimization sequences

3.2.3 Genetic Algorithms

John Holland from the University of Michigan invented genetic algorithms in the 1960s
[17, p. 3]. Genetic algorithms are used, among other things, for finding solutions for op-
timization problems. The central idea behind genetic algorithms is that they take nature
as example and imitate the genetic evolution [20, p. 331]. Melanie Mitchell explains with
the following words why evolution is a good approach to optimization problems [17, p.
4] :

“Evolution is, in effect, a method of searching among an enormous number of
possibilities for ‘solutions’.”

Researchers have used genetic algorithms to generate custom optimization sequences
whether optimizing for program speed, code size, or other metrics [8], [9], [14], [18].
Their experiments have shown that in the most cases the sequences generated by genetic
algorithms provide better results than fixed optimization sequences. These results are
therefore so impressive because genetic algorithms search only a portion of the search
space for possible solutions. Cooper et al. have described a genetic algorithm that pro-
duces optimization sequences which aim to minimize the code size of a provided file.
Their results are positive without exception. Hence, genetic algorithms are used in this
thesis, in order to generate custom preoptimization sequences for Polly.

Before a concrete genetic algorithm can be described, it is necessary to define some
basic terms [17, p. 3ff.].

Definition 3.2.1 (Gene and Gene Pool) A gene g is a symbol that encodes some information.
In this thesis, the set of available genes is called the gene pool G.

Definition 3.2.2 (Chromosome) A chromosome c consists of n genes, with n ∈ N. In this
thesis a chromosome c is interpreted as a sequence of genes with length n, so c = (g1,g2, ...,gn)
with g1, ...,gn ∈ G and n ∈N.

Definition 3.2.3 (Locus) Let c = (g1, ...,gn) be a chromosome of length n ∈N with g1, ...,gn ∈
G. The position of a gene on a chromosome is called its locus. In other words, the locus of a gene
gl in the sequence c is its index l, with 1 6 l 6 n.

Definition 3.2.4 (Population) A population P is a set of chromosomes that have the same
length n ∈N.

Definition 3.2.5 (Fitness function and fitness value) Genetic algorithms include a fitness
function f : Gn = G× · · · ×G︸ ︷︷ ︸

n times

→ N, with n ∈ N, that assigns a chromosome c to its fitness

value or short fitness f(c). Chromosomes can be compared with respect to their fitness.

A genetic algorithm moves from a population to a new one using operations called
selection, crossover, and mutation [17, p. 7ff.]. The move from one population to a new one
is called generation.

3.2 heuristic approaches 29

selection This operator selects the chromosomes of the population P that are used
for the reproduction according to their fitness value. Normally, the chromosomes with
better fitness values are selected more likely because it is assumed that good chromo-
somes produce good offsprings.

crossover Assume there are two chromosomes c1 = (a1,a2, ...,an) and
c2 = (b1,b2, ...,bn). The crossover operation creates two offsprings by combining the
genes of c1 before the locus l with genes of c2 after the locus l and vice versa. Conse-
quently, the resulting offsprings are o1 = (a1, ...,al,bl+1, ...,bn) and
o2 = (b1, ...,bl,al+1, ...,an).

mutation The mutation exchanges a gene of a chromosome with a randomly chosen
gene of the gene pool. A mutation can happen at each locus. For example, assume there
is a chromosome c = (a,b, c). A mutation at the second locus exchanges the gene b with
gene d. The result of the mutation is the chromosome c ′ = (a,d, c).

In the context of the problem defined in Section 3.1, the gene pool is the set of avail-
able optimizations, so G = O, while each gene represents an optimization. Consequently,
a chromosome is an optimization sequence. Therefore, each chromosome c is a candi-
date solution and element of the search space Sm. The evaluation function v is the fitness
function. Consequently, there is an own fitness function f for each LLVM-IR program p

that should be optimized because the value of v for a sequence depends on p. It should
be noted that in this problem, the chromosome with the lowest fitness value is the best.

The first genetic algorithm that is used in this thesis is adapted from [9] with adjust-
ments according to the domain of Polly. This genetic algorithm starts with a population P
of 20 chromosomes of size n. These chromosomes are randomly chosen from the set Gn,
where G denotes the gene pool of Definition 3.2.1. The first step is now to calculate the
fitness values f(c) for each chromosome in the population P. The chromosomes are then
sorted according to their fitness value from high to low. In the next step, P is divided into
an upper half U and a lower half L. Due to the sorting, U contains the chromosomes with
lower fitness values and L the ones with higher fitness values. The first element from L,
which is the one with the highest fitness value and therefore the weakest one, is removed.
Afterwards three further, random chosen, chromosomes from L are deleted. To fill the
four arisen vacancies two chromosomes c1 = (a1, ...,an) and c2 = (b1, ...,bn) from U

are selected randomly for the reproduction. The reproduction happens by crossover. The
first half of c1 and the second half of c2 are concatenated and vice versa, to produce
two offsprings o1 = (a1, ...,an/2,bn/2+1, ...,bn) and o2 = (b1, ...,bn/2,an/2+1, ...,an).
This process is repeated to receive four offsprings all in all. The next step is the mutation.
Mutation can happen to each of the chromosomes except the new offsprings and the
best chromosome which is the last chromosome from U. A mutation can occur at each
locus of a chromosome with a probability of 5% if the chromosome is from U and with
a probability of 10% if the chromosome is from L. The new population P includes the
chromosomes from U, L, and the four new offsprings o1, o2, o3, o4. In the last step,
duplicates are removed from the population and are replaced by new randomly gener-
ated chromosomes. This whole procedure from one population to a new population is

30 generating custom preoptimization sequences

called a generation. The genetic algorithm performs several generations and in the end
it provides the best chromosome of the last population as result. The genetic algorithm
described above is listed in Algorithm 3 as pseudo-code.

Algorithm 3 Genetic Algorithm - Variant 1

1: procedure genetic1(G, n, g)
2: . Gene pool G, chromosome size n, number of generations g
3: . Start with a population of 20 randomly chosen chromosomes of size n
4: P ← []

5: while size of P < 20 do
6: c← new chromosome
7: c.genes← random gene sequence (g1, ...,gn) with gi ∈ G for 1 6 i 6 n
8: insert c into P
9: end while

10:

11: best← null . Keep track of the best chromosome
12: i← 0

13: while i < g do
14: . Calculate fitness of chromosomes and sort them according to fitness
15: for all c ∈ P do
16: c.fitness← f(c)

17: end for
18:

19: sort P according to the chromosomes fitness from high to low
20: L← lower half of P
21: U← upper half of P
22: remove first element from L . This is the weakest chromosome
23: remove 3 more randomly chosen chromosomes from L

24:

25: . Perform Crossover
26: c1 ← random chromosome from U

27: c2 ← random chromosome from U

28: o1,o2,o3,o4 ← new chromosomes
29: o1.genes← (c1.genes[1], ..., c1.genes[n/2], c2.genes[n/2+ 1], ..., c2.genes[n])
30: o2.genes← (c2.genes[1], ..., c2.genes[n/2], c1.genes[n/2+ 1], ..., c1.genes[n])
31: o3.genes← (c1.genes[1], ..., c1.genes[n/2], c2.genes[n/2+ 1], ..., c2.genes[n])
32: o4.genes← (c2.genes[1], ..., c2.genes[n/2], c1.genes[n/2+ 1], ..., c1.genes[n])

3.2 heuristic approaches 31

33: . Perform Mutation
34: best← select and remove best chromosome of U
35: for all c ∈ L∪U do
36: j← 1

37: while j 6 n do
38: if c ∈ L then
39: c.genes[j]← random g ∈ G with probability 0.1
40: else
41: c.genes[j]← random g ∈ G with probability 0.05
42: end if
43: j++

44: end while
45: end for
46:

47: P ← L+U+ [best,o1,o2,o3,o3]
48: i++

49: if i < g then
50: remove duplicates from P

51: fill arisen vacancies in P with randomly generated chromosomes
52: end if
53: end while
54: return best . The best chromosome found in the specified generations
55: end procedure

Cooper et al. examined in their paper [8] different heuristic approaches to the phase-
ordering problem and proposed some changes to their genetic algorithm presented in
[9]. The changed genetic algorithm starts with a population P of 50 chromosomes of size
n. The fitness value f(c) is calculated for all chromosomes and the chromosomes are
again sorted according to their fitness from high to low. The 10% of the chromosomes
that have the lowest fitness values form the set B of the best chromosomes of this pop-
ulation. All chromosomes from P \ B are deleted. The arisen vacancies are again filled
via crossover. Two chromosomes c1 = (a1, . . . ,an) and c2 = (b1, . . . ,bn) are randomly
chosen from B for reproduction. Crossover is performed with c1 and c2 as described
previously to create four new chromosomes. The last two steps, selection of two ran-
dom chromosomes and crossover, are repeated until there are no more vacancies. All
the new offsprings can be affected by mutation. Mutation proceeds like previously at
every gene of a chromosome with a probability of 10%. If chromosomes occur, which
already were part of a population at any time, then these chromosomes are mutated
until this is no longer true. If all possible chromosomes occurred once in a population,
the previous mutation loop is also canceled. The new population P contains the chro-
mosomes from B and all new offsprings. In the last step, duplicates are removed from
the population and are replaced by new randomly generated chromosomes. The genetic
algorithm again performs several generations and provides the best chromosome of the
last population as result. The latter algorithm is listed in Algorithm 4 as pseudo-code.

32 generating custom preoptimization sequences

Algorithm 4 Genetic Algorithm - Variant 2

1: procedure genetic2(G, n, g)
2: . Gene pool G, chromosome size n, number of generations g
3: . Start with a population of 50 randomly chosen chromosomes of size n
4: P ← []

5: best← null . Keep track of the best chromosome
6: while size of P < 50 do
7: c← new chromosome
8: c.genes← random gene sequence (g1, ...,gn) with gi ∈ G for 1 6 i 6 n
9: insert c into P

10: end while
11:

12: i← 0

13: while i < g do
14: . Calculate fitness of chromosomes and sort them according to fitness
15: for all c ∈ P do
16: c.fitness← f(c)

17: end for
18:

19: sort P according to the chromosomes fitness from high to low
20: B← select 10% of the best chromosomes from P

21: N← []

22:

23: . Perform Crossover
24: while size of N < 50− size of B do
25: c1 ← random chromosome from B

26: c2 ← random chromosome from B

27: o1,o2,o3,o4 ← new chromosomes
28: o1.genes← (c1.genes[1], ..., c1.genes[n/2],

c2.genes[n/2+ 1], ..., c2.genes[n])
29: o2.genes← (c2.genes[1], ..., c2.genes[n/2],

c1.genes[n/2+ 1], ..., c1.genes[n])
30: o3.genes← (c1.genes[1], ..., c1.genes[n/2],

c2.genes[n/2+ 1], ..., c2.genes[n])
31: o4.genes← (c2.genes[1], ..., c2.genes[n/2],

c1.genes[n/2+ 1], ..., c1.genes[n])
32: insert o1 into N
33: if size of N < 50− size of B then
34: insert o2 into N
35: end if
36: if size of N < 50− size of B then
37: insert o3 into N
38: end if
39: if size of N < 50− size of B then
40: insert o4 into N
41: end if
42: end while

3.2 heuristic approaches 33

43: . Perform Mutation
44: for all c ∈ N do
45: j← 1

46: while j 6 n do
47: c.genes[j]← random g ∈ G with probability 0.1
48: j++

49: end while
50:

51: . Perform mutation again if c was already part of any population
52: while c ∈ P at any generation ∧ not tried all s ∈ Gn do
53: j← 1

54: while j 6 n do
55: c.genes[j]← random g ∈ G with probability 0.1
56: j++

57: end while
58: end while
59: end for
60:

61: P ← B∪N
62: i++

63: if i < g then
64: remove duplicates from P

65: fill arisen vacancies in P with randomly generated chromosomes
66: end if
67: end while
68:

69: . Return the best chromosome found in the specified generations
70: return best
71: end procedure

4
E X P E R I M E N T S

This chapter describes experiments that are performed in order to evaluate the presented
heuristic approaches and to find out how good is -polly-canonicalize in comparison to the
sequences generated by heuristic algorithms. Furthermore, the optimization passes of
-O3 and -polly-canonicalize are investigated with regard to their occurrence in generated
preoptimization sequences to make a point which optimization passes are useful for
preoptimization and which are not. Based on the gathered information, a new fixed
preoptimization sequence is created.

4.1 experimental framework

The first part of this chapter describes the environment in which the experiments are per-
formed. The research in this thesis uses the development version of LLVM (git version
hash 20850bb), clang (git version hash e66c78e), and Polly (git version hash 07aed96) for
the first three experiments. For the other experiments a newer version of LLVM (git ver-
sion hash 1bb48fa), clang (git version hash a9f8b07), and Polly (git version hash ed8e11c)
is required to get more detailed statistical output from the SCoP detection. All optimiza-
tions are performed on the sample programs with the LLVM tool opt, which is used
with integrated Polly to enable SCoP detection.

The following command is used in the experiments to get information about the re-
sults of the SCoP detection if a sequence x is used for preoptimization:

$ opt -strip -debug -load=/ POLLY_PATH/LLVMPolly.so x -polly -detect -stats LLVM -
IR_FILE

The variable POLLY_PATH represents the path where Polly is located. The variable
LLVM-IR_FILE represents the LLVM-IR file for which the SCoP detection should be per-
formed. Beside the preoptimization sequence x, the passes -polly-detect and -stats are
used for the SCoP detection and to get information about the results of the detection.
These passes have already been discussed in Section 2.5. The pass -strip-debug just causes
opt to strip debug information before applying other optimizations and has no effect on
Polly’s SCoP detection [1].

4.1.1 Sample passes

Until now, the fixed sequence -polly-canonicalize, that is described in Section 2.5, has
been used to prepare LLVM-IR code for the SCoP detection. It is assumed that its passes

35

36 experiments

increase the amount of code that can be detected as SCoPs. In addition, the -O3 flag
represents a sequence of passes that should have a positive effect on the quality of the
LLVM-IR code. Consequently, the passes of -O3 and the ones of -polly-canonicalize are
used in the experiments for the creation of the custom preoptimization sequences. The
passes of -polly-canonicalize have already been discussed in Section 2.5. The passes of -O3
and a short description of what they do are listed in Appendix A.

4.1.2 Sample programs

Different LLVM-IR sample programs are used for the studies of optimization sequences.
On the one hand, the sample programs are generated from open-source, real-world
C/C++ programs. These programs have sizes from 500 to 600.000 lines of code and dif-
ferent application domains like compilation, compression, and multimedia processing.
An overview of these programs is given in Table 4. On the other hand, sample programs
are generated from the benchmark codes included in PolyBench1. The benchmark codes
of PolyBench stand out due to their high number of contained SCoPs.

Application domain Programs

Compilation python, ruby, spidermonkey, tcc

Compression 7za, bzip2, gzip, xz

Database leveldb, postgres, sqlite3

Encryption ccrypt, openssl

Multimedia povray, x264

Scientific lammps, linpack

Simulation crafty, lulesh, lulesh-omp

Verification crocopat, minisat

Table 4.: Real-world programs used for the studies of optimization sequences

The selection of the real-world programs is based on the fact that they have already
been used in previous experiments with Polly [21]. The versions of the programs listed in
Table 4 are still the same as in [21] and are obtained from the pprof-study2 git repository
(git version hash e37abc7). Another reason for the selection of these programs as sample
programs is that they represent a good variety and due to their diversity a detailed
assessment of optimization sequences is possible. In summary, 66 sample programs are
used for the experiments, 36 from pprof-study and 30 from PolyBench.

1 http://web.cse.ohio-state.edu/~pouchet/software/polybench/
2 https://github.com/simbuerg/pprof-study

http://web.cse.ohio-state.edu/~pouchet/software/polybench/
https://github.com/simbuerg/pprof-study

4.2 experimental setup 37

4.2 experimental setup

This section describes the performed experiments and discusses their results. For better
understanding, some results are displayed graphically. Comparisons of fitness values
of different sequences are visualized mostly using bar charts. In the bar charts for the
fitness comparison, the height of a bar represents the fitness value of the corresponding
sequence. Due to the problem definition in Section 3.1, lower fitness values are bet-
ter than higher ones and so lower bars are better than higher ones. A value in a bar
represents the height of this bar. The fitness value of a sequence for a specific sample
program is derived from the statistics of the SCoP detection. For the sake of simplicity,
the following notation is used in the experiments:

• The set O denotes the set of the available optimization passes. For the first experi-
ments O contains the optimization passes of -polly-canonicalize and -O3. The set O
is redefined if other optimization passes are used in an experiment.

• Let A be a set. The cartesian power of A is defined as: An = A× · · · ×A︸ ︷︷ ︸
n times

=

{(a1, . . . ,an) : ai ∈ A∀1 6 i 6 n}.

• The set Sn = On denotes the set of preoptimization sequences of length n ∈N.

• The set Ppoly denotes the set of PolyBench sample programs.

• The set Ppprof denotes the set of the sample programs derived from pprof-study.

• Let v : (Ppoly ∪ Ppprof)× Sn →N be the evaluation function presented in Section
3.1. The fitness of a sequence s ∈ Sn for a certain sample program p refers to the
value v(p, s).

4.2.1 Experiment 1 - Fitness of fixed sequences

The idea behind the first experiment is to get a first impression which fitness values
can be reached with already available fixed optimization sequences. Hence, the fitness
value of the empty sequence, the one of -polly-canonicalize, and the one of -O3 and
-polly-canonicalize together are calculated for each sample program. The appliance of
the empty sequence means that no optimization pass is used for preoptimization. A
part of the results is listed below in Figure 7. A complete overview of the results is pre-
sented in Appendix B. The x-axis of a bar chart shows the different sequences and the
y-axis shows the corresponding fitness value. The graphic reveals that there is no fixed
sequence which every time yields better results than other sequences. For example, -O3
and -polly-canonicalize together have a better fitness value as -polly-canonicalize alone for
the program atax, but with regard to the program 7za it’s the other way round. Further-
more, the sequence -polly-canonicalize has a worse fitness value than the empty sequence
for the sample program cholesky. Consequently, the usage of fixed preoptimization se-
quences can be worse than applying no pass for preoptimization.

38 experiments

32 32
20

35 38
23

12277 12325 14688
31

46
28

24 24
13

25 27

12

62 61 58 10966 10872

4541

842 818 784 32 31
16

311 310 266 24 30
17 30

39
20

27 34
18

7513 6531 5116

2747 2729 2619 1857 1850

199

29 32
21

10870 10776
7451 23

30

11

23 27

11

10882 10788
5558

29
40

27 29
42

20
24 27

11

2mm 3mm 7za adi atax

bicg blowfish bn bzip2 cast

ccrypt cholesky correlation covariance crafty

crocopat des doitgen dsa durbin

dynprog ecdsa fdtd−2d fdtd−apml floyd−warshall

em
pt

y s
eq

ue
nc

e
po

lly
−c

an
on

ica
liz

e
O3

 &
 p

oll
y−

ca
no

nic
ali

ze
em

pt
y s

eq
ue

nc
e

po
lly
−c

an
on

ica
liz

e
O3

 &
 p

oll
y−

ca
no

nic
ali

ze
em

pt
y s

eq
ue

nc
e

po
lly
−c

an
on

ica
liz

e
O3

 &
 p

oll
y−

ca
no

nic
ali

ze
em

pt
y s

eq
ue

nc
e

po
lly
−c

an
on

ica
liz

e
O3

 &
 p

oll
y−

ca
no

nic
ali

ze
em

pt
y s

eq
ue

nc
e

po
lly
−c

an
on

ica
liz

e
O3

 &
 p

oll
y−

ca
no

nic
ali

ze
Sequence

Fi
tn

es
s

of
 S

eq
ue

nc
e

Figure 7.: Fitness comparison of fixed preoptimization sequences

4.2.2 Experiment 2 - Fitness comparison of fixed and custom sequences

In this experiment, the genetic algorithms described by Algorithm 3 and Algorithm 4 are
used to generate custom preoptimization sequences for each sample program in Ppoly
and Ppprof. The genetic algorithm described by Algorithm 3 is referred to as “genetic 1”
and the other genetic algorithm described by Algorithm 4 is referred to as “genetic 2”
for the rest of this thesis. The following settings are used for this experiment:

• Genetic 1 uses a population size of 20 and calculates 200 generations.

• Genetic 2 uses a population size of 50 and calculates 50 generations.

• The gene pool for both genetic algorithms is the set O.

4.2 experimental setup 39

The first two settings are the settings recommended in [14]. Both heuristics search for
sequences in S10 and S20, so they run once with a chromosome length of 10 and once
with a chromosome length of 20.

32 32

20

12
8

12 12

35 38

23
15 15 15 15

12277 12325
14688

10962 10790 10758 10725

31

46

28
19 19 19 19

24 24

13
8

5
8 8

25 27

12 10 9 10
7

62 61 58 58 58 59 58 10966 10872

4541
2056 2028 2033 2000

842 818 784
603 579 580 570

2mm 3mm 7za

adi atax bicg

blowfish bn bzip2

em
pt

y s
eq

ue
nc

e
po

lly
−c

an
on

ica
liz

e

O3
 &

 p
oll

y−
ca

no
nic

ali
ze

ge
ne

tic
 1

 le
ng

th
 1

0
ge

ne
tic

 1
 le

ng
th

 2
0

ge
ne

tic
 2

 le
ng

th
 1

0
ge

ne
tic

 2
 le

ng
th

 2
0

em
pt

y s
eq

ue
nc

e
po

lly
−c

an
on

ica
liz

e

O3
 &

 p
oll

y−
ca

no
nic

ali
ze

ge
ne

tic
 1

 le
ng

th
 1

0
ge

ne
tic

 1
 le

ng
th

 2
0

ge
ne

tic
 2

 le
ng

th
 1

0
ge

ne
tic

 2
 le

ng
th

 2
0

em
pt

y s
eq

ue
nc

e
po

lly
−c

an
on

ica
liz

e

O3
 &

 p
oll

y−
ca

no
nic

ali
ze

ge
ne

tic
 1

 le
ng

th
 1

0
ge

ne
tic

 1
 le

ng
th

 2
0

ge
ne

tic
 2

 le
ng

th
 1

0
ge

ne
tic

 2
 le

ng
th

 2
0

Sequence

Fi
tn

es
s

of
 S

eq
ue

nc
e

Figure 8.: Fitness comparison of fixed and custom preoptimization sequences

First, the structure of the generated preoptimization sequences is discussed. The gen-
erated sequences differ from program to program. The sequences of length 10 generated
by genetic 1 are used as an example. The custom optimization sequence for the sample
program bzip2 of Ppprof and the sample program atax of Ppoly are as follows:

40 experiments

bzip2 -jump-threading -mem2reg -basicaa -gvn -prune-eh -sroa -simplifycfg
-loops -polly-indvars -slp-vectorizer

atax -basicaa -no-aa -licm -barrier -globaldce -mem2reg -inline -sroa
-globaldce -globaldce

They partly contain different passes and have different orderings of the passes, but
both sequences have also some common ground like they both contain the passes
-mem2reg and -basicaa. So, one can hypothesize that the effect of a preoptimization se-
quence depends on the sample program that should be optimized. This is the reason
why the sequences generated by the heuristic approaches deviate from each other. This
observation sheds light why there is no fixed preoptimization sequence in Experiment
4.2.1 that outperforms the other sequences.

In the next step , the fitness values of the resulting custom preoptimization sequences
are compared with the ones of the fixed preoptimization sequences. A part of the com-
parison’s results is shown in Figure 8. The sequence denoted by “genetic 1 length 10” is
the sequence of length 10 generated by genetic 1, “genetic 1 length 20” is the sequence
of length 20 generated by genetic 1, “genetic 2 length 10” is the sequence of length 10

generated by genetic 2, and “genetic 2 length 20” is the sequence of length 20 generated
by genetic 2. A complete overview of the results is presented in Appendix B.

The results are remarkable. The custom sequences have better fitness values for al-
most all sample programs. These results strengthen the findings of [8], [9], and [14] that
heuristic approaches are able to generate custom sequences that improve the quality of
the corresponding program better than a fixed sequence does if compiling for a certain
metric. Furthermore, one can see that the length of the optimization sequence matters.
As example, one can view the results for the sample program bicg. The longer custom
sequences have better fitness values than the shorter ones.

4.2.3 Experiment 3 - Optimization of generated custom sequences

The quality of the results of genetic algorithms depends on the size of the search space
because a genetic algorithm operates only on a subspace of the search space [8, p. 3]. So,
the larger the search space the worse the results can be. Consequently, the quality of the
results provided by genetic algorithms can be improved if the set of passes is reduced
in a way that it only contains passes which help to increase the amount of detectable
code. In the third experiment the best custom sequence, among the sequences generated
by the genetic algorithms in the last experiment, is selected for each sample program
and these best sequences are optimized. The optimization of a sequence is nothing more
than an attempt to shorten the sequence in a way so that it only contains passes that
contribute to the sequence’s fitness value. The selection of the best custom sequences is
done by the following approach:

4.2 experimental setup 41

1) For each program, select the custom sequences that have a lower fitness value than
the best fixed sequence.

2) For each program, choose the shortest sequence from the selected custom sequences
of step 1.

For example, Figure 8 shows that the best custom sequence for the sample program
bn is the sequence of length 20 generated by genetic 2 because it is better than each fixed
and than each other custom sequence.

The optimization or rather the shortening of the best custom sequences is done using
the Algorithm 5 that is presented below.

Algorithm 5 Shortening

1: procedure shorten(p,b)
2: . Sample program p

3: . Base sequence b = (b1, . . . ,blength(b)) that should be shortened
4: S← {b} . Keep track of current shorter sequences
5: R← {b} . Keep track of all shorter sequences
6: while S 6= ∅ do
7: . Calculate all shorter sequences that have the same or a lower fitness value
8: . than b
9: S ′ ← ∅

10: for all s ∈ S do
11: i← 1

12: while i 6 length(s) do
13: s ′ ← (s1, . . . , si−1, si+1, . . . , slength(s))

14: if v(p, s ′) 6 v(p,b) then
15: S ′ ← S ′ ∪ {s ′}
16: end if
17: i++

18: end while
19: end for
20:

21: S← S ′

22: R← R∪ S
23: end while
24:

25: . Calculate the sequences with the lowest fitness value
26: L← {s ∈ R : v(p, s) 6 v(p, s ′)∀s ′ ∈ R}
27: . Select the shortest sequences
28: L← {s ∈ L : length(s) 6 length(s ′)∀s ′ ∈ L}
29: . If there are more shortest sequences, choose randomly one among them
30: return random element of L
31: end procedure

42 experiments

The algorithm takes a sequence s as base sequence and generates all subsequences
of s that contain one pass less than s. If one of these subsequences has the same or
even a better fitness value than the base sequence, then the algorithm tries to shorten
this sequence further. The algorithm remembers all generated subsequences with equal
or better fitness value than the base sequence and if no subsequence can be shortened
further, it selects the subsequences with the best fitness value from the set of remem-
bered subsequences. In the next step the algorithm chooses the shortest sequence from
the previously selected ones as result. If there is more than one shortest sequence, the
algorithm chooses randomly one among them.

One observation of the sequence shortening is that there are generated sequences
where a lot of passes could be removed. The sequence of length 20 generated by genetic
2 for the sample program bzip2 is a good example of that. The passes highlighted with
orange color are the passes which have been deleted.

original
sequence

-mem2reg -jump-threading -simplifycfg -basicaa -adce -loop-unswitch
-ipsccp -instcombine -loop-idiom -gvn -jump-threading -ipsccp

-ipsccp -sroa -simplifycfg -prune-eh -tailcallelim -jump-threading
-polly-indvars -prune-eh

shortened
sequence

-mem2reg -jump-threading -simplifycfg -basicaa -loop-unswitch
-instcombine -gvn -ipsccp -sroa -simplifycfg -tailcallelim
-jump-threading -polly-indvars -prune-eh

It is evident that passes were omitted which occurred more than once like ipsccp,
-jump-threading, or -prune-eh.

The next step is to examine which passes occur in the resulting shorter custom se-
quences. These are the passes that have a positive effect on the fitness value of a se-
quence. Figure 9 gives an overview of the relative frequency of the occurrence of a pass
in a sequence.

You can derive from the graphic that the pass -mem2reg occurs in 32.2% of the best
sequences. This is an astonishing result because it has been assumed that -mem2reg is
necessary to detect any SCoP. Such a result was not anticipated at the beginning of
the studies and, therefore, this result is further examined and discussed in the next
experiment. Another interesting observation is that 11 of these 16 optimization passes
are not part of -polly-canonicalize. This might be one reason why -polly-canonicalize is
worse than the sequences generated by the genetic algorithms in Experiment 4.2.2.

The five passes that occur most frequently in the sequences are considered in detail
now. The passes and interpretative attempts why they occur so many times in the best
custom sequences are listed below. The passes are ordered from the most frequent one
to the least frequent one. The description of the passes is derived from [1].

4.2 experimental setup 43

3.4 3.4
1.1

43.7

3.4 3.4
2.3

11.5

14.9

35.6

28.7

39.1

4.6

78.2

6.9

37.9

44.8

33.3

8

4.6
6.9

8

4.6

12.6

6.9

1.1

32.2

42.5

37.9

9.2

2.3

37.9

29.9

2.3

5.7

9.2

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

−a
dc
e

−a
rg
pr
om

ot
ion

−b
ar
rie
r

−b
as
ica
a

−c
on
stm

er
ge

−c
or
re
lat
ed
−p
ro
pa
ga
tio
n

−d
ea
da
rg
eli
m

−e
ar
ly−
cs
e

−f
un
cti
on
at
trs

−g
lob
ald
ce

−g
lob
alo
pt

−g
vn

−i
nd
va
rs

−i
nli
ne

−i
nli
ne
−c
os
t

−i
ns
tco
m
bin
e

−i
ps
cc
p

−j
um

p−
th
re
ad
ing

−l
icm

−l
oo
p−
de
let
ion

−l
oo
p−
idi
om

−l
oo
p−
ro
ta
te

−l
oo
p−
sim

pli
fy

−l
oo
p−
un
ro
ll

−l
oo
p−
un
sw
itc
h

−l
oo
p−
ve
cto
riz
e

−m
em

2r
eg

−p
oll
y−
ind
va
rs

−p
oll
y−
pr
ep
ar
e

−p
ru
ne
−e
h

−r
ea
ss
oc
iat
e

−s
im
pli
fyc
fg

−s
ro
a

−s
tri
p−
de
ad
−p
ro
to
typ
es

−t
ail
ca
lle
lim

−t
ba
a

Optimization pass

%
 o

f s
eq

ue
nc

es
 th

at
 c

on
ta

in
 p

as
s

Figure 9.: Relative frequency of the pass occurrences

1) -inline: This pass inlines functions into callees. The course of action is bottom-up.
Polly does not support function calls in SCoPs like discussed in Section 2.4. Conse-
quently, the inlining of functions into its callees removes this constraint and a region
that contained function calls can now be detected as SCoP.

2) -ipsccp: The interprocedural sparse conditional constant propagation performs dead
code elimination and propagates constants over the program. In summary, the fol-
lowing actions are preformed. It assumes that values are constant unless it is proven
otherwise and assumes that basic blocks of the CFG are dead unless it is proven
otherwise. This pass proves values to be constant and then replaces them with con-
stants. Finally, the pass proves conditional branches to be unconditional. The inter-
procedural substitution of values with constants and the dead code elimination are

44 experiments

the reasons why this pass occurs so many times in the custom sequences because it
may transform non-affine expressions into affine ones and it may delete invalid basic
blocks.

3) -basicaa: This pass performs a basic alias analysis. The analysis provides inter alia as
result that there is no alias between two global constants. This pass has a positive
effect on the SCoP detection because Polly requires the results of an alias analysis for
the check if two base pointers refer to distinct memory spaces or are identical.

4) -polly-indvars: This pass is a variant of the pass indvars that is adjusted to the needs
of Polly. It simplifies induction variables and transforms them into a canonical form.
This pass has a positive effect on the SCoP detection because Polly detects only SCoPs
where occurring induction variables match a canonical form.

5) -gvn: This pass assigns a value number to variables and expressions. It checks if
variables and expressions are equivalent. Provably equivalent values and expressions
get the same value number. Finally, this pass eliminates fully and partially redundant
instructions using the assigned value numbers. Additionally, this pass eliminates
redundant load instructions. Consequently, this pass occurs frequently because the
elimination of redundant code reduces the number of regions that are no SCoPs.

4.2 experimental setup 45

4.2.4 Experiment 4 - Effect of pass -mem2reg

The pass -mem2reg has been assumed as a necessary preoptimization pass, but like ob-
served previously it occurs only in 32.2% of the best custom sequences. In this exper-
iment the effect of -mem2reg on the best custom sequences that do not contain it is
examined. But first, -mem2reg is discussed in more detail. This pass promotes memory
references to be register references. Hence, it looks at alloca instructions which only have
loads and stores as uses. Consider the example C code shown in Listing 1. It presents
a very simple program that declares two variables, calculates their sum, and it contains
an if-statement.

int simpleSum () {
int a = 8;
int b = 2;
int sum = a + b;

if (sum > a) {
b = 1;

} else {
b = 0;

}

return b;
} �

Listing 1: Sample C code

define i32 @simpleSum () #0 {
entry:

%a = alloca i32 , align 4
%b = alloca i32 , align 4
%sum = alloca i32 , align 4
store i32 8, i32* %a, align 4
store i32 2, i32* %b, align 4
%0 = load i32* %a, align 4
%1 = load i32* %b, align 4
%add = add nsw i32 %0, %1
store i32 %add , i32* %sum , align 4
%2 = load i32* %sum , align 4
%3 = load i32* %a, align 4
%cmp = icmp sgt i32 %2, %3
br i1 %cmp , label %if.then , label %if.else

if.then:
store i32 1, i32* %b, align 4
br label %if.end

if.else:
store i32 0, i32* %b, align 4
br label %if.end

if.end:
%4 = load i32* %b, align 4
ret i32 %4

} �
Listing 2: LLVM-IR version of code in Listing 1

Listing 2 shows the LLVM-IR version of the C code in Listing 1 and Listing 3 contains
the LLVM-IR code after applying -mem2reg. After applying -mem2reg there are no more
alloca instructions. The sum of a and b is calculated directly. Load and store instructions
got replaced, for example by a PHI node in branch if.end.

46 experiments

define i32 @simpleSum () #0 {
entry:

%add = add nsw i32 8, 2
%cmp = icmp sgt i32 %add , 8
br i1 %cmp , label %if.then , label %if.else

if.then:
br label %if.end

if.else:
br label %if.end

if.end:
%b.0 = phi i32 [1, %if.then], [0, %if.else]
ret i32 %b.0

} �
Listing 3: LLVM-IR code of Listing 2 after applying -mem2reg

In the next step, the effect of -mem2reg on the best sequences that do not contain it is
tested by once appending and once prepending -mem2reg to the sequence. Additionally,
the effect of both, appending and prepending -mem2reg, is investigated. Then, the fitness
values of the generated sequences are compared with the original sequence. A summary
of the results is listed in Table 7:

of the 66 best sequences that do not contain -mem2reg: 38

of sequences to which the appending of -mem2reg has a positive effect: 0

of sequences to which the appending of -mem2reg has a negative effect: 20

of sequences to which the prepending of -mem2reg has a positive effect: 1

of sequences to which the prepending of -mem2reg has a negative effect: 1

of sequences to which both, appending and prepending of -mem2reg,
has a positive effect:

0

of sequences to which both, appending and prepending of -mem2reg,
has a negative effect:

21

Table 7.: Effect of -mem2reg

The results show, first, that adding -mem2reg has a positive effect in only one of 38

cases and secondly, that there are some cases in which -mem2reg has a damaging effect
on the fitness value. What is very clear here is that the appending of -mem2reg leads to a
worsening of the fitness value in more than half of the cases. Appending and prepending
-mem2reg to a sequence provides the worst results. The results for the custom sequences
of the sample programs 7za, floyd-warshall, and lulesh are considered in more detail to
get a clearer picture of why -mem2reg has such effects. The column names of the Tables
8, 9, and 10 are explained in Appendix C. An overview of the whole results of this
experiment is presented in Appendix D.

4.2 experimental setup 47

Tables 8, 9, and 10 show in the first row how the statistics of the SCoP detection
changes after appending -mem2reg to the optimization sequence. A positive value indi-
cates that the number has increased and a negative value that the number has decreased.
The second row shows the results for the prepending of -mem2reg and the third row
shows the results provided by appending and prepending -mem2reg.

Experiment R S 4 6 8 9 11 12 13 15 16 18 20 21 22 26

mem2reg appended 0 -90 -80 -5 -17 -1 -16 -41 -16 -25 -1023 -235 120 -355 1435 1435

mem2reg prepended -3 0 4 -15 0 0 0 0 2 0 -6 0 0 0 0 0

mem2reg -3 -90 -80 -5 -17 -1 -16 -41 -14 -25 -1025 -235 120 -355 1435 1435

Table 8.: Comparison of sequences with and without mem2reg for 7za

In Table 8 you can see that the prepending of -mem2reg has a positive effect on the fit-
ness of the sequence because the number of regions (column R) decreased and the num-
ber of SCoPs (column S) stayed unrevised. On the other side, the appending of -mem2reg
causes a worsening of the fitness value because the number of regions stayed unrevised
and the number of SCoPs decreased. Additionally, one can observe that the number of
PHI nodes in exit basic blocks (column 26) and the number of non canonical PHI nodes
(column 20) has increased drastically. If -mem2reg is appended and prepended, the same
trend can be observed. What a canonical PHI node looks like is explained by an exam-
ple. A PHI node can be used for updating the induction variable of a loop like shown
in Listing 4. The example in Listing 4 is derived from [1].

Loop: ; Infinite loop that counts from 0 on up...
%indvar = phi i32 [0, %LoopHeader], [%nextindvar , %Loop]
%nextindvar = add i32 %indvar , 1
br label %Loop �

Listing 4: Loop in LLVM-IR with PHI node

The PHI node in Listing 4 is canonical because it starts with value 0 and increases by
one each step. Consequently, if a PHI node has not this form, it is not canonical.

Experiment S 22 26

mem2reg appended 0 0 0

mem2reg prepended -3 1 1

mem2reg -3 1 1

Table 9.: Comparison of sequences with and without mem2reg for floyd-warshall

48 experiments

Table 9 shows the results for the sample program floyd-warshall. This is the only time
that the prepending of -mem2reg has a negative effect on the fitness value. The number
of SCoPs (column S) has decreased and for that the number of PHI nodes in exit basic
blocks has increased. The appending of -mem2reg does not change the fitness of the
sequence in this case.

Experiment S 4 6 11 12 13 15 16 18 20 22 26

mem2reg appended -8 -8 -3 -2 -3 -4 -1 -22 7 7 40 40

mem2reg prepended 0 0 -17 0 0 0 0 0 0 0 0 0

mem2reg -8 -8 -3 -2 -3 -4 -1 -22 7 7 40 40

Table 10.: Comparison of sequences with and without mem2reg for lulesh

Table 10 shows the results for the sample program lulesh. Here one can observe the
same trend as for the sample program 7za. The appending of -mem2reg has a negative
effect on the fitness value and the prepending has no effect.

In summary, the appending of -mem2reg to a sequence has a negative effect on its
fitness in over half of the cases and the most common reasons for this are the increasing
number of PHI nodes in exit basic blocks (column 26) and the increasing number of non
canonical PHI nodes (column 22). On the other hand, the prepending of -mem2reg to an
optimization sequence has no effect on its fitness value in the most cases. One might
suspect that the prepending of -mem2reg provides not as bad results as the appending
because the optimization passes that follow -mem2reg transform the inserted PHI nodes
in a way they have no more negative effects on the SCoP detection. However, considering
the results provided by appending and prepending -mem2reg to a sequence, one realizes
that these results are as bad as the ones provided by just appending -mem2reg. More
specifically, the results are almost identical. Consequently, it can be concluded that if
-mem2reg is the last pass of the sequence, it inserts new PHI nodes regardless of whether
-mem2reg has also been prepended or not. So, -mem2reg should always be one of the first
optimization passes to run.

4.2 experimental setup 49

4.2.5 Experiment 5 - Custom sequences with selected passes

In this experiment it is investigated whether the genetic algorithms, genetic 1 and genetic
2, generate better sequences if the amount of used optimization passes is reduced or
not. Like already noted in Experiment 4.2.3, the quality of the sequences generated by
the genetic algorithms depends namely on the size of the search space. By reducing
the amount of optimization passes, the search space is automatically reduced. Hence,
only the most frequently occurring optimization passes, which have been presented in
Experiment 4.2.3, are used in this experiment for the generation of the preoptimization
sequences. Additionally, the hill climbing algorithm and the greedy algorithm are used
to generate sequences. For this experiment only the sample programs in Ppoly are used,
to speed up the calculation. In this experiment the set O denotes the set of the frequent
optimization passes presented in Experiment 4.2.3.

The following settings are used for this experiment:

• Genetic 1 uses a population size of 20 and calculates 200 generations.

• Genetic 2 uses a population size of 50 and calculates 50 generations.

• The gene pool for both genetic algorithms is the set O.

• The hill climbing algorithm and the greedy algorithm use the set O for the gener-
ation of sequences.

• All algorithms generate sequences of length 10.

• All algorithms generate sequences for the sample programs in Ppoly.

A part of the experiment’s results is shown in Figure 10. The x-axis shows again
the different sequences. The first five sequences are the sequences already discussed in
Experiment 4.2.2. The last four sequences are the sequences generated in this experiment.
One can observe that the sequences generated in this experiment are at least as good as
the previously generated optimization sequences of length 10. Furthermore, the custom
preoptimization sequences from this experiment have in most cases a fitness value as
good as the generated sequences of length 20 from Experiment 4.2.2. Consequently, the
reduction of the used optimization passes does not really improve the genetic algorithms
generation of preoptimization sequences, but the results of the genetic algorithms are as
good as the previous ones. Another interesting result is that the sequences generated by
the hill climbing algorithm are worse than the other custom preoptimization sequences.
Kulkarni et al. discussed that their hill climbing algorithm finds solutions nearly as good
as their genetic algorithm [14]. The solutions of the greedy algorithm are not as bad as
the ones of the hill climbing algorithm, but they cannot keep up with the solutions of
the genetic algorithms. A full list of the results is presented in Appendix E.

50 experiments

32 32

20

12
8

12 12 12 12 13
17

35 38

23
15 15 15 15 15 15 15

20
31

46

28
19 19 19 19 19 19 19

24

24 24

13
8

5
8 8 8 8 8

13

25 27

12 10 9 10
7 9 10 10

15
24

30

17
10 9 9 9 9 9

13
16

30
39

20
15 15 16 15 15 15 16

20

27
34

18
13 13 13 13 13 13 13

18

29 32

21

12 10 12 10 11 12 12
16

2mm 3mm adi

atax bicg cholesky

correlation covariance doitgen

em
pt

y s
eq

ue
nc

e
po

lly
−c

an
on

ica
liz

e

O3
 &

 p
oll

y−
ca

no
nic

ali
ze

ge
ne

tic
 1

 le
ng

th
 1

0
ge

ne
tic

 1
 le

ng
th

 2
0

ge
ne

tic
 2

 le
ng

th
 1

0
ge

ne
tic

 2
 le

ng
th

 2
0

ge
ne

tic
 1

 se
lec

te
d

pa
ss

es

ge
ne

tic
 2

 se
lec

te
d

pa
ss

es

gr
ee

dy
 se

lec
te

d
pa

ss
es

hil
l c

lim
be

r s
ele

cte
d

pa
ss

es
em

pt
y s

eq
ue

nc
e

po
lly
−c

an
on

ica
liz

e

O3
 &

 p
oll

y−
ca

no
nic

ali
ze

ge
ne

tic
 1

 le
ng

th
 1

0
ge

ne
tic

 1
 le

ng
th

 2
0

ge
ne

tic
 2

 le
ng

th
 1

0
ge

ne
tic

 2
 le

ng
th

 2
0

ge
ne

tic
 1

 se
lec

te
d

pa
ss

es

ge
ne

tic
 2

 se
lec

te
d

pa
ss

es

gr
ee

dy
 se

lec
te

d
pa

ss
es

hil
l c

lim
be

r s
ele

cte
d

pa
ss

es
em

pt
y s

eq
ue

nc
e

po
lly
−c

an
on

ica
liz

e

O3
 &

 p
oll

y−
ca

no
nic

ali
ze

ge
ne

tic
 1

 le
ng

th
 1

0
ge

ne
tic

 1
 le

ng
th

 2
0

ge
ne

tic
 2

 le
ng

th
 1

0
ge

ne
tic

 2
 le

ng
th

 2
0

ge
ne

tic
 1

 se
lec

te
d

pa
ss

es

ge
ne

tic
 2

 se
lec

te
d

pa
ss

es

gr
ee

dy
 se

lec
te

d
pa

ss
es

hil
l c

lim
be

r s
ele

cte
d

pa
ss

es
Sequence

Fi
tn

es
s

of
 S

eq
ue

nc
e

Figure 10.: Fitness comparison of custom sequences with selected optimization passes

4.2 experimental setup 51

4.2.6 Experiment 6 - Construction of a new fixed preoptimization sequence

This experiment is concerned with the construction of a new fixed preoptimization
sequence that provides better results than the current fixed sequence represented by
-polly-canonicalize. The 16 optimization passes presented in Experiment 4.2.3 are consid-
ered for this new preoptimization sequence. The new sequence should contain each of
these optimization passes exactly once. Consequently, it will have a length of 16. For the
sake of simplicity, the following notation is used in this experiment:

• The set O denotes the set of the 16 most frequent optimization passes that have
been presented in Experiment 4.2.3.

• The set S = {(o1, . . . ,o16) ∈ O16 : i 6= j =⇒ oi 6= oj∀1 6 i, j 6 16} denotes the set
of candidate sequences.

• The set Psmall denotes the set of the sample programs in Ppprof that have a file
size less than 1 MB. Hence, Psmall comprises 14 sample programs of Ppprof.

Creating a new fixed sequence still misses a partial ordering of the optimization
passes. The ordering for the optimization passes can be obtained by examining pair-wise
dependencies and/or restrictions for a single optimization pass. One restriction for the
ordering can be derived from Experiment 4.2.4. The optimization pass -mem2reg should
be applied first. The following restrictions can be derived from the documentation of
the LLVM optimization passes [1]:

• The pass -functionattrs should run before the pass -instcombine. Whether the pass
-instcombine can simplify library calls depends namely on the analysis results of
the -functionattrs pass.

• The pass -polly-indvars should run before the pass -loop-unroll because the loop
unrolling works best if the loops have been canonicalized.

• The pass -globaldce should run after the pass -ipsccp because it is possible that the
pass -ipsccp makes definitions be dead.

Experiment 4.2.5 shows that the genetic algorithms are able to generate good custom
sequences of length 10 with the set O of available optimization passes for the sample
programs of Ppoly. Hence, the genetic algorithms generate custom sequences with the
same settings as in Experiment 4.2.5 now for all sample programs, so for the ones in
Ppoly and in Ppprof. The set of these custom sequences is denoted by G in this exper-
iment and it holds that G ⊂ O10. The custom sequences in G are used to obtain more
ordering restrictions on the optimization passes. The next step examines, whether there
are subsequences that occur more frequently in the custom sequences of G. A subse-
quence ssub of a sequence s = (o1, . . . ,o10) ∈ G is a sequence that contains just a
part of the optimization passes of s and ssub maintains the ordering of s. For example
s ′ = (o1,o3,o9) is a subsequence of s, but s ′′ = (o2,o5,o3,o7) is not a subsequence of
s because o3 must be before o5. The most frequent subsequences of the sequences in

52 experiments

G indicate which optimization pass has to be applied before which other optimization
pass. Table 11 shows the relative frequency of the different subsequences with a relative
frequency of at least 20%. The occurring subsequences consist only of two optimization
passes and can therefore be written as 2-tuples. Let Gsub ⊆ O2 denote the set of the
subsequences presented in Table 11.

Subsequence Relative frequency of occurrence (in %)

(-inline, -inline) 39.4

(-inline, -basicaa) 36.4

(-basicaa, -polly-prepare) 34.8

(-polly-indvars, -polly-prepare) 31.8

(-inline, -globaldce) 28.8

(-basicaa, -inline) 28.8

(-inline, -instcombine) 28.8

(-inline, -gvn) 28.8

(-instcombine, -ipsccp) 28.0

(-gvn, -basicaa) 28.0

(-ipsccp, -basicaa) 28.0

(-instcombine, -jump-threading) 28.0

(-inline, -polly-prepare) 27.3

(-instcombine, -globaldce) 27.3

(-instcombine, -basicaa) 27.3

(-ipsccp, -jump-threading) 27.3

(-basicaa, -jump-threading) 27.3

(-gvn, -jump-threading) 27.3

(-instcombine, -polly-indvars) 26.5

(-inline, -polly-indvars) 26.5

(-gvn, -ipsccp) 25.8

(-instcombine, -inline) 25.8

(-basicaa, -polly-indvars) 25.8

(-globaldce, -ipsccp) 25.8

(-polly-indvars, -globaldce) 25.0

(-instcombine, -gvn) 24.2

(-inline, -globalopt) 24.2

(-instcombine, -polly-prepare) 24.2

(-instcombine, -simplifycfg) 24.2

(-basicaa, -ipsccp) 24.2

(-polly-indvars, -basicaa) 24.2

(-basicaa, -gvn) 23.5

(-inline, -jump-threading) 23.5

(-basicaa, -globaldce) 23.5

(-inline, -ipsccp) 23.5

(-gvn, -polly-indvars) 23.5

(-gvn, -polly-prepare) 22.7

4.2 experimental setup 53

(-inline, -functionattrs) 22.7

(-gvn, -simplifycfg) 22.7

(-globaldce, -inline) 22.7

(-simplifycfg, -polly-indvars) 22.0

(-gvn, -globaldce) 22.0

(-ipsccp, -polly-prepare) 22.0

(-inline, -simplifycfg) 22.0

(-inline, -sroa) 22.0

(-ipsccp, -polly-indvars) 22.0

(-ipsccp, -simplifycfg) 21.2

(-sroa, -inline) 21.2

(-simplifycfg, -polly-prepare) 21.2

(-jump-threading, -polly-indvars) 20.5

(-basicaa, -simplifycfg) 20.5

Table 11.: Subsequences that occur in the sequences of G with a relative frequency of at least 20%

The ordering of the optimization passes can now be derived from the frequency of the
subsequences and the previously discussed restrictions. This makes it possible to define
a strict partial order on the set of optimization passes O. The dependencies between
optimization passes are determined as follows:

1. If a subsequence g = (o,o) ∈ Gsub contains the same optimization pass twice, it
is not considered because the new fixed sequence should contain each optimization
pass exactly once and a strict partial order is irreflexive.

2. A dependency between two optimization passes is derived from each subsequence
in Gsub, from the most frequent one to the least frequent one. Consequently, if a
subsequence g = (a,b) ∈ Gsub has already been taken into account, a later occurring
subsequence g ′ = (b,a) ∈ Gsub is not taken into consideration to maintain the
asymmetry of the arising strict partial order.

Table 12 shows the predecessors for each optimization pass derived from the previ-
ously discussed restrictions and the occurring subsequences Gsub.

Optimization pass Predecessors

-inline -mem2reg

-sroa -mem2reg, -inline

-basicaa -mem2reg, -inline, -ipsccp, -gvn, -instcombine

-globaldce -mem2reg, -inline, -ipsccp, -gvn, -instcombine, -basicaa,
-polly-indvars

-polly-indvars -mem2reg, -inline, -ipsccp, -gvn, -instcombine, -basicaa,
-simplifycfg, -jump-threading

54 experiments

-instcombine -mem2reg, -inline, -functionattrs

-mem2reg

-loop-unroll -mem2reg, -polly-indvars

-functionattrs -mem2reg, -inline

-early-cse -mem2reg

-polly-prepare -mem2reg, -inline, -ipsccp, -gvn, -instcombine, -basicaa,
-simplifycfg, -polly-indvars

-globalopt -mem2reg, -inline

-simplifycfg -mem2reg, -inline, -ipsccp, -gvn, -instcombine, -basicaa

-gvn -mem2reg, -inline, -instcombine

-jump-threading -mem2reg, -inline -ipsccp, -gvn, -instcombine, -basicaa

-ipsccp -mem2reg, -inline, -instcombine, -gvn

Table 12.: Optimization passes and their predecessors

The knowledge about the ordering of optimization passes allows the definition of the
following binary relation R = O×O:

R = {(mem2reg, early− cse), (mem2reg, inline), (inline, sroa), (inline,globalopt),
(inline, functionattrs), (functionattrs, instcombine), (instcombine,gvn), (gvn, ipsccp),
(ipsccp,basicaa), (basicaa, simplifycfg), (basicaa, jump− threading),
(simplifycfg,polly− indvars), (jump− threading,polly− indvars),
(polly− indvars,polly− prepare), (polly− indvars,globaldce),
(polly− indvars, loop− unroll)}

By construction, the binary relation R is irreflexive and asymmetric. Let R+ denote the
transitive closure of R, then R+ is irreflexive, asymmetric, and transitive. Consequently,
R+ defines a strict partial order on O and can be illustrated via a directed acyclic graph
that is shown in Figure 11.

Each linear extension λ of the strict partial order R+ represents a strict total order of
the optimization passes in O. Hence, each linear extension λ of R+ is a new preoptimiza-
tion sequence because it specifies a 16-tuple of optimization passes. Therefore, the set
Λ(R+) of all linear extensions of R+ is considered now as the set of candidate sequences
for the new fixed preoptimization sequence. The problem is now the calculation of all
possible linear extensions of R+. The problem of finding a single linear extension λ of
R+ is equivalent to the problem of finding a topological sorting of the directed acyclic
graph shown in Figure 11. Varol and Rotem have presented an algorithm to generate
all topological sorting arrangements of a directed acyclic graph [22]. Fortunately, there
already exists a toolset for working with directed acyclic graphs in Python3 and this
toolset contains an implementation of Varol’s and Rotem’s algorithm. This implemen-
tation is used to generate all topological sorting arrangements of the graph shown in

3 https://pypi.python.org/pypi/digraphtools/0.2.1

https://pypi.python.org/pypi/digraphtools/0.2.1

4.2 experimental setup 55

mem2reg

early-cse inline

sroa globalopt functionattrs

instcombine

gvn

ipsccp

basicaa

simplifycfg jump-threading

polly-indvars

polly-prepare globaldce loop-unroll

Figure 11.: Dependency graph of the selected optimization passes

Figure 11. The algorithm calculates 28079 preoptimization sequences that are valid topo-
logical sorting arrangements and so there are 28079 candidate sequences. The set of
candidate sequences is denoted by C from now on.

Due to the high number of valid sequences, the following approach is used to shrink
the number of possible new fixed sequences:

1. Let P = Ppoly.

2. For each sample program p ∈ P calculate the set Bp = {c ∈ C : v(p, c) 6 v(p, c ′)∀c ′ ∈
C} ⊆ C. The result is a set B that contains for all p ∈ P the set Bp. In other words, the
set B contains for each program the set of candidate sequences that are best for this
program.

56 experiments

3. For each candidate sequence c ∈ C calculate the number nc of elements of B that
contain c, so nc = |{Bp ∈ B : c ∈ Bp}|. Then calculate the set C ′ = {c ∈ C : nc >
nc ′∀c ′ ∈ C} ⊆ C. The set C ′ contains now the candidate sequences of C that are best
for most of the sample programs of P.

The set C ′ contains now 21188 of the candidate sequences of C and each of these
21188 candidate sequences appears in all sets that are element of B. In other words,
these candidate sequences are best for all of the 30 sample programs of Ppoly.

4. Next, repeat step 2 and 3 with P = Ppoly ∪ Psmall and C = C ′. The resulting set C ′

contains now only 72 candidate sequences and theses candidate sequences are among
the best sequences for 40 of the 44 sample programs of Psmall and Ppoly.

5. Again, repeat step 2 and 3 with P = Ppoly ∪ Ppprof and C = C ′. As result, the set C ′

contains now only 2 candidate sequences and theses candidate sequences are among
the best sequences for 55 of the 66 sample programs of Ppprof and Ppoly.

6. In the last step, repeat step 2 and 3 with again P = Ppoly ∪ Ppprof and C = C ′.
Consequently, C contains now only the 2 candidate sequences that remained after
step 5. As final result, the set C ′ contains only 1 candidate sequence that is best for
all of the 66 sample programs of Ppoly and Ppprof.

The above steps generate one single candidate sequence. Consequently, this remaining
candidate sequence is the wanted new fixed preoptimization sequence and is called
-polly-preopt from now on. The sequence -polly-preopt looks like this:

-polly-preopt = (-mem2reg, -early-cse, -inline, -functionattrs, -instcombine, -globalopt,
-sroa, -gvn, -ipsccp, -basicaa, -simplifycfg, -jump-threading, -polly-indvars, -loop-unroll,
-globaldce, -polly-prepare)

Figure 12 shows a part of the fitness comparison of the old fixed sequence
-polly-canonicalize and the new sequence -polly-preopt. The x-axis shows the different se-
quences again. The y-axis shows the fitness value of the sequences. A complete overview
of the results is presented in Appendix F.

Figure 12 shows that -polly-preopt is better than -polly-canonicalize for almost all sample
programs. There are 10 sample programs, 7za, js, lammps, openssl, postgres, povray, python,
ruby, x264, and xz, for which the new sequence is not better than -polly-canonicalize. These
10 sample programs are of Ppprof \ Psmall and so, only the 72 candidate sequences that
remained after step 4 have been evaluated because the size of these programs is too large
to evaluate all 28079 sequences in adequate time. It might therefore be quite possible
that there is a better sequence for these sample programs among the 28079 candidate
sequences. If one takes a closer look at the results for the sample program 7za, one can
observe that the main reason why the new sequence is worse than -polly-canonicalize
is the higher number of regions in the sample program. This is also the main reason
why the new sequence is worse than -polly-canonicalize for the other 9 sample programs.
The interesting thing about this is that the custom sequence generated by the algorithm
genetic 2 for the sample program 7za, called genetic-7za, contains just 10 optimization

4.2 experimental setup 57

32
12

38
15

12325 14328

46
19

24
8

27
10

61 58 10872
2638

818
561

31
15

310 267 30
9

39
15

34
13

6531 4807

2729 2535 1850

209

32
12

2mm 3mm 7za

adi atax bicg

blowfish bn bzip2

cast ccrypt cholesky

correlation covariance crafty

crocopat des doitgen

po
lly
−c
an
on
ica
liz
e

po
lly
−p
re
op
t

po
lly
−c
an
on
ica
liz
e

po
lly
−p
re
op
t

po
lly
−c
an
on
ica
liz
e

po
lly
−p
re
op
t

Sequence

Fi
tn

es
s

of
 S

eq
ue

nc
e

Figure 12.: Fitness comparison of -polly-canonicalize and -polly-preopt

passes that are all from the set O and genetic-7za is better than -polly-canonicalize. This
custom sequence for 7za looks like this:

genetic-7za = (-ipsccp, -instcombine, -polly-indvars, -loop-unroll, -globalopt, -globaldce,
-gvn, -polly-prepare, -basicaa, -ipsccp)

One can observe immediately that the custom sequence does not contain the passes
-mem2reg, -early-cse, -inline, -functionattrs, -sroa, -simplifycfg, and -jump-threading, that are
present in -polly-preopt. Hence, it is checked how the results of Polly’s SCoP detection
for -polly-preopt change if one omits these optimization passes. Table 13 shows the test
results. The column names of Table 13 are abbreviations that are explained in Appendix
C. The results show that the fitness value (difference of entry in column R and entry in
column S) of the new optimization sequence for the sample program 7za is better if the
optimization pass -inline is omitted. This pass performs inlining of functions into callees
[1], but apparently this leads just to an increase of the number of regions what makes
the fitness value worse.

58 experiments

Omitted pass R S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

all 11071 168 1 1 0 269 0 16 0 123 3 0 36 91 114 240 64 2398 0 766 0 0 766 23 0 2 0 21 0

-early-cse 14511 185 1 1 0 296 0 16 0 158 3 0 25 94 110 309 75 2839 0 769 0 0 769 26 0 1 0 25 0

-functionattrs 14623 186 1 1 0 295 0 16 0 158 3 0 25 93 110 309 72 2837 0 769 0 0 769 26 0 1 0 25 0

-inline 11115 171 1 1 0 272 0 19 0 124 3 0 36 90 112 252 96 2439 0 768 0 0 768 21 0 1 0 20 0

-jump-threading 14835 186 1 1 0 294 0 13 0 160 3 0 25 93 112 325 75 2989 0 808 0 0 808 26 0 1 0 25 0

-mem2reg 14508 186 1 1 0 295 0 16 0 158 3 0 25 93 111 309 69 2839 0 770 0 0 770 26 0 1 0 25 0

-simplifycfg 14567 186 1 1 0 295 0 16 0 158 3 0 25 93 110 309 75 2841 0 769 0 0 769 26 0 1 0 25 0

-sroa 14636 186 1 1 0 295 0 16 0 158 3 0 25 93 111 312 75 2849 0 778 0 0 778 26 0 1 0 25 0

Table 13.: Changes due to omitted optimization passes

In the next step -polly-preopt without -inline is compared with -polly-preopt, and
-polly-canonicalize, and with the sequences generated by the genetic algorithms at the
beginning of this experiment. A part of the results is depicted in Figure 13. The x-axis
shows again the different sequences. The y-axis shows the fitness value of the sequences.
A complete overview of the results is presented in Appendix F.

32

12
17

12 12

38

15 20 15 15

12325 14328
10944 10837 10808

46

19 24 19 19

24

8
13

8 8

27

10
15

9 10

61 58 60 58 58 10872

2638 2098 2045 2035

818
561 605 613 599

2mm 3mm 7za

adi atax bicg

blowfish bn bzip2

po
lly
−c

an
on

ica
liz

e
po

lly
−p

re
op

t
po

lly
−p

re
op

t w
ith

ou
t in

lin
e

ge
ne

tic
 1

ge
ne

tic
 2

po
lly
−c

an
on

ica
liz

e
po

lly
−p

re
op

t
po

lly
−p

re
op

t w
ith

ou
t in

lin
e

ge
ne

tic
 1

ge
ne

tic
 2

po
lly
−c

an
on

ica
liz

e
po

lly
−p

re
op

t
po

lly
−p

re
op

t w
ith

ou
t in

lin
e

ge
ne

tic
 1

ge
ne

tic
 2

Sequence

Fi
tn

es
s

of
 S

eq
ue

nc
e

Figure 13.: Fitness comparison of -polly-canonicalize and the two new sequences

4.2 experimental setup 59

Figure 13 shows that -polly-preopt without -inline is worse than -polly-preopt in some
cases, for example for atax, but there are also sample programs for which the new
sequence without -inline is better, for example for bn and 7za, because the omission
of -inline decreases the number of regions in these sample programs. The reason why
-polly-preopt without -inline is worse than -polly-preopt with -inline for some sample pro-
grams, is that the omission of -inline increases the number of regions in these sample
programs. Consequently, one can conclude that -inline can have a positive effect on some
sample programs, but can also have a negative effect. But the most astonishing result is
that -polly-preopt without -inline is now better than -polly-canonicalize for all of the 66 sam-
ple programs. Furthermore, the fitness values of -polly-preopt without -inline are closer to
the fitness values of the sequences generated by the genetic algorithms than the fitness
values of -polly-canonicalize are.

Figure 14 shows the fitness of the new sequences -polly-preopt and -polly-preopt without
-inline in comparison to the fitness of -polly-canonicalize. The x-Axis shows the different
sample programs. The y-Axis shows the percentage by which the fitness of -polly-preopt
and -polly-preopt without -inline is better or worse than the fitness of -polly-canonicalize.
Consequently, a positive value on the y-axis indicates that the new sequence is better for
this sample program than -polly-canonicalize and a negative value indicates that the new
sequence is worse than -polly-canonicalize.

−50

0

50

100

2m
m

3m
m

7z
a ad
i

at
ax bic
g

blo
wf

ish bn
bz

ip2 ca
st

cc
ry

pt
ch

ole
sk

y
co

rre
lat

ion
co

va
ria

nc
e

cr
af

ty
cr

oc
op

at
de

s
do

itg
en ds
a

du
rb

in
dy

np
ro

g
ec

ds
a

fd
td
−2

d
fd

td
−a

pm
l

flo
yd
−w

ar
sh

all
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

am
sc

hm
idt

gz
ip

hm
ac

jac
ob

i−
1d
−i

m
pe

r

jac
ob

i−
2d
−i

m
pe

r js
lam

m
ps

lev
eld

b
lin

pa
ck lu

lud
cm

p
lul

es
h

lul
es

h−
om

p
m

d5
m

ini
sa

t
m

vt
op

en
ss

l
po

stg
re

s
po

vr
ay

py
th

on rc
4

re
g_

de
te

ct rs
a

ru
by

se
ide

l−
2d

sh
a1

sh
a2

56
sh

a5
12

sq
lite

3 ss
l

sy
m

m
sy

r2
k

sy
rk tcc

tri
so

lv
trm

m
x2

64 xz

Sample Program

Pe
rc

en
ta

ge
 c

ha
ng

e
of

 fi
tn

es
s

Sequence

polly−canonicalize

polly−preopt

polly−preopt without inline

Figure 14.: Fitness change of new sequences compared to -polly-canonicalize

60 experiments

The test results show that it is possible to create a fixed sequence that provides results
that are quite good in comparison with the sequences generated by heuristic approaches.
Furthermore, the created sequence -polly-preopt without -inline provides better results
than -polly-canonicalize for all sample programs and, hence, it is recommended as new
preoptimization sequence for Polly.

-polly-preopt without -inline = (-mem2reg, -early-cse, -functionattrs, -instcombine,
-globalopt, -sroa, -gvn, -ipsccp, -basicaa, -simplifycfg, -jump-threading, -polly-indvars,
-loop-unroll, -globaldce, -polly-prepare)

5
C O N C L U S I O N

Polly is a plugin for the LLVM compiler framework that enables polyhedral optimiza-
tion on LLVM-IR. Polly can only optimize parts of the LLVM-IR code that are detected
as Static Control Parts (SCoPs). Hence, LLVM-IR code is prepared for Polly’s SCoP de-
tection with a preoptimization sequence that aims to increase the amount of code that
can be detected as SCoPs.

This thesis examined the quality of the currently used fixed preoptimization sequence
and investigated whether preoptimization sequences generated by heuristic approaches
produce better results than current fixed sequences or not. The performed experiments
showed that the discussed heuristics provide preoptimization sequences that outper-
form fixed sequences such as -polly-canonicalize. Furthermore, one was able to observe
that custom preoptimization sequences depend strongly on the program or rather the
LLVM-IR code that should be optimized and that there is no single sequence length
which is best for all sample programs. The position of some optimization passes, like
-mem2reg, in a sequence influences the fitness of this sequence. In summary, the fitness
of a preoptimization sequence depends on the LLVM-IR code that should be optimized,
on the optimization passes that are used, on the length of the sequence, and on the
ordering of the optimization passes.

The last experiment used sequences found by heuristic approaches to extract a par-
tial order on optimization passes. The possible topological sorting arrangements were
deduced from this partial order and were evaluated to find a new preoptimization
sequence for Polly. The obtained sequence was adjusted to the needs of Polly and
a new fixed preoptimization sequence was formed that provides better results than
-polly-canonicalize for all tested sample programs.

In conclusion, the thesis points out that heuristic approaches provide good preopti-
mization sequences for Polly. Furthermore, the thesis shows that one can use heuristic
approaches to gather information about which optimization passes are useful when
compiling for a certain metric and that this knowledge can be used to build better fixed
preoptimization sequences.

outline The experiments just examined the fitness of sequences provided by heuris-
tic approaches that work with a fixed predefined sequence length, but as pointed out
previously the length of a sequence has an influence on its fitness. Consequently, more
complex heuristic approaches that work with a variable sequence length can be exam-
ined. A remaining task is also to study the interaction between two optimization passes

61

62 conclusion

in more detail. Currently, one can only say that a preoptimization sequence a has a better
fitness than a preoptimization sequence b, but it is not possible to determine the contri-
bution of a single optimization pass to the fitness of a preoptimization sequence. Hence,
a metric is wanted that enables the assessment of single optimization passes. Finally, in
the last experiment the set of the 28079 candidate sequences was shrunk by studying
just the sequences that are best for the sample programs derived from PolyBench. To
really make sure that the new fixed preoptimization sequence is the best among these
28079 sequences, one would have to evaluate each of these sequences for each of the
sample programs.

Part III

A P P E N D I X

A
S E L E C T E D PA S S E S O F T H E - O 3 O P T I M I Z AT I O N S E Q U E N C E

This chapter presents the passes of the -O3 optimization sequence that are used in the
experiments discussed in Section 4.2. The passes and a short description of what they
do are listed in Table 14. The description of the passes is derived from [1].

Passes of -O3

Pass name Pass description

-adce Performs an aggressive dead code elimination. This pass assumes
that values are dead until proven otherwise.

-argpromotion Promotes pointer arguments to scalar value arguments. Checks
for each internal function with pointer arguments wether the
pointer arguments are only loaded and if so, they will be replaced
by the value. The pass uses the results of an alias analysis for this
check.

-basicaa Performs a basic alias analysis.

-constmerge Merges duplicate global constants together into a single global
constant.

-correlated-
propagation

Performs value propagation.

-deadargelim Removes dead arguments and dead return values from internal
functions.

-dse Eliminates dead stores that are basic-block local.

-early-cse Performs a simple dominator tree walk that eliminates trivially
redundant instructions.

-indvars Transforms induction variables into a simpler canonical form.

-inline Performs bottom-up inlining of functions into callees.

-ipsccp Performs interprocedural sparse conditional constant
propagation.

-licm Tries to remove as much code of a loop body as possible.

-loop-deletion Deletes loops with finite computable trip counts that have no side
effects and do not contribute to the computation of the function’s
return value.

65

66 selected passes of the -o3 optimization sequence

-tbaa Performs a type based alias analysis. For this purpose, metadata
is added to the LLVM-IR to describe a type system of a higher
level language.

-barrier A no-op barrier pass to allow manipulation of the implicitly
nesting pass manager.

-basiccg Constructs a call graph.

-block-freq Performs a block frequency analysis.

-branch-prob Performs a branch probability analysis.

-functionattrs Interprocedural pass that walks the call graph looking for
functions which do not access or only read non local memory and
marking them readnon/readonly. In addition, it marks function
arguments of type pointer nocapture if the pointer is only
dereferenced and not returned from the function or stored in a
global.

-globaldce Eliminates unreachable internal globals from the program.

-globalopt Transforms global variables that never have their address taken
into global constants and deletes variables only stored to and
more.

-gvn Performs global value numbering to eliminate fully and partially
redundant instructions.

-inline-cost Performs an inline cost analysis.

-jump-threading Looks at blocks that have multiple predecessors and multiple
successors. If one or more of the predecessors of the block can be
proven to always cause a jump to one of the successors, the edge
from the predecessor is forwarded to the successor.

-lazy-value-info Performs a lazy value information analysis.

-loop-unswitch Transforms loops that contain branches on loop-invariant
conditions to have multiple loops.

-loop-idiom Transforms simple loops into a non-loop form.

-loop-unroll Performs loop unrolling.

-loop-vectorize Searches for loops that can be vectorized, transforms these loops,
and generates vector codes.

-memcpyopt Performs transformations related to eliminating memcpy calls or
transforming sets of stores into memsets.

-memdep Performs an analysis that determines for a given memory
operation what preceding memory operation it depends on.

-no-aa Performs an alias analysis that always returns may alias.

-prune-eh Interprocedural pass that walks the call graph and turns
LLVM-IR invoke instructions into call instructions if and only if
the callee cannot throw an exception.

selected passes of the -o3 optimization sequence 67

-sccp Performs sparse conditional constant propagation and merging.
Assumes values are constants unless proven otherwise and basic
blocks are dead unless proven otherwise. Proves values to be
constant and replaces them with constants. Proves conditional
branches to be unconditional.

-slp-vectorizer Detects consecutive stores that can be put together into
vector-stores and attempts to construct a vectorizable tree using
use-def chains. If a profitable tree was found, vectorization is
performed on this tree.

-sroa Scalar replacement of aggregates transformation. It tries to
identify promotable elements of an aggregate alloca, and
promotes them to registers. It will also try to convert uses of an
element (or set of elements) of an alloca into a vector or
bitfield-style integer scalar if appropriate.

-strip-dead-
prototypes

Loops over all of the functions in the input module, looking for
dead declarations and removes them. Dead declarations are
declarations of functions for which no implementation is
available.

Table 14.: Set of -O3 passes used for the research

B
F I T N E S S C O M PA R I S O N O F O P T I M I Z AT I O N S E Q U E N C E S

This chapter presents the results of the fitness comparison of preoptimization sequences
discussed in experiments 1 and 2 in Section 4.2. Table 16 lists for every examined sample
program the fitness values of the different sequences. The first column shows the sample
program and the other columns show the fitness values of the different preoptimization
sequences. The column names of Table 16 are explained in Table 15.

Column name Preoptimization sequence

1 empty sequence (no optimization pass applied)

2 -polly-canonicalize

3 -O3 -polly-canonicalize

4 sequence of length 10 found by genetic algorithm 1

5 sequence of length 20 found by genetic algorithm 1

6 sequence of length 10 found by genetic algorithm 2

7 sequence of length 20 found by genetic algorithm 2

Table 15.: Column names and referred preoptimization sequences

Sample program 1 2 3 4 5 6 7

2mm 32 32 20 12 8 12 12

3mm 35 38 23 15 15 15 15

7z 12277 12325 14688 10962 10790 10758 10725

adi 31 46 28 19 19 19 19

atax 24 24 13 8 5 8 8

bicg 25 27 12 10 9 10 7

blowfish 62 61 58 58 58 59 58

bn 10966 10872 4541 2056 2028 2033 2000

bzip2 842 818 784 603 579 580 570

cast 32 31 16 15 14 14 14

ccrypt 311 310 266 269 262 267 261

cholesky 24 30 17 10 9 9 9

69

70 fitness comparison of optimization sequences

correlation 30 39 20 15 15 16 15

covariance 27 34 18 13 13 13 13

crafty 7513 6531 5116 4016 3893 3973 3860

crocopat 2747 2729 2619 2557 2525 2539 2554

des 1857 1850 199 201 198 198 198

doitgen 29 32 21 12 10 12 10

dsa 10870 10776 7451 3766 3731 3758 3698

durbin 23 30 11 11 11 11 11

dynprog 23 27 11 9 9 9 9

ecdsa 10882 10788 5558 2921 2889 2910 2884

fdtd-2d 29 40 27 16 16 16 16

fdtd-apml 29 42 20 17 17 17 17

floyd-warshall 24 27 11 5 5 5 5

gemm 27 26 15 9 9 9 9

gemver 26 34 20 13 12 13 13

gesummv 21 26 9 9 9 9 9

gramschmidt 34 46 24 19 19 20 19

gzip 722 683 464 602 600 600 599

hmac 10795 10701 1194 715 664 665 640

jacobi-1d-imper 21 26 13 9 9 9 9

jacobi-2d-imper 25 34 17 13 13 13 13

js 36155 36354 41819 32673 32416 32447 32306

lammps 32323 28766 36450 26773 26675 26668 26409

leveldb 2668 2694 1348 1364 1141 1206 1077

linpack 70 69 81 59 59 65 59

lu 24 22 13 5 5 5 5

ludcmp 28 38 18 10 10 10 15

lulesh 413 394 414 367 366 366 366

lulesh-omp 468 445 466 416 416 417 416

md5 10795 10701 1132 684 635 723 623

minisat 630 665 338 246 247 244 240

mvt 23 28 11 10 9 10 10

openssl 20279 20021 33279 17120 16936 17010 16900

postgres 50659 50697 84562 50317 50259 50261 50235

povray 12347 12277 17570 10144 9855 9963 9883

python 22922 22149 31344 22042 21924 21922 21867

rc4 43 42 35 35 35 35 35

reg_detect 30 44 23 18 18 18 18

rsa 10807 10713 3337 1932 1909 1935 1898

ruby 22336 22127 35373 21639 21559 21569 21548

seidel-2d 23 20 11 5 5 5 5

fitness comparison of optimization sequences 71

sha1 10799 10705 1135 689 635 718 620

sha256 10800 10706 1141 729 682 750 623

sha512 10800 10706 1140 732 662 676 631

sqlite3 2623 2654 138 193 133 208 124

ssl 14403 14238 17355 8866 8795 8805 8747

symm 25 30 14 11 11 11 11

syr2k 27 30 15 10 10 10 10

syrk 27 26 15 8 8 8 8

tcc 3833 3278 3785 2944 2908 3013 2883

trisolv 21 24 10 8 8 8 8

trmm 23 30 11 11 11 11 11

x264 7771 7564 7763 7406 7372 7386 7364

xz 1532 1464 1645 1393 1378 1397 1377

Table 16.: Fitness comparison of sequences of experiment 1 and 2 in section 4.2

C
A B B R E V I AT I O N S F O R T H E D E T E C T I O N S TAT I S T I C S

Statistics of a SCoP detection can be obtained if the pass -stats is used. Table 17 lists
abbreviations that are used in the thesis for these statistics.

Abbreviation Statistic

R Number of regions

S Weighted number of regions that are a valid SCoP

1 Number of bad regions for SCoP: CFG too complex

2 Number of bad regions for SCoP: Non branch instruction terminates basic
block

3 Number of bad regions for SCoP: Not well structured condition in basic
block

4 Number of bad regions for SCoP: Expression not affine

5 Number of bad regions for SCoP: Condition based on ’undef’ value in
basic block, ’undef’ values are things without specified contents

6 Number of bad regions for SCoP: Condition in basic block neither constant
nor an icmp (integer comparison) instruction

7 Number of bad regions for SCoP: Undefined operand in branch at basic
block

8 Number of bad regions for SCoP: Non affine branch in basic block

9 Number of bad regions for SCoP: No base pointer

10 Number of bad regions for SCoP: Undefined base pointer

11 Number of bad regions for SCoP: Base address not invariant in current
region

12 Number of bad regions for SCoP: Non affine access function

13 Number of bad regions for SCoP: Found base address alias

14 Number of bad regions for SCoP: Found invalid region entering edges

15 Number of bad regions for SCoP: Function call with side effects appeared

16 Number of bad regions for SCoP: Loop bounds can not be computed

17 Number of bad regions for SCoP: Loop not in -loop-simplify form

18 Number of bad regions for SCoP: Non canonical induction variable in loop

19 Number of bad regions for SCoP: SCEV of PHI node refers to SSA names
in region

73

74 abbreviations for the detection statistics

20 Number of bad regions for SCoP: Non canonical PHI node. A PHI node is
canonical if it has the form phi i32 [0, %predecessor1], [%nextvalue,
%predecessor]. The result type has not to be i32, it just has to be an
integer.

21 Number of bad regions for SCoP: No canonical induction variable at loop
header

22 Number of bad regions for SCoP: Others

23 Number of bad regions for SCoP: Found bad intToptr pointer, intToptr
represents the cast from an integer to a pointer

24 Number of bad regions for SCoP: Alloca instruction

25 Number of bad regions for SCoP: Unknown instruction

26 Number of bad regions for SCoP: PHI node in exit basic block

27 Number of bad regions for SCoP: Region containing entry block of
function is invalid

Table 17.: Abbreviations used in Tables 8, 9, and 10

D
E F F E C T O F - M E M 2 R E G

Table 18 presents the results of Experiment 4.2.4. The first column indicates the sample
program. The second column shows four different experiments for each sample pro-
gram:

• original: the statistics obtained for the original sequence without -mem2reg.

• appended: the statistics obtained for the original sequence with -mem2reg appended.

• prepended: the statistics obtained for the original sequence with -mem2reg prepended.

• both: the statistics obtained for the original sequence with -mem2reg appended and
prepended.

The remaining columns list the statistical output of the experiment. The column names
are abbreviations for the different statistical outputs that are explained in Appendix C.

75

76 effect of -mem2reg

Sa
m

pl
e

pr
og

ra
m

Ex
pe

ri
m

en
t

R
S

1
2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0
2

1
2

2
2

3
2

4
2

5
2

6
2

7

7
z

or
ig

in
al

1
1

0
0

9
1

7
8

1
1

0
2

7
2

0
1

5
0

1
2

4
3

0
3

7
9

3
9

7
2

4
3

9
1

2
4

2
7

0
7

7
4

0
0

7
7

4
2

0
0

1
0

1
9

0

7
z

ap
pe

nd
ed

1
1

0
0

9
8

8
1

1
0

1
9

2
0

1
0

0
1

0
7

2
0

2
1

5
2

8
1

2
4

3
6

6
1

4
0

4
0

5
3

9
0

1
2

0
4

1
9

1
4

5
5

0
1

0
1

4
5

4
0

7
z

pr
ep

en
de

d
1

1
0

0
6

1
7

8
1

1
0

2
7

6
0

0
0

1
2

4
3

0
3

7
9

3
9

9
2

4
3

9
1

2
4

2
1

0
7

7
4

0
0

7
7

4
2

0
0

1
0

1
9

0

7
z

bo
th

1
1

0
0

6
8

8
1

1
0

1
9

2
0

1
0

0
1

0
7

2
0

2
1

5
2

8
3

2
4

3
6

6
1

4
0

2
0

5
3

9
0

1
2

0
4

1
9

1
4

5
5

0
1

0
1

4
5

4
0

ad
i

or
ig

in
al

1
9

0
0

0
0

4
0

0
0

4
0

0
0

0
9

0
0

0
0

4
0

0
4

0
0

0
0

0
0

ad
i

ap
pe

nd
ed

1
9

0
0

0
0

4
0

0
0

4
0

0
0

0
9

0
0

0
0

4
0

0
4

0
0

0
0

0
0

ad
i

pr
ep

en
de

d
1

9
0

0
0

0
4

0
0

0
4

0
0

0
0

9
0

0
0

0
4

0
0

4
0

0
0

0
0

0

ad
i

bo
th

1
9

0
0

0
0

4
0

0
0

4
0

0
0

0
9

0
0

0
0

4
0

0
4

0
0

0
0

0
0

bl
ow

fis
h

or
ig

in
al

5
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

6
0

9
0

2
7

1
8

0
0

0
1

4
4

bl
ow

fis
h

ap
pe

nd
ed

5
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

6
0

9
0

2
7

1
8

0
0

0
1

4
4

bl
ow

fis
h

pr
ep

en
de

d
5

8
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
6

0
9

0
2

7
1

8
0

0
0

1
4

4

bl
ow

fis
h

bo
th

5
8

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

6
0

9
0

2
7

1
8

0
0

0
1

4
4

bn
or

ig
in

al
2

0
1

6
1

6
0

0
0

4
6

0
5

0
3

1
0

0
5

5
1

9
4

2
3

3
9

1
2

2
9

3
0

0
9

3
1

3
1

1
0

0
2

0
1

1
0

bn
ap

pe
nd

ed
2

0
1

6
3

0
0

0
2

6
0

5
0

1
6

0
0

3
2

1
0

4
1

6
1

2
5

2
2

4
8

0
1

4
3

4
4

8
7

1
0

0
3

7
6

1
1

0

bn
pr

ep
en

de
d

2
0

1
6

1
6

0
0

0
4

6
0

0
0

3
1

0
0

5
5

1
9

4
2

3
3

9
1

2
2

9
3

0
0

9
3

1
3

1
1

0
0

2
0

1
1

0

bn
bo

th
2

0
1

6
3

0
0

0
2

6
0

5
0

1
6

0
0

3
2

1
0

4
1

6
1

2
5

2
2

4
8

0
1

4
3

4
4

8
7

1
0

0
3

7
6

1
1

0

ca
st

or
ig

in
al

1
9

5
0

0
0

2
0

0
0

2
0

0
0

0
0

0
0

4
0

0
0

0
0

0
0

0
0

0
0

ca
st

ap
pe

nd
ed

1
9

4
0

0
0

2
0

0
0

2
0

0
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

3
0

ca
st

pr
ep

en
de

d
1

9
5

0
0

0
2

0
0

0
2

0
0

0
0

0
0

0
4

0
0

0
0

0
0

0
0

0
0

0

ca
st

bo
th

1
9

4
0

0
0

2
0

0
0

2
0

0
0

0
0

0
0

2
0

0
0

0
0

3
0

0
0

3
0

cc
ry

pt
or

ig
in

al
2

6
7

6
0

0
0

3
1

0
0

0
1

2
0

0
0

1
9

9
1

0
4

3
1

0
2

0
0

0
2

0
1

3
0

0
0

4
9

cc
ry

pt
ap

pe
nd

ed
2

6
7

6
0

0
0

3
1

0
0

0
1

2
0

0
0

1
9

6
1

0
2

1
6

0
1

4
0

4
1

0
3

9
0

0
0

3
0

9

cc
ry

pt
pr

ep
en

de
d

2
6

7
6

0
0

0
3

1
0

0
0

1
2

0
0

0
1

9
9

1
0

4
3

1
0

2
0

0
0

2
0

1
3

0
0

0
4

9

cc
ry

pt
bo

th
2

6
7

6
0

0
0

3
1

0
0

0
1

2
0

0
0

1
9

6
1

0
2

1
6

0
1

4
0

4
1

0
3

9
0

0
0

3
0

9

co
va

ri
an

ce
or

ig
in

al
1

5
2

0
0

0
4

0
0

0
4

0
0

0
0

6
0

0
0

0
2

0
0

2
1

0
0

0
1

0

co
va

ri
an

ce
ap

pe
nd

ed
1

5
2

0
0

0
4

0
0

0
4

0
0

0
0

6
0

0
0

0
2

0
0

2
1

0
0

0
1

0

co
va

ri
an

ce
pr

ep
en

de
d

1
5

2
0

0
0

4
0

0
0

4
0

0
0

0
6

0
0

0
0

2
0

0
2

1
0

0
0

1
0

co
va

ri
an

ce
bo

th
1

5
2

0
0

0
4

0
0

0
4

0
0

0
0

6
0

0
0

0
2

0
0

2
1

0
0

0
1

0

effect of -mem2reg 77

cr
oc

op
at

or
ig

in
al

2
5

2
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
0

5
1

7
5

6
0

0
0

5
6

0
0

0
0

0
0

0

cr
oc

op
at

ap
pe

nd
ed

2
5

2
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
0

3
1

7
1

3
4

0
0

1
3

4
4

2
8

0
0

0
4

2
8

0

cr
oc

op
at

pr
ep

en
de

d
2

5
2

4
0

0
0

0
0

0
0

0
0

0
0

0
0

0
4

0
5

1
7

5
6

0
0

0
5

6
0

0
0

0
0

0
0

cr
oc

op
at

bo
th

2
5

2
4

0
0

0
0

0
0

0
0

0
0

0
0

0
0

4
0

3
1

7
1

3
4

0
0

1
3

4
4

2
8

0
0

0
4

2
8

0

de
s

or
ig

in
al

1
9

8
0

0
0

0
1

4
0

0
0

2
0

0
0

1
2

0
0

1
3

0
0

1
7

0
1

1
6

5
0

0
0

0
3

7
1

3

de
s

ap
pe

nd
ed

1
9

8
0

0
0

0
1

4
0

0
0

2
0

0
0

1
2

0
0

1
3

0
0

1
7

0
1

1
6

5
0

0
0

0
3

7
1

3

de
s

pr
ep

en
de

d
1

9
8

0
0

0
0

1
4

0
0

0
2

0
0

0
1

2
0

0
1

3
0

0
1

7
0

1
1

6
5

0
0

0
0

3
7

1
3

de
s

bo
th

1
9

8
0

0
0

0
1

4
0

0
0

2
0

0
0

1
2

0
0

1
3

0
0

1
7

0
1

1
6

5
0

0
0

0
3

7
1

3

ds
a

or
ig

in
al

3
7

2
5

2
7

0
0

0
5

0
0

7
0

3
1

0
0

7
5

2
9

2
2

8
5

0
1

2
6

1
1

6
0

0
1

1
6

2
0

1
1

0
0

5
9

1
4

1

ds
a

ap
pe

nd
ed

3
7

2
5

8
0

0
0

2
8

0
5

0
1

8
0

0
3

2
1

9
2

1
6

1
6

7
2

6
5

7
0

1
6

4
1

6
5

3
1

0
0

5
1

1
1

4
1

ds
a

pr
ep

en
de

d
3

7
2

5
2

7
0

0
0

5
0

0
0

0
3

1
0

0
7

5
2

9
2

2
8

5
0

1
2

6
1

1
6

0
0

1
1

6
2

0
1

1
0

0
5

9
1

4
1

ds
a

bo
th

3
7

2
5

8
0

0
0

2
8

0
5

0
1

8
0

0
3

2
1

9
2

1
6

1
6

7
2

6
5

7
0

1
6

4
1

6
5

3
1

0
0

5
1

1
1

4
1

ec
ds

a
or

ig
in

al
2

8
9

1
7

0
0

0
3

1
0

4
0

2
2

0
0

3
2

2
0

2
1

2
2

1
8

5
0

6
3

0
2

0
4

3
5

2
0

1
0

0
3

9
7

1
2

2

ec
ds

a
ap

pe
nd

ed
2

8
9

1
7

0
0

0
3

1
0

4
0

2
2

0
0

3
2

2
0

2
1

2
2

1
8

5
0

6
3

0
2

0
4

3
5

2
0

1
0

0
3

9
7

1
2

2

ec
ds

a
pr

ep
en

de
d

2
8

9
1

7
0

0
0

3
1

0
0

0
2

2
0

0
3

2
2

0
2

1
2

2
1

8
5

0
6

3
0

2
0

4
3

5
2

0
1

0
0

3
9

7
1

2
2

ec
ds

a
bo

th
2

8
9

1
7

0
0

0
3

1
0

4
0

2
2

0
0

3
2

2
0

2
1

2
2

1
8

5
0

6
3

0
2

0
4

3
5

2
0

1
0

0
3

9
7

1
2

2

fd
td

-2
d

or
ig

in
al

1
7

1
0

0
0

4
0

0
0

4
0

0
0

0
7

0
0

0
0

4
0

0
4

1
0

0
0

1
0

fd
td

-2
d

ap
pe

nd
ed

1
7

1
0

0
0

4
0

0
0

4
0

0
0

0
7

0
0

0
0

4
0

0
4

1
0

0
0

1
0

fd
td

-2
d

pr
ep

en
de

d
1

7
1

0
0

0
4

0
0

0
4

0
0

0
0

7
0

0
0

0
4

0
0

4
1

0
0

0
1

0

fd
td

-2
d

bo
th

1
7

1
0

0
0

4
0

0
0

4
0

0
0

0
7

0
0

0
0

4
0

0
4

1
0

0
0

1
0

fd
td

-a
pm

l
or

ig
in

al
1

7
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

5
0

0
1

5
0

0
0

0
0

0

fd
td

-a
pm

l
ap

pe
nd

ed
1

7
0

0
0

0
5

0
0

0
5

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

fd
td

-a
pm

l
pr

ep
en

de
d

1
7

0
0

0
0

5
0

0
0

5
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

fd
td

-a
pm

l
bo

th
1

7
0

0
0

0
5

0
0

0
5

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

flo
yd

-w
ar

sh
al

l
or

ig
in

al
1

1
6

0
0

0
5

0
0

0
5

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0

flo
yd

-w
ar

sh
al

l
ap

pe
nd

ed
1

1
6

0
0

0
5

0
0

0
5

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
1

0

flo
yd

-w
ar

sh
al

l
pr

ep
en

de
d

1
1

3
0

0
0

5
0

0
0

5
0

0
0

0
0

0
0

0
0

0
0

0
0

2
0

0
0

2
0

flo
yd

-w
ar

sh
al

l
bo

th
1

1
3

0
0

0
5

0
0

0
5

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
2

0

hm
ac

or
ig

in
al

6
4

3
3

0
0

0
1

3
0

3
0

1
0

0
0

0
0

1
3

1
4

4
5

1
2

0
3

9
1

8
3

0
0

0
1

5
5

2
8

78 effect of -mem2reg

hm
ac

ap
pe

nd
ed

6
4

3
3

0
0

0
1

3
0

3
0

1
0

0
0

0
0

1
3

1
4

4
5

1
2

0
3

9
1

8
3

0
0

0
1

5
5

2
8

hm
ac

pr
ep

en
de

d
6

4
3

3
0

0
0

1
3

0
0

0
1

0
0

0
0

0
1

3
1

4
4

5
1

2
0

3
9

1
8

3
0

0
0

1
5

5
2

8

hm
ac

bo
th

6
4

3
3

0
0

0
1

3
0

3
0

1
0

0
0

0
0

1
3

1
4

4
5

1
2

0
3

9
1

8
3

0
0

0
1

5
5

2
8

ja
co

bi
-1

d-
im

pe
r

or
ig

in
al

9
0

0
0

0
3

0
0

0
3

0
0

0
0

1
0

0
0

0
3

0
0

3
0

0
0

0
0

0

ja
co

bi
-1

d-
im

pe
r

ap
pe

nd
ed

9
0

0
0

0
3

0
0

0
3

0
0

0
0

1
0

0
0

0
3

0
0

3
0

0
0

0
0

0

ja
co

bi
-1

d-
im

pe
r

pr
ep

en
de

d
9

0
0

0
0

3
0

0
0

3
0

0
0

0
1

0
0

0
0

3
0

0
3

0
0

0
0

0
0

ja
co

bi
-1

d-
im

pe
r

bo
th

9
0

0
0

0
3

0
0

0
3

0
0

0
0

1
0

0
0

0
3

0
0

3
0

0
0

0
0

0

ja
co

bi
-2

d-
im

pe
r

or
ig

in
al

1
3

0
0

0
0

4
0

0
0

4
0

0
0

0
2

0
0

0
0

5
0

0
5

0
0

0
0

0
0

ja
co

bi
-2

d-
im

pe
r

ap
pe

nd
ed

1
3

0
0

0
0

4
0

0
0

4
0

0
0

0
2

0
0

0
0

5
0

0
5

0
0

0
0

0
0

ja
co

bi
-2

d-
im

pe
r

pr
ep

en
de

d
1

3
0

0
0

0
4

0
0

0
4

0
0

0
0

2
0

0
0

0
5

0
0

5
0

0
0

0
0

0

ja
co

bi
-2

d-
im

pe
r

bo
th

1
3

0
0

0
0

4
0

0
0

4
0

0
0

0
2

0
0

0
0

5
0

0
5

0
0

0
0

0
0

js
or

ig
in

al
3

2
5

6
5

2
5

9
3

3
0

8
4

6
0

5
7

0
7

0
1

0
0

5
1

3
7

1
1

7
3

0
2

4
9

3
3

9
5

0
2

8
8

0
0

0
2

8
8

0
6

3
6

3
0

0
0

0

js
ap

pe
nd

ed
3

2
5

6
5

1
6

2
2

2
0

6
3

5
0

1
5

0
5

7
8

0
0

1
2

3
0

8
6

3
0

2
4

1
1

3
0

0
0

1
2

0
2

0
6

0
1

1
4

2
4

2
6

5
6

2
0

0
4

2
0

3
0

js
pr

ep
en

de
d

3
2

5
6

5
2

5
9

3
3

0
8

4
6

0
0

0
7

0
1

0
0

5
1

3
7

1
1

7
3

0
2

4
9

3
3

9
5

0
2

8
8

0
0

0
2

8
8

0
6

3
6

3
0

0
0

0

js
bo

th
3

2
5

6
5

1
6

2
2

2
0

6
3

5
0

1
5

0
5

7
8

0
0

1
2

3
0

8
6

3
0

2
4

1
1

3
0

0
0

1
2

0
2

0
6

0
1

1
4

2
4

2
6

5
6

2
0

0
4

2
0

3
0

la
m

m
ps

or
ig

in
al

2
7

1
1

5
7

0
6

2
7

2
7

0
2

8
5

6
0

3
7

1
0

1
4

7
1

0
0

4
8

4
5

3
0

9
2

1
1

3
6

2
1

6
2

5
1

4
8

0
3

4
0

0
0

3
4

0
6

2
0

0
0

6
2

0

la
m

m
ps

ap
pe

nd
ed

2
7

1
1

5
5

0
3

2
2

2
2

0
2

2
7

9
0

3
4

4
0

1
2

8
1

0
0

3
1

3
3

4
1

6
6

7
1

3
6

2
1

0
9

4
0

4
1

0
8

0
2

0
5

6
0

2
4

2
1

7
4

2
0

0
0

1
7

4
2

0

la
m

m
ps

pr
ep

en
de

d
2

7
1

1
5

7
0

6
2

7
2

7
0

2
8

5
6

0
0

0
1

4
7

1
0

0
4

8
4

5
3

0
9

2
1

1
3

6
2

1
6

2
5

1
4

8
0

3
4

0
0

0
3

4
0

6
2

0
0

0
6

2
0

la
m

m
ps

bo
th

2
7

1
1

5
5

0
3

2
2

2
2

0
2

2
7

9
0

3
4

4
0

1
2

8
1

0
0

3
1

3
3

4
1

6
6

7
1

3
6

2
1

0
9

4
0

4
1

0
8

0
2

0
5

6
0

2
4

2
1

7
4

2
0

0
0

1
7

4
2

0

lin
pa

ck
or

ig
in

al
7

5
1

6
0

0
0

2
0

1
0

1
0

0
0

0
4

1
1

5
3

0
0

2
0

0
2

2
0

0
0

2
0

lin
pa

ck
ap

pe
nd

ed
7

5
1

0
0

0
0

2
0

1
0

1
0

0
0

0
4

1
1

1
2

1
0

9
0

8
1

8
0

0
0

8
0

lin
pa

ck
pr

ep
en

de
d

7
5

1
6

0
0

0
2

0
0

0
1

0
0

0
0

4
1

1
5

3
0

0
2

0
0

2
2

0
0

0
2

0

lin
pa

ck
bo

th
7

5
1

0
0

0
0

2
0

1
0

1
0

0
0

0
4

1
1

1
2

1
0

9
0

8
1

8
0

0
0

8
0

lu
le

sh
or

ig
in

al
4

0
7

4
1

1
1

0
5

0
0

1
7

0
1

0
0

9
2

3
1

7
3

4
7

9
0

2
0

0
2

1
0

0
0

0
1

lu
le

sh
ap

pe
nd

ed
4

0
7

3
3

1
1

0
4

2
0

1
4

0
1

0
0

7
2

0
1

3
3

3
5

7
0

9
0

7
2

4
1

0
0

0
4

0
1

lu
le

sh
pr

ep
en

de
d

4
0

7
4

1
1

1
0

5
0

0
0

0
1

0
0

9
2

3
1

7
3

4
7

9
0

2
0

0
2

1
0

0
0

0
1

lu
le

sh
bo

th
4

0
7

3
3

1
1

0
4

2
0

1
4

0
1

0
0

7
2

0
1

3
3

3
5

7
0

9
0

7
2

4
1

0
0

0
4

0
1

lu
le

sh
-o

m
p

or
ig

in
al

4
6

1
4

5
1

1
0

5
7

0
2

3
0

0
0

0
8

2
6

1
8

5
8

9
3

0
2

0
0

2
0

0
0

0
0

0

lu
le

sh
-o

m
p

ap
pe

nd
ed

4
6

1
3

7
1

1
0

4
8

0
2

0
0

0
0

0
6

2
2

1
3

5
5

6
8

0
1

1
0

9
2

4
5

0
0

0
4

5
0

effect of -mem2reg 79

lu
le

sh
-o

m
p

pr
ep

en
de

d
4

6
1

4
5

1
1

0
5

7
0

0
0

0
0

0
8

2
6

1
8

5
8

9
3

0
2

0
0

2
0

0
0

0
0

0

lu
le

sh
-o

m
p

bo
th

4
6

1
3

7
1

1
0

4
8

0
2

0
0

0
0

0
6

2
2

1
3

5
5

6
8

0
1

1
0

9
2

4
5

0
0

0
4

5
0

m
d5

or
ig

in
al

6
2

4
1

0
0

0
1

4
0

3
0

1
1

0
0

0
0

1
5

1
5

2
3

1
4

0
6

8
1

5
3

0
0

0
1

2
5

2
8

m
d5

ap
pe

nd
ed

6
2

4
1

0
0

0
1

4
0

3
0

1
1

0
0

0
0

1
5

1
5

2
3

1
4

0
6

8
1

5
3

0
0

0
1

2
5

2
8

m
d5

pr
ep

en
de

d
6

2
4

1
0

0
0

1
4

0
0

0
1

1
0

0
0

0
1

5
1

5
2

3
1

4
0

6
8

1
5

3
0

0
0

1
2

5
2

8

m
d5

bo
th

6
2

4
1

0
0

0
1

4
0

3
0

1
1

0
0

0
0

1
5

1
5

2
3

1
4

0
6

8
1

5
3

0
0

0
1

2
5

2
8

op
en

ss
l

or
ig

in
al

1
7

0
1

2
1

1
2

1
0

8
0

2
6

0
0

3
3

0
1

4
3

0
0

3
6

4
8

8
9

1
1

9
1

0
4

2
5

3
1

0
7

9
2

0
0

7
9

2
1

0
1

0
0

9
0

op
en

ss
l

ap
pe

nd
ed

1
7

0
1

2
5

9
8

6
0

1
3

8
0

1
4

0
8

4
0

0
1

7
2

3
6

7
1

1
9

5
3

8
6

4
0

3
7

2
0

1
0

2
2

7
0

2
3

6
2

1
0

0
2

3
6

1
0

op
en

ss
l

pr
ep

en
de

d
1

7
0

1
2

1
1

2
1

0
8

0
2

6
0

0
0

0
1

4
3

0
0

3
6

4
8

8
9

1
1

9
1

0
4

2
5

3
1

0
7

9
2

0
0

7
9

2
1

0
1

0
0

9
0

op
en

ss
l

bo
th

1
7

0
1

2
5

9
8

6
0

1
3

8
0

1
4

0
8

4
0

0
1

7
2

3
6

7
1

1
9

5
3

8
6

4
0

3
7

2
0

1
0

2
2

7
0

2
3

6
2

1
0

0
2

3
6

1
0

po
st

gr
es

or
ig

in
al

5
0

6
1

0
1

7
9

4
3

4
3

0
7

7
8

0
4

0
0

5
0

2
0

0
1

5
4

8
2

1
1

7
9

2
3

1
8

9
5

3
1

7
0

6
3

5
8

0
0

6
3

5
8

2
1

1
6

0
0

5
0

po
st

gr
es

ap
pe

nd
ed

5
0

6
1

0
8

7
3

2
3

2
0

4
6

0
0

1
7

0
3

2
0

0
0

9
8

2
5

1
0

5
9

2
3

1
2

4
2

8
3

6
0

3
9

1
1

0
1

9
5

3
7

1
6

5
4

3
5

7
0

0
5

4
2

8
0

po
st

gr
es

pr
ep

en
de

d
5

0
6

1
0

1
7

9
4

3
4

3
0

7
7

8
0

0
0

5
0

2
0

0
1

5
4

8
2

1
1

7
9

2
3

1
8

9
5

3
1

7
0

6
3

5
8

0
0

6
3

5
8

2
1

1
6

0
0

5
0

po
st

gr
es

bo
th

5
0

6
1

0
8

7
3

2
3

2
0

4
6

0
0

1
7

0
3

2
0

0
0

9
8

2
5

1
0

5
9

2
3

1
2

4
2

8
3

6
0

3
9

1
1

0
1

9
5

3
7

1
6

5
4

3
5

7
0

0
5

4
2

8
0

py
th

on
or

ig
in

al
2

2
0

8
6

2
1

9
8

7
0

3
3

6
0

5
9

0
1

7
2

0
0

6
8

3
7

1
1

4
9

3
2

5
2

6
6

4
2

0
8

3
1

0
0

8
3

1
0

0
0

0
0

0

py
th

on
ap

pe
nd

ed
2

2
0

8
6

9
6

5
5

0
1

7
9

0
8

0
1

1
3

0
0

4
4

1
4

5
8

9
3

2
1

5
9

3
2

0
3

2
2

0
1

1
9

2
0

3
2

9
1

4
0

0
0

2
9

1
4

0

py
th

on
pr

ep
en

de
d

2
2

0
8

6
2

1
9

8
7

0
3

3
6

0
0

0
1

7
2

0
0

6
8

3
7

1
1

4
9

3
2

5
2

6
6

4
2

0
8

3
1

0
0

8
3

1
0

0
0

0
0

0

py
th

on
bo

th
2

2
0

8
6

9
6

5
5

0
1

7
9

0
8

0
1

1
3

0
0

4
4

1
4

5
8

9
3

2
1

5
9

3
2

0
3

2
2

0
1

1
9

2
0

3
2

9
1

4
0

0
0

2
9

1
4

0

rc
4

or
ig

in
al

3
5

0
0

0
0

1
0

1
0

0
0

0
0

0
0

3
5

0
0

5
0

0
5

1
1

0
0

0
1

0
1

rc
4

ap
pe

nd
ed

3
5

0
0

0
0

1
0

1
0

0
0

0
0

0
0

3
5

0
0

5
0

0
5

1
1

0
0

0
1

0
1

rc
4

pr
ep

en
de

d
3

5
0

0
0

0
1

0
0

0
0

0
0

0
0

0
3

5
0

0
5

0
0

5
1

1
0

0
0

1
0

1

rc
4

bo
th

3
5

0
0

0
0

1
0

1
0

0
0

0
0

0
0

3
5

0
0

5
0

0
5

1
1

0
0

0
1

0
1

re
g_

de
te

ct
or

ig
in

al
1

8
0

0
0

0
4

0
0

0
4

0
0

0
0

4
0

0
0

0
8

0
0

8
0

0
0

0
0

0

re
g_

de
te

ct
ap

pe
nd

ed
1

8
0

0
0

0
4

0
0

0
4

0
0

0
0

4
0

0
0

0
8

0
0

8
0

0
0

0
0

0

re
g_

de
te

ct
pr

ep
en

de
d

1
8

0
0

0
0

4
0

0
0

4
0

0
0

0
4

0
0

0
0

8
0

0
8

0
0

0
0

0
0

re
g_

de
te

ct
bo

th
1

8
0

0
0

0
4

0
0

0
4

0
0

0
0

4
0

0
0

0
8

0
0

8
0

0
0

0
0

0

rs
a

or
ig

in
al

1
9

1
4

1
6

0
0

0
3

6
0

2
0

2
5

0
0

5
4

1
9

5
2

5
3

0
8

2
0

6
1

0
0

6
1

1
1

0
1

0
0

2
1

8
8

rs
a

ap
pe

nd
ed

1
9

1
4

5
0

0
0

2
2

0
2

0
1

6
0

0
3

1
1

0
5

1
7

9
5

2
0

3
4

0
1

3
2

1
3

8
8

1
0

0
2

9
9

8
8

rs
a

pr
ep

en
de

d
1

9
1

4
1

6
0

0
0

3
6

0
0

0
2

5
0

0
5

4
1

9
5

2
5

3
0

8
2

0
6

1
0

0
6

1
1

1
0

1
0

0
2

1
8

8

80 effect of -mem2reg

rs
a

bo
th

1
9

1
4

5
0

0
0

2
2

0
2

0
1

6
0

0
3

1
1

0
5

1
7

9
5

2
0

3
4

0
1

3
2

1
3

8
8

1
0

0
2

9
9

8
8

ru
by

or
ig

in
al

2
1

7
8

9
2

4
2

5
4

0
2

5
5

0
6

8
0

1
6

2
0

0
7

1
8

1
0

1
2

2
3

1
0

2
1

8
3

3
0

2
0

0
2

0
0

2
0

0
2

5
3

0
0

2
0

ru
by

ap
pe

nd
ed

2
1

7
8

9
1

1
6

4
4

0
1

7
0

0
2

5
0

1
2

8
0

0
3

1
4

7
8

2
2

3
7

3
7

8
1

0
1

0
5

8
0

1
0

4
9

5
4

2
2

4
0

1
0

0
2

2
3

9
0

ru
by

pr
ep

en
de

d
2

1
7

8
9

2
4

2
5

4
0

2
5

5
0

0
0

1
6

2
0

0
7

1
8

1
0

1
2

2
3

1
0

2
1

8
3

3
0

2
0

0
2

0
0

2
0

0
2

5
3

0
0

2
0

ru
by

bo
th

2
1

7
8

9
1

1
6

4
4

0
1

7
0

0
2

5
0

1
2

8
0

0
3

1
4

7
8

2
2

3
7

3
7

8
1

0
1

0
5

8
0

1
0

4
9

5
4

2
2

4
0

1
0

0
2

2
3

9
0

sh
a1

or
ig

in
al

6
3

3
1

3
1

0
0

2
6

0
5

0
2

1
0

0
0

0
6

3
6

1
7

2
5

2
8

0
0

2
8

0
0

0
0

0
0

sh
a1

ap
pe

nd
ed

6
3

3
1

0
0

0
1

3
0

3
0

1
0

0
0

0
0

1
3

4
6

9
5

1
6

0
6

1
0

1
4

4
0

0
0

1
4

4
0

sh
a1

pr
ep

en
de

d
6

3
3

1
3

1
0

0
2

6
0

0
0

2
1

0
0

0
0

6
3

6
1

7
2

5
2

8
0

0
2

8
0

0
0

0
0

0

sh
a1

bo
th

6
3

3
1

0
0

0
1

3
0

3
0

1
0

0
0

0
0

1
3

4
6

9
5

1
6

0
6

1
0

1
4

4
0

0
0

1
4

4
0

sh
a2

5
6

or
ig

in
al

6
2

4
1

0
0

0
1

2
0

3
0

9
0

0
0

0
1

3
2

4
1

3
1

6
0

6
1

0
1

3
1

0
0

0
1

0
4

2
7

sh
a2

5
6

ap
pe

nd
ed

6
2

4
1

0
0

0
1

2
0

3
0

9
0

0
0

0
1

3
2

4
1

3
1

6
0

6
1

0
1

3
1

0
0

0
1

0
4

2
7

sh
a2

5
6

pr
ep

en
de

d
6

2
4

1
0

0
0

1
2

0
0

0
9

0
0

0
0

1
3

2
4

1
3

1
6

0
6

1
0

1
3

1
0

0
0

1
0

4
2

7

sh
a2

5
6

bo
th

6
2

4
1

0
0

0
1

2
0

3
0

9
0

0
0

0
1

3
2

4
1

3
1

6
0

6
1

0
1

3
1

0
0

0
1

0
4

2
7

sh
a5

1
2

or
ig

in
al

6
4

6
1

5
2

1
0

2
6

0
3

0
2

3
0

0
0

0
8

4
5

1
3

3
2

2
1

0
0

2
1

3
7

0
0

0
8

2
9

sh
a5

1
2

ap
pe

nd
ed

6
4

6
1

0
0

0
1

3
0

1
0

1
2

0
0

0
0

3
4

2
6

0
2

2
0

0
1

2
8

1
4

2
0

0
0

1
1

3
2

9

sh
a5

1
2

pr
ep

en
de

d
6

4
6

1
5

2
1

0
2

6
0

0
0

2
3

0
0

0
0

8
4

5
1

3
3

2
2

1
0

0
2

1
3

7
0

0
0

8
2

9

sh
a5

1
2

bo
th

6
4

6
1

0
0

0
1

3
0

1
0

1
2

0
0

0
0

3
4

2
6

0
2

2
0

0
1

2
8

1
4

2
0

0
0

1
1

3
2

9

sq
lit

e3
or

ig
in

al
1

2
7

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
0

4
0

0
4

4
0

0
0

3
1

sq
lit

e3
ap

pe
nd

ed
1

2
7

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
0

4
0

0
4

4
0

0
0

3
1

sq
lit

e3
pr

ep
en

de
d

1
2

7
3

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
3

0
4

0
0

4
4

0
0

0
3

1

sq
lit

e3
bo

th
1

2
7

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

3
0

4
0

0
4

4
0

0
0

3
1

ss
l

or
ig

in
al

8
7

8
5

3
8

7
5

0
1

1
7

0
1

2
0

5
7

0
0

1
9

2
9

5
2

4
2

6
4

9
8

3
3

7
2

8
7

0
0

2
8

7
4

4
1

1
0

0
1

0
0

3
4

0

ss
l

ap
pe

nd
ed

8
7

8
5

1
0

5
3

0
6

4
0

6
0

3
8

0
0

1
1

9
4

0
4

2
3

7
3

2
0

3
7

1
4

7
0

6
3

8
4

1
3

5
8

1
0

0
1

0
1

7
3

4
0

ss
l

pr
ep

en
de

d
8

7
8

5
3

8
7

5
0

1
1

7
0

0
0

5
7

0
0

1
9

2
9

5
2

4
2

6
4

9
8

3
3

7
2

8
7

0
0

2
8

7
4

4
1

1
0

0
1

0
0

3
4

0

ss
l

bo
th

8
7

8
5

1
0

5
3

0
6

4
0

6
0

3
8

0
0

1
1

9
4

0
4

2
3

7
3

2
0

3
7

1
4

7
0

6
3

8
4

1
3

5
8

1
0

0
1

0
1

7
3

4
0

tc
c

or
ig

in
al

2
9

1
6

3
4

1
1

0
2

5
0

2
0

1
6

0
0

7
0

4
4

0
5

9
2

9
3

0
1

0
3

2
0

0
1

0
3

2
2

0
0

0
2

0

tc
c

ap
pe

nd
ed

2
9

1
6

4
1

1
0

2
4

0
1

0
1

6
0

0
7

0
1

3
4

0
5

5
1

9
3

0
9

8
0

0
7

9
7

3
1

6
6

0
0

0
1

6
6

0

tc
c

pr
ep

en
de

d
2

9
1

6
3

4
1

1
0

2
5

0
0

0
1

6
0

0
7

0
4

4
0

5
9

2
9

3
0

1
0

3
2

0
0

1
0

3
2

2
0

0
0

2
0

tc
c

bo
th

2
9

1
6

4
1

1
0

2
4

0
1

0
1

6
0

0
7

0
1

3
4

0
5

5
1

9
3

0
9

8
0

0
7

9
7

3
1

6
6

0
0

0
1

6
6

0

effect of -mem2reg 81

x2
6

4
or

ig
in

al
7

5
1

5
1

5
1

1
8

1
5

0
5

4
2

0
3

7
0

2
7

8
9

0
6

3
1

5
5

8
6

2
1

5
7

8
1

0
5

2
0

3
5

5
0

0
3

5
5

1
7

0
0

0
1

7
0

x2
6

4
ap

pe
nd

ed
7

5
1

5
8

6
1

4
1

2
0

4
1

9
0

3
0

0
2

4
1

9
0

4
9

9
0

3
2

2
1

5
5

0
5

4
3

0
3

4
9

0
1

7
8

1
7

1
7

8
6

0
0

0
7

8
6

0

x2
6

4
pr

ep
en

de
d

7
5

1
5

1
5

1
1

8
1

5
0

5
4

2
0

0
0

2
7

8
9

0
6

3
1

5
5

8
6

2
1

5
7

8
1

0
5

2
0

3
5

5
0

0
3

5
5

1
7

0
0

0
1

7
0

x2
6

4
bo

th
7

5
1

5
8

6
1

4
1

2
0

4
1

9
0

3
0

0
2

4
1

9
0

4
9

9
0

3
2

2
1

5
5

0
5

4
3

0
3

4
9

0
1

7
8

1
7

1
7

8
6

0
0

0
7

8
6

0

xz
or

ig
in

al
1

4
5

3
7

6
1

1
0

2
5

0
2

0
7

1
0

1
1

4
1

2
7

4
2

6
1

0
9

0
0

0
9

0
1

8
0

0
0

1
8

0

xz
ap

pe
nd

ed
1

4
5

3
5

7
0

0
0

1
9

0
2

0
7

1
0

0
9

0
2

7
3

9
6

0
4

9
0

9
4

0
2

3
9

0
0

0
2

3
9

0

xz
pr

ep
en

de
d

1
4

5
3

7
6

1
1

0
2

5
0

0
0

7
1

0
1

1
4

1
2

7
4

2
6

1
0

9
0

0
0

9
0

1
8

0
0

0
1

8
0

xz
bo

th
1

4
5

3
5

7
0

0
0

1
9

0
2

0
7

1
0

0
9

0
2

7
3

9
6

0
4

9
0

9
4

0
2

3
9

0
0

0
2

3
9

0

Ta
bl

e
1

8
.:

C
om

pa
ri

so
n

of
se

qu
en

ce
s

w
it

h
an

d
w

it
ho

ut
m

em
2
re

g

E
F I T N E S S C O M PA R I S O N O F O P T I M I Z AT I O N S E Q U E N C E S

This chapter presents the results of the fitness comparison of optimization sequences
applied in Experiment 4.2. Table 20 lists for every sample program the fitness values
of the different sequences. The first column shows the sample program and the other
columns show the fitness values of the different optimization sequences. The column
names of Table 20 are explained in Table 19.

Column name Optimization sequence

1 empty sequence (no optimization pass applied)

2 -polly-canonicalize

3 -O3 -polly-canonicalize

4 sequence of length 10 found by genetic algorithm 1

5 sequence of length 20 found by genetic algorithm 1

6 sequence of length 10 found by genetic algorithm 2

7 sequence of length 20 found by genetic algorithm 2

8 sequence of length 10 found by genetic algorithm 1

using the selected passes of Experiment 4.2.3

9 sequence of length 10 found by genetic algorithm 2

using the selected passes of Experiment 4.2.3

10 sequence of length 10 found by greedy algorithm

using the selected passes of Experiment 4.2.3

11 sequence of length 10 found by hill climbing algorithm

using the selected passes of Experiment 4.2.3

Table 19.: Assignment of column name to optimization sequence

Sample program 1 2 3 4 5 6 7 8 9 10 11

2mm 32 32 20 12 8 12 12 12 12 13 17

3mm 35 38 23 15 15 15 15 15 15 15 20

adi 31 46 28 19 19 19 19 19 19 19 24

atax 24 24 13 8 5 8 8 8 8 8 13

83

84 fitness comparison of optimization sequences

bicg 25 27 12 10 9 10 7 9 10 10 15

cholesky 24 30 17 10 9 9 9 9 9 13 16

correlation 30 39 20 15 15 16 15 15 15 16 20

covariance 27 34 18 13 13 13 13 13 13 13 18

doitgen 29 32 21 12 10 12 10 11 12 12 16

durbin 23 30 11 11 11 11 11 11 11 11 16

dynprog 23 27 11 9 9 9 9 8 9 9 14

fdtd-2d 29 40 27 16 16 16 16 16 16 16 21

fdtd-apml 29 42 20 17 17 17 17 17 17 17 22

floyd-warshall 24 27 11 5 5 5 5 5 5 10 11

gemm 27 26 15 9 9 9 9 9 9 10 14

gemver 26 34 20 13 12 13 13 13 13 13 18

gesummv 21 26 9 9 9 9 9 9 9 9 14

gramschmidt 34 46 24 19 19 20 19 19 19 20 24

jacobi-1d-imper 21 26 13 9 9 9 9 9 9 9 14

jacobi-2d-imper 25 34 17 13 13 13 13 13 13 13 18

lu 24 22 13 5 5 5 5 6 6 6 11

ludcmp 28 38 18 10 10 10 15 10 10 15 16

mvt 23 28 11 10 9 10 10 10 10 10 15

reg_detect 30 44 23 18 18 18 18 18 18 23 23

seidel-2d 23 20 11 5 5 5 5 5 5 5 11

symm 25 30 14 11 11 11 11 11 11 11 16

syr2k 27 30 15 10 10 10 10 10 10 11 16

syrk 27 26 15 8 8 8 8 8 8 9 14

trisolv 21 24 10 8 8 8 8 8 8 8 13

trmm 23 30 11 11 11 11 11 11 11 11 16

Table 20.: Fitness comparison of sequences of experiment 5 in section 4.2.5

F
F I T N E S S O F - P O L LY- C A N O N I C A L I Z E A N D N E W F I X E D
P R E O P T I M I Z AT I O N S E Q U E N C E S

This chapter presents the results of the fitness comparison presented in Experiment 4.2.6.
The fitness values of -polly-canonicalize, -polly-preopt, -polly-preopt without -inline, and the
sequences generated by the genetic algorithms genetic 1 and genetic 2 are compared.
Table 21 lists for every sample program the fitness values of the different sequences. The
first column shows the sample program and the other columns show the fitness values
of the different preoptimization sequences.

Sample program polly-canonicalize polly-preopt polly-preopt without inline genetic 1 genetic 2

2mm 32 12 17 12 12

3mm 38 15 20 15 15

7za 12325 14328 10944 10837 10808

adi 46 19 24 19 19

atax 24 8 13 8 8

bicg 27 10 15 9 10

blowfish 61 58 60 58 58

bn 10872 2638 2098 2045 2035

bzip2 818 561 605 613 599

cast 31 15 17 14 14

ccrypt 310 267 294 261 265

cholesky 30 9 14 9 9

correlation 39 15 20 15 15

covariance 34 13 18 13 13

crafty 6531 4807 3910 3948 3904

crocopat 2729 2535 2653 2525 2521

des 1850 209 204 198 198

doitgen 32 12 17 11 12

dsa 10776 5648 3788 3743 3740

durbin 30 11 16 11 11

dynprog 27 9 14 8 9

ecdsa 10788 4400 2933 2902 2902

fdtd-2d 40 16 21 16 16

fdtd-apml 42 17 22 17 17

floyd-warshall 27 5 11 5 5

85

86 fitness of -polly-canonicalize and new fixed preoptimization sequences

gemm 26 9 14 9 9

gemver 34 13 18 13 13

gesummv 26 9 14 9 9

gramschmidt 46 19 24 19 19

gzip 683 653 652 611 582

hmac 10701 729 806 687 659

jacobi-1d-imper 26 9 14 9 9

jacobi-2d-imper 34 13 18 13 13

js 36354 36993 32424 32512 32443

lammps 28766 35280 26721 26706 26557

leveldb 2694 1213 2201 1223 1187

linpack 69 59 59 59 59

lu 22 6 11 6 6

ludcmp 38 10 15 10 10

lulesh 394 366 371 366 366

lulesh-omp 445 417 423 416 416

md5 10701 709 772 673 633

minisat 665 264 582 233 228

mvt 28 10 15 10 10

openssl 20021 27848 17148 17023 17037

postgres 50697 77609 50395 50321 50319

povray 12277 17815 9958 10034 9899

python 22149 31162 21901 21909 21897

rc4 42 35 38 35 35

reg_detect 44 18 23 18 18

rsa 10713 2624 1961 1918 1911

ruby 22126 28448 21583 21575 21566

seidel-2d 20 5 11 5 5

sha1 10705 713 780 674 642

sha256 10706 719 790 688 659

sha512 10706 718 789 674 653

sqlite3 2654 150 339 154 129

ssl 14238 14100 8851 8813 8808

symm 30 11 16 11 11

syr2k 30 10 16 10 10

syrk 26 8 14 8 8

tcc 3278 3076 3179 2906 2924

trisolv 24 8 13 8 8

trmm 30 11 16 11 11

x264 7564 7594 7408 7402 7389

xz 1464 1655 1385 1379 1376

Table 21.: Fitness comparison of experiment 6 in section 4.2.6

B I B L I O G R A P H Y

[1] LLVM: Analysis and Transformations Passes, . URL http://llvm.org/docs/
Passes.html. Last checked: 2014-08-06. (Cited on pages 15, 16, 35, 42, 47, 51, 57,
and 65.)

[2] LLVM Command Guide, . URL http://llvm.org/docs/CommandGuide/. Last
checked: 2014-08-06. (Cited on pages 7 and 8.)

[3] LLVM-IR: Language Reference. URL http://llvm.org/docs/LangRef.html. Last
checked: 2014-08-06. (Cited on pages 7 and 12.)

[4] clang. URL http://clang.llvm.org/. Last checked: 2014-08-06. (Cited on page 4.)

[5] gcc, 2014. URL https://gcc.gnu.org/. Last checked: 2014-08-06. (Cited on page 4.)

[6] Polly, 2014. URL http://polly.llvm.org/. Last checked: 2014-08-06. (Cited on
page 6.)

[7] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Longman Publishing Co., Inc., 2 edition, 1986. (Cited on
pages 3 and 4.)

[8] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W.
Reeves, Devika Subramanian, Linda Torczon, and Todd Waterman. Finding effec-
tive compilation sequences. In Proceedings of the 2004 SIGPLAN/SIGBED conference
on Languages, compilers, and tools for embedded systems (LCTES), volume 39, pages
231–239, New York, NY, USA, 2004. ACM. doi: 10.1145/998300.997196. (Cited on
pages 5, 6, 23, 25, 28, 31, and 40.)

[9] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for re-
duced code space using genetic algorithms, 1999. (Cited on pages 5, 23, 28, 29, 31,
and 40.)

[10] Tobias Grosser. Enabling Polyhedral Optimizations in LLVM. Diploma Thesis,
University of Passau, 2011. (Cited on pages 7, 10, and 14.)

[11] Tobias Grosser, Hongbin Zheng, Ragesh Aloor, Andreas Simbürger, Armin
Größlinger, and Louis-Noël Pouchet. Polly - Polyhedral Optimization in LLVM.
CGO, 2011. (Cited on pages ix, 9, and 12.)

[12] Tobias Grosser, Armin Größlinger, and Christian Lengauer. Polly - Performing
Polyhedral Optimizations on a Low-Level Intermediate Representation. Parallel
Processing Letters, 2012. (Cited on pages 9, 11, 12, 13, and 15.)

87

http://llvm.org/docs/Passes.html
http://llvm.org/docs/Passes.html
http://llvm.org/docs/CommandGuide/
http://llvm.org/docs/LangRef.html
http://clang.llvm.org/
https://gcc.gnu.org/
http://polly.llvm.org/

88 bibliography

[13] Dick Grune. Modern Compiler Design. Worldwide Series in Computer Science. Wiley,
1 edition, 2001. (Cited on page 3.)

[14] Prasad A. Kulkarni, David B. Whalley, and Gary S. Tyson. Evaluating heuristic
optimization phase order search algorithms. In In Proceedings of the International
Symposium on Code Generation and Optimization (CGO’07, pages 157–169. IEEE Com-
puter Society, 2007. (Cited on pages 5, 6, 22, 23, 25, 26, 28, 39, 40, and 49.)

[15] Chris Lattner. LLVM: An Infrastructur for Multi-Stage Optimization. Master’s
thesis, University of Portland, 2000. (Cited on page 7.)

[16] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis transformation, 2004. (Cited on page 7.)

[17] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA,
USA, 1998. ISBN 0262631857. (Cited on page 28.)

[18] Andy Nisbet. Gaps: A compiler framework for genetic algorithm (ga) optimised
parallelisation. In Peter Sloot, Marian Bubak, and Bob Hertzberger, editors, High-
Performance Computing and Networking, volume 1401 of Lecture Notes in Computer
Science, pages 987–989. Springer Berlin Heidelberg, 1998. ISBN 978-3-540-64443-9.
doi: 10.1007/BFb0037253. URL http://dx.doi.org/10.1007/BFb0037253. (Cited
on page 28.)

[19] R.P.J Pinkers, P.M.W Knijnenburg, M. Haneda, and H.A.G Wijshoff. Analysis of
computer options using orthogonal arrays. Proceedings of the Eleventh International
Workshop on Compilers for Parallel Computers, pages 137–148, 2004. (Cited on pages 5

and 23.)

[20] Uwe Schöning. Algorithmik. Spektrum Akadem. Verl., 2001. ISBN 978-3-8274-1092-4.
(Cited on pages 23, 26, and 28.)

[21] Andreas Simbürger, Sven Apel, Armin Größlinger, and Christian Lengauer. The
potential of polyhedral optimization: An empirical study. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, pages 508–518,
November 2013. doi: 10.1109/ASE.2013.6693108. (Cited on page 36.)

[22] Yaakov L. Varol and Doron Rotem. An algorithm to generate all topological sorting
arrangements. pages 83–84, 1981. (Cited on page 54.)

http://dx.doi.org/10.1007/BFb0037253

colophon

This thesis was typeset with LATEX 2ε using Hermann Zapf’s Palatino and Euler type
faces (Type 1 PostScript fonts URW Palladio L and FPL were used). The listings are
typeset in Bera Mono, originally developed by Bitstream, Inc. as “Bitstream Vera”. (Type 1

PostScript fonts were made available by Malte Rosenau and Ulrich Dirr.)
The typographic style was inspired by ? ’s genius as presented in The Elements of

Typographic Style [?]. It is available for LATEX via CTAN as “classicthesis”.

note : The custom size of the textblock was calculated using the directions given by
Mr. Bringhurst (pages 26–29 and 175/176). 10 pt Palatino needs 133.21 pt for the string
“abcdefghijklmnopqrstuvwxyz”. This yields a good line length between 24–26 pc (288–
312 pt). Using a “double square textblock” with a 1:2 ratio this results in a textblock of
312:624 pt (which includes the headline in this design). A good alternative would be the
“golden section textblock” with a ratio of 1:1.62, here 312:505.44 pt. For comparison, DIV9 of
the typearea package results in a line length of 389 pt (32.4 pc), which is by far too long.
However, this information will only be of interest for hardcore pseudo-typographers
like me.

To make your own calculations, use the following commands and look up the corre-
sponding lengths in the book:

\settowidth{\abcd}{abcdefghijklmnopqrstuvwxyz}
\the\abcd\ % prints the value of the length

Please see the file classicthesis.sty for some precalculated values for Palatino and
Minion.

Final Version as of September 6, 2014 at 13:00.

http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/

D E C L A R AT I O N

Hiermit versichere ich, dass ich diese Bachelorarbeit selbstständig und ohne Benutzung
anderer als der angegebenen Quellen und Hilfsmittel angefertigt habe und alle Aus-
führungen, die wörtlich oder sinngemäß übernommen wurden, als solche gekennzeich-
net sind, sowie dass ich diese Bachelorarbeit in gleicher oder ähnlicher Form noch keiner
anderen Prüfungsbehörde vorgelegt habe.

Passau, Germany, August 2014

Christoph Woller

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	Background and Fundamentals
	1 Introduction
	1.1 Basic Understanding of a Compiler
	1.2 Phase-Ordering Problem
	1.3 Motivation
	1.4 Outline of the Thesis

	2 Polly
	2.1 LLVM Framework
	2.1.1 Compilation with LLVM
	2.1.2 LLVM Command-line Tool opt

	2.2 Polyhedral Optimization in LLVM
	2.3 Basic Definitions
	2.4 Static Control Parts in LLVM-IR
	2.5 Preparing Passes of Polly
	2.6 Examples that Polly cannot handle

	Preoptimization Sequences for Polly
	3 Generating Custom Preoptimization Sequences
	3.1 Problem Formulation
	3.2 Heuristic Approaches
	3.2.1 Hill Climbing
	3.2.2 Greedy Algorithm
	3.2.3 Genetic Algorithms

	4 Experiments
	4.1 Experimental Framework
	4.1.1 Sample passes
	4.1.2 Sample programs

	4.2 Experimental Setup
	4.2.1 Experiment 1 - Fitness of fixed sequences
	4.2.2 Experiment 2 - Fitness comparison of fixed and custom sequences
	4.2.3 Experiment 3 - Optimization of generated custom sequences
	4.2.4 Experiment 4 - Effect of pass -mem2reg
	4.2.5 Experiment 5 - Custom sequences with selected passes
	4.2.6 Experiment 6 - Construction of a new fixed preoptimization sequence

	5 Conclusion

	Appendix
	A Selected passes of the -O3 optimization sequence
	B Fitness comparison of optimization sequences
	C Abbreviations for the detection statistics
	D Effect of -mem2reg
	E Fitness comparison of optimization sequences
	F Fitness of -polly-canonicalize and new fixed preoptimization sequences
	Bibliography
	Colophon
	Declaration

