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Abstract

Stencil codes form the performance-critical core of a number of applications in
scientific computing. The parallelization and optimization of stencil codes are sub-
ject of ongoing research. Numerous high-performance transformation frameworks
for stencil computations have been developed, most of which employ iteration do-
main tiling as a key transformation for optimization. However, the parallel tiled code
that is generated by these frameworks may suffer from a notable load imbalance, due
to redundant inter-tile dependences, and thus redundant synchronization.

In this thesis, we give an overview of three selected transformation frameworks
that perform optimizations based on iteration domain tiling. We then propose an ap-
proach which alleviates the load balance issues that the respective tiling algorithms
may incur. A tile dependence graph is built which represents all tiles and inter-tile
dependences suggested by the original algorithm. Using a polyhedral dependence
analysis, redundant dependences are identified and eliminated subsequently. Finally,
the actual stencil computation is performed by traversing the adjusted tile depen-
dence graph in parallel. In doing so, parallel tiles are scheduled dynamically on the
available processor cores. Experimental evaluation on a number of stencil codes and
hardware platforms shows a significant performance improvement over the original
tiling algorithms.
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Chapter 1

Introduction

Stencil computations determine the values of points in a grid of some dimensionality
by repeatedly evaluating a given function of a grid point and its neighbors. They can be
found at the core of many applications in various scientific computing domains [1], where
they are employed, for example, in solvers for partial differential equations, geometric
modeling and image processing [2].

The parallelization and optimization of stencil computations is subject of ongoing re-
search. The most prevalent approach today is the subdivision of the iteration domain into
smaller pieces, called tiling, which improves both load balance and data locality. While
it is possible to optimize stencil codes manually with great success [3], many frameworks
that automate this process have been developed over the years, due to the complexity
of the transformations that are commonly involved. These frameworks typically achieve
increases in performance of up to an order of magnitude in comparison to a naive im-
plementation of a stencil code [1, 4–6]. Examples of such frameworks are the Pochoir
stencil compiler [4], the PLUTO compiler [5,7] or the Stencil Domain Specific Language
(SDSL) compiler [1,8]. But although all of these already produce high-performance code,
we have found previously that Pochoir’s tiling algorithm could be optimized further for
one-dimensional stencil codes [9].

We developed a two-stage optimization approach, the key idea of which is to de-
compose the iteration domain into tiles in a separate preprocessing stage, before actually
performing the stencil computation in the second stage. This allows for otherwise infea-
sible optimizations to be performed in both stages. In the first stage, a tile dependence
graph that represents the tiled iteration domain is generated using a slightly modified ver-
sion of Pochoir’s trapezoidal algorithm [4]. In the second stage, this graph is traversed in
parallel following a free schedule, which respects all dependences between tiles by defi-
nition. This is possible with minimal synchronization. Using this approach, we were able
to achieve a performance gain of up to 20 % over Pochoir for a set of one-dimensional
stencil benchmarks.

Therefore, as preliminary evaluation of our approach yielded such promising results,
we perform further evaluation for different tiling strategies and stencil computations of
higher dimensionality in this thesis. For that purpose we developed a C++ template library
that allows the user to specify a stencil computation in a concise manner, similar to the
Pochoir specification language [4], and that provides an interface to the implementation of
our optimization approach. We implemented support for the trapezoidal tiling algorithm
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employed by the Pochoir compiler, the diamond tiling algorithm employed by the PLUTO
compiler and the split tiling algorithms used in the SDSL compiler.

In summary, we make the following contributions. We present a strategy to perform
further optimizations on existing tiling algorithms for stencil computations. Additionally,
we provide an implementation of this approach for selected state-of-the-art research tiling
algorithms. Finally, we empirically evaluate our technique on a number of stencil bench-
marks and compare the results to those of the original implementation of the algorithms.

The rest of the thesis is arranged as follows. In the remainder of Chapter 1 we will
give an introduction to stencil computations, tiling and the terminology we use. Chapter 2
provides an overview of the three selected stencil compilation frameworks introduced
above. In Chapter 3 we describe our optimization approach and its implementation in
detail, before performing extensive experimental evaluation thereof in Chapter 4. Finally,
we draw conclusions in Chapter 5.

1.1 Stencil Computations
A stencil determines the value of a point in a d-dimensional grid as a function f of previ-
ous values of this point and its neighbors, which is generally called the kernel function.
A stencil computation applies the kernel function repeatedly to all points in the grid
over multiple time steps, which is why an additional dimension representing time is often
added to the grid (see Figure 1.1).

for (t = 0; t < T; t++) {
for (i = 1; i < N-1; i++) {

A[t+1][i] = 0.125*(A[t][i-1] - 2*A[t][i] + A[t][i+1]);
}

}

Figure 1.1: A loop-based implementation of a one-dimensional heat equation stencil,
using ghost cells to implement boundary conditions.

In the following, we will limit ourselves to kernel functions that only perform uni-
form accesses, i.e., the set of points that are referenced during the evaluation of f can be
represented by a set of (d + 1)-dimensional distance vectors ~v = (∆vt ,∆v0, . . . ,∆vd−1) ∈
Z−×Zd [10], which we call the shape S of the stencil. A vector~v∈ S indicates that, when
evaluating f (~p) for some point ~p in the grid, f references the value of the point ~p+~v. Us-
ing its shape, we can now define some more properties of a stencil. Let i ∈ {0, . . . ,d−1}
identify a spatial dimension of the grid. Then the value wi := max~v∈S |∆vi| is called the
width of S in dimension i. Similarly, we define the value σi := max~v∈S |∆vi/∆vt | to be the
slope of S in dimension i. The width and slope of a stencil assist with identifying points
that the evaluation of the kernel function is dependent on (see Figure 1.2). Finally, we
define the depth of the stencil to be the value max~v∈S |∆vt |.

For points that are near the spatial boundary of the grid, it can not be guaranteed that all
accesses within S correspond to points within the actual grid. For that reason, a boundary
function is used to provide values for such points. If the boundary function maps outside
accesses to grid points on the opposite side of the grid, the stencil computation is periodic,
otherwise it is non-periodic. Non-periodic boundary conditions are often implemented by
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Figure 1.2: Visualization of the one-dimensional heat equation stencil depicted in Fig-
ure 1.1. The shape of this stencil is S = {(−1,−1),(−1,0),(−1,1)}, its width in dimen-
sion 0 is w0 = 1 and its slope in dimension 0 is σ0 = 1. The slope of S defines a cone that
all grid points influencing the value of the red point lie within.

adding wi ghost cells, for which the kernel function is not evaluated, on each side of the
grid in the spatial dimension i. Thus, there are no more actual boundary accesses, as each
former boundary access now maps to an access to a ghost cell (see Figure 1.1).

1.2 Tiling and the Polyhedral Model

The obvious way of implementing a stencil computation is to traverse the grid using
nested loops, as is shown in Figure 1.1. However, such loop-based implementations gen-
erally exhibit poor performance due to insufficient data locality and parallelism [4]. A key
transformation that addresses both of these problems is iteration space tiling [1,5,10–13],
i.e., subdividing the iteration space into smaller tiles which can be processed atomically
(see Figure 1.5). Tiling is frequently characterized by shape and size of the tiles, both of
which influence the performance of tiled execution significantly [5]. Depending on which
aspect of a stencil computation is intended to be optimized by tiling, different shapes and
sizes may be feasible.

Tiling with data locality in mind requires tiles to be small enough to fit into faster
memory, i.e. registers and on-chip caches, so that it is possible to reuse data without
having to load it from the slower main memory. In order to achieve high levels of coarse-
grained parallelism, tile shapes and sizes have to be found that allow for independent
execution of as many tiles as possible while at the same tile minimizing the amount of
communication and synchronization needed [13]. We shall elaborate on this in more
detail during the presentation of different tiling algorithms in Chapter 2.

Advanced iteration space tiling is notoriously difficult to perform manually because
of inter-tile dependences and possibly irregular loop structures. For this reason, the poly-
hedral model has proved to be a powerful tool when discussing tiling and transformations
on loop nests in general [5, 13]. Within the polyhedral model, instances of a statement
are viewed as integer points in a well-defined space, representing the iteration domain of
the loop enclosing that statement. This allows for a precise representation of irregularly
shaped tiles as well as the characterization of dependences between statements and tiles
using methods from Linear Algebra and Integer Linear Programming. Some libraries
supporting polyhedral operations also provide assistance in code generation, for example
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the integer set library [14]. We employ this library to analyze inter-tile dependences and
in part for code generation.

1.2.1 Overview of the Polyhedral Model
Let us consider a loop nest of some dimensionality, as is shown, for example, in Fig-
ure 1.3(a). The loop nest is said to be affine, or to be a static control part (SCoP), if
all loop bounds and conditionals are affine functions of the surrounding loop iterators
and parameters, i.e. constants with values unknown at compile time. Static control parts
constitute the subset of general loop nests which can be represented in the polyhedral
model [15]. It is possible for an affine loop nest to be imperfectly nested, or to contain
multiple statements in the loop bodies. In the following, we give an introduction to the
polyhedral model for perfectly nested affine loop nests that contain only a single state-
ment S. Furthermore, we assume that there are no parameters in the loop bounds and
conditionals.

Each runtime instance of a statement S contained in such a d-dimensional affine loop
nest is uniquely identified by the values of the loop counters in that specific iteration.
These values are aggregated in the iteration vector~x = (xd−1, . . . ,x0)

T ∈ Zd of the state-
ment S, where x0 is the value of the innermost loop counter, x1 is the value of the loop
counter containing the innermost loop etc. In the loop nest depicted in Figure 1.3(a),
for instance, the iteration vector of S would be ~x = (i, j)T ∈ Z2. A valid value would
be ~x = (0,100), which identifies the first iteration of the statement. The order in which
runtime instances of S are traversed by the loop nest is now specified by the lexicographic
order ≺ on the iteration vectors.

The bounds of a loop nest can be modeled by constricting the values of the iteration
vector with a set of inequalities. For example, the bounds of the outer loop in Figure 1.3(a)
can be specified by the inequalities i≥ 0 and i≤ 99, or equivalently

1 · i + 0 · j − 0 ≥ 0
(−1) · i + 0 · j − (−99) ≥ 0

Using vector notation, the same inequalities can be written as

(
1 0

)
◦
(

i
j

)
− 0 ≥ 0

(
−1 0

)
◦
(

i
j

)
− (−99) ≥ 0

Each of these inequalities specifies a half-space of Zd , which is bounded by an affine
hyperplane. Given a vector~h ∈ Zd and k ∈ Z, an affine hyperplane H ⊂ Zd is defined by

H = {~x ∈ Zd |~h◦~x− k = 0}

where the vector~h is normal to the hyperplane and k specifies the offset of H from the ori-
gin. An affine hyperplane forms a d−1-dimensional affine subspace of Zd . We also iden-
tify a hyperplane with the vector (~h,−k) of its normal vector and offset. Thus, the affine
hyperplanes corresponding to the above inequalities are specified by H1 = (1,0,0) and
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H2 = (−1,0,99). Likewise, the bounding hyperplanes for the inner loop in Figure 1.3(a)
are H3 = (0,1,−100) and H4 = (0,−1,199).

Obviously, it is now equivalent to constrain the values of the iteration vector either by a
set of inequalities, or by a set of bounding hyperplanes corresponding to these inequalities.
Using the latter bounding hyperplanes, we can characterize a polyhedron X ⊂ Zd that
contains all valid iteration vectors for the statement S. For n such bounding hyperplanes
Hi, identified by (hi,ki), let

A =

~h1
...
~hn

 ∈ Zn×d and ~b =

−k1
...
−kn

 ∈ Zn

Then X is defined by
X = {~x ∈ Zd | A~x+~b≥ 0}

where ≥ is evaluated component-wise. Using augmented matrices and vectors, the same
polyhedron can also be defined by

X =

{
~x ∈ Zd |

(
A ~b

)
·
(
~x
1

)
≥ 0
}

In the following, we will use the latter definition unless stated otherwise, as it allows
for a more concise representation of polyhedra and transformations using only a single
matrix. As done before with hyperplanes, we will also identify a polyhedron with the
matrix (A,~b). Concluding our running example, the polyhedron which specifies the loop
nest displayed in Figure 1.3(a) is shown in Figure 1.3(b).

for (int i = 0; i <= 99; i++) {
for (int j = 100; j <= 199; j++) {

S(i, j);
}

}

(a)


1 0 0
−1 0 99

0 1 −100
0 −1 199

 ·
 i

j
1

≥ 0

(b)

Figure 1.3: A simple loop nest in (a), and its polyhedral representation in (b)

With a polyhedral representation at hand, transformations for a statement now trans-
late to manipulations of the associated polyhedron and the iteration vector. A d-dimen-
sional affine transformation φS for the statement S is defined by

φS : Zd+1→ Zd+1 :
(
~x
1

)
7→ T ·

(
~x
1

)
with T =

(
T ′ ~t ′

0 . . .0 1

)
where T ′ is an integer matrix and ~t ′ is an integer vector. The rows of the matrix T ′

define affine hyperplanes, which are called tiling hyperplanes. To simplify matters, we
assume that T is unimodular, i.e. T ∈ GLd+1(Z), in the remainder of this section. There
are multiple approaches that can handle non-unimodular or even non-invertible affine
transformations [16–18], however these are far beyond the scope of a brief recapitulation
of the polyhedral model.
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Let X = (A,~b) now be the polyhedron associated with the statement S. An affine
transformation φS maps each source iteration vector ~x ∈ X to a target iteration vector
T ·~x ∈ X ′, with

X ′ = {T ·~x ∈ Zd+1 |
(
A ~b

)
·~x≥ 0}

= { ~y ∈ Zd+1 |
(
A ~b

)
·T−1 ·~y≥ 0}

as T is unimodular. Therefore, X ′ is itself a polyhedron specified by a matrix (A,~b) ·T−1.
Unless φS is an identity, the lexicographic order on the target iteration vectors is different
from that on the source iteration vectors. Accordingly, the polyhedron X ′ reflects a trans-
formed loop nest, since its elements are scanned in a different order. When evaluating the
statement S in the transformed loop nest, we can convert the transformed iteration vector
back to the original iteration vector by applying T−1.

Continuing the example depicted in Figure 1.3, let φS be an affine transformation with
matrix

T =

1 −1 0
0 1 0
0 0 1

 and T−1 =

1 1 0
0 1 0
0 0 1


Applying this transformation to the statement S leads to the transformed polyhedron dis-
played in Figure 1.4(b), which is associated to the loop nest shown in Figure 1.4(a). The
original iteration vector (c0 + c1,c1,1) was obtained by applying T−1 to the transformed
iteration vector (c0,c1,1).

for (int c0 = -199; c0 <= -1; c0++) {
for (int c1 = max(-c0, 100);

c1 <= min(-c0 + 99, 199);
c1++) {

S(c0 + c1, c1);
}

}

(a)


1 1 0
−1 −1 99

0 1 −100
0 −1 199

 ·
c0

c1
1

≥ 0

(b)

Figure 1.4: The loop nest depicted in Figure 1.3 after applying an affine transformation.

1.2.2 Tiling in the Polyhedral Model
Tiling in the polyhedral model is based on rectangular tiling of the iteration domain of
a statement S. Let X = (A,~b) be the polyhedron representing a loop nest with statement
S, and let ~x = (xd−1, . . . ,x0) ∈ X be the iteration vector of this statement. Rectangular
tiling of a single loop dimension xi is performed by introducing a new tile dimension zi as
outermost dimension and bounding the loop dimension xi by the constraint

zi · s≤ i≤ (zi +1) · s−1

where s ∈N+ is the tile size. This essentially subdivides the loop dimension xi into bands
of width s, each of which is processed in one iteration of the new zi loop. Therefore, the
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polyhedron X ′ characterizing the tiled loop nest contains the additional loop dimension
zi, which is bounded by the affine hyperplanes corresponding to the above inequality. The
lower bound inequality is equivalent to −s · zi + i≥ 0, and thus to(

−s 0 . . . 0 1 0 . . . 0
)
◦~x−0≥ 0

On the other hand, the upper bound inequality is equivalent to s · zi− i+(s−1)≥ 0, i.e.,(
s 0 . . . 0 −1 0 . . . 0

)
◦~x+(s−1)≥ 0

Therefore, the tiled loop nest can be represented by adding these bounding hyperplanes
to the original polyhedron X ′, resulting in

X ′ =

−s 0 . . . 1 . . . 0 0
s 0 . . . −1 . . . 0 s−1
0 A ~b


Rectangular tiling is always legal, regardless of tile size, if all dimensions xd−1, . . . ,xi up
to a certain depth i are tiled, and the loops are tiled starting with the innermost loop. That
is, the tile dimensions are nested in the same order as the loop dimensions and thus the
tiled iteration vector is~x′ = (zd−1,zd−2, . . . ,zi,xd−1, . . . ,x0).

More complex tile shapes can be achieved by first applying an affine transformation
and then performing rectangular tiling of the transformed iteration space. Each tiling
hyperplane of the affine transformation defines an affine hyperplane that is parallel to the
boundaries of the tiles in the original iteration space. However, tiling may be illegal for
specific affine transformations.

In Figure 1.5(a), rectangular tiling is performed on the loop nest displayed in Fig-
ure 1.4 with tile size 25 in both dimensions. This results in the polyhedron depicted in
Figure 1.5(b), which represents parallelogram-shaped tiles in the original iteration space,
as shown in Figure 1.5(c).
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c1

c0

(a)

−25 0 1 0 0
25 0 −1 0 24
0 −25 0 1 0
0 25 0 −1 24
0 0 1 1 0
0 0 −1 −1 99
0 0 0 1 −100
0 0 0 −1 199


·


z0
z1
c0
c1
1

≥ 0

(b)

j

i

(c)

Figure 1.5: Rectangular tiling of the loop nest displayed in Figure 1.4. Tiling in the
transformed iteration space is shown in (a), which is reflected by the polyhedral de-
scription displayed in (b). Rectangular tiling in the transformed iteration space results
in parallelogram-shaped tiles in the original iteration space, as shown in (c).
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Chapter 2

Tiling Algorithms and Frameworks

The complexity found in the process of optimizing stencil computations has given rise to a
number of automated optimization frameworks. In this chapter, a selection of three such
frameworks will be presented, introducing both their programming interface and their
optimization approach. We selected the Pochoir stencil compiler [4] and the PLUTO
compiler [13, 19] for their still high relevance in current research [1, 5], where they have
been used as a reference to evaluate the performance of other approaches. Representing
a more recent technique, we additionally chose the Stencil Domain Specific Language
(SDSL) compiler [1, 20].

2.1 The Pochoir Stencil Compiler
Pochoir provides a source-to-source compiler and a runtime library that enable the user
to specify stencil computations in a domain specific language embedded in C++ [4]. The
compiler then translates this specification into high-performance Cilk-code [21] that em-
ploys a cache-oblivious divide-and-conquer algorithm to perform the actual stencil com-
putation [22]. This algorithm is based on recursive trapezoidal decompositions of the
iteration domain [11, 12].

2.1.1 Programming Interface
Stencil computations are implemented using the Pochoir specification language, which
consists of several language constructs that are mapped to standard C++ via preprocessor
macros. As the Pochoir specification language has already been explained in detail by
the developers of Pochoir in the according user manual [23], we only give an overview of
programming with Pochoir.

Static information about a stencil computation of dimensionality dim is gathered in
a central Pochoir object of type Pochoir_dim D. The user can specify grids, boundary
functions and kernel functions by using the following language constructs.

• Pochoir_Array_dim D(type) to define a grid with elements of type type

• Pochoir_Boundary_dim D to define the boundary function

• Pochoir_Kernel_dim D to define the kernel function
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1 Pochoir_Boundary_1D(bv , array , t, i)
2 return 0;
3 Pochoir_Boundary_End
4
5 void heat(int T, int N) {
6 Pochoir_Shape_1D shape[] = {{0, 0}, {-1, 1}, {-1, 0}, {-1,

-1}};
7
8 Pochoir_Array_1D(double) array(N);
9 array.Register_Boundary(bv);

10
11 Pochoir_1D pochoir(shape);
12 pochoir.Register_Array(array);
13
14 // ... initialize array ...
15
16 Pochoir_Kernel_1D(kernel , t, i)
17 array(t, i) = 0.125 * (array(t - 1, i + 1) - 2.0 * array

(t - 1, i) + array(t - 1, i - 1));
18 Pochoir_Kernel_End
19
20 pochoir.Run(T, kernel);
21 }

Figure 2.1: Pochoir specification of the one-dimensional heat equation stencil introduced
in Figure 1.1. The kernel function is specified in lines 16–18, while the boundary function
is specified in lines 1–3. Additionally, the shape of the stencil has to be specified, as is
done in line 6. After initializing the required data structures, the stencil computation is
initiated in line 20.

The boundary and kernel function definitions can contain arbitrary C++ code, which en-
ables the user to specify complex boundary conditions or multi-statement kernel functions
with ease. Finally, this information is assembled in a central Pochoir object. Afterwards,
the stencil computation can be started by invoking the Run method of that object with the
desired number of time steps (see Figure 2.1).

Compilation of a Pochoir program is performed in two steps. In the first step, the
Pochoir compiler acts as a preprocessor to the main C++ compiler, performing various
transformations and optimizations on the source code (see Section 2.1.2). This optimized
source code is then passed to the actual C++ compiler, which generates the final exe-
cutable using the Pochoir runtime library and the Cilk multithreading extensions. There
is also the option to compile a Pochoir program directly without using the Pochoir com-
piler. This generates an unoptimized but functionally correct executable, which can be
useful for debugging purposes.
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2.1.2 Optimization Approach
Pochoir is able to produce high-performance code because of two reasons. At the core
of its efficiency is the cache-oblivious parallel algorithm that is used to perform a stencil
computation. A further performance increase is achieved by applying several compile-
time optimizations, such as base case coarsening. In the following, we provide a detailed
description of the parallel algorithm as well as the compile-time optimizations.

Trapezoidal Decompositions

Before delving into the cache-oblivious parallel algorithm, it is necessary to study the
trapezoidal decompositions it is based upon. Therefore, we begin with some notations
and definitions, most of which are borrowed from [4, 11, 12].

A (d +1)-dimensional hypertrapezoid

Z = (t0, t1 ; x0,0,x1,0,σ0,0,σ1,0 ; . . . ; x0,d−1,x1,d−1,σ0,d−1,σ1,d−1)

is defined as the set of integer points (t,x0, . . . ,xd−1) ∈ Zd+1 for which the following
conditions hold true.

t0 ≤ t < t1
∀i ∈ {0, . . . ,d−1} : x0,i +σ0,i · (t− t0) ≤ xi < x1,i +σ1,i · (t− t0)

The value ∆t = t1− t0 is called the height of Z , and we call the values σ0,i and σ1,i the
left and right slopes of Z in dimension xi, respectively.

xi

t

∆t

∆xi

∇xi

t0

t1

x0,i x1,i

x0,i + σ0,i · ∆t x1,i + σ1,i · ∆t

Figure 2.2: The (upright) projection trapezoid Zi of a well-defined hypertrapezoid Z .

A projection trapezoid Zi of Z is obtained by projecting Z onto the dimensions t
and xi, resulting in a trapezoid with bases parallel to the xi-axis (see Figure 2.2). These
bases are of length ∆xi = x1,i−x0,i and ∇xi =(x1,i+σ1,i ·∆t)−(x0,i+σ0,i ·∆t) respectively.
If ∆xi > ∇xi, i.e., the longer base is at t = t0, we say that Z is upright in dimension xi,
otherwise Z is said to be inverted in dimension xi. A hypertrapezoid Z is well-defined
if its height is positive and the bases of all projection trapezoids have positive lengths.
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A d+1-dimensional hypertrapezoid Z can be seen as a tile within the iteration space
of a d-dimensional stencil computation, each point (t,x0, . . . ,xd−1) representing a grid
point (x0, . . . ,xd−1) at time t. Given such a stencil, we can now introduce the concept
of spacecuts and timecuts, which form the foundation of trapezoidal decompositions (see
Figures 2.3–2.5). As a simplification, we assume that hypertrapezoids are symmetric, i.e.,
|σ0,i| = |σ1,i| = σi with σi being the slope of the stencil for all dimensions i. However,
this simplification is justified, as most stencils have symmetric shapes.

xi

t

2σi · ∆t

t0

t1

x0,i mi x1,i

mi − σ0,i · ∆t mi + σ1,i · ∆t

ZL
i

ZC
i ZR

i

Figure 2.3: Decomposing an upright projection trapezoid Zi with a spacecut.

A spacecut in dimension xi of a well-defined hypertrapezoid Z is performed by tri-
secting the corresponding projection trapezoid Zi. In order to do so, Zi is decomposed
along two lines with slopes σi and −σi that run through the center point of its longer
base. It is therefore necessary to distinguish between spacecuts of upright and inverted
projection trapezoids. Let Zi be upright first. Then the center point of its longer base
is mi = (x1,i− x0,i)/2 and a spacecut results in the following subtrapezoids of Zi (see
Figure 2.3).

Z L
i = (t0, t1 ; x0,i,mi,σi,−σi)

Z C
i = (t0, t1 ; mi,mi,−σi,σi)

Z R
i = (t0, t1 ; mi,x1,i,σi,−σi)

As we chose σi to be the slope of the stencil, there are no interdependences between Z L
i

and Z R
i , allowing for parallel processing of the hypertrapezoids corresponding to them.

The hypertrapezoid specified by Z C
i is dependent on Z L

i and Z R
i , and can therefore only

be processed after them.
If Zi is inverted, the center of the longer base mi does not change due to symmetry. A

spacecut then results in the following subtrapezoids (see Figure 2.4).

Z L
i = (t0, t1 ; x0,i,mi−2σi,−σi,σi)

Z C
i = (t0, t1 ; mi−2σi,mi +2σi,σi,−σi)

Z R
i = (t0, t1 ; mi +2σi,x1,i,−σi,σi)
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Figure 2.4: Decomposing an inverted projection trapezoid Zi with a spacecut.

In that case, Z L
i and Z R

i are dependent on Z C
i but still independent of each other. Hence,

Z L
i and Z R

i can still be processed in parallel, but this time after Z C
i has been processed.

A spacecut is legal only if the dissection lines intersect the shorter side of the pro-
jection trapezoid. This leads to the spacecut legality constraints ∇xi ≥ 2σi for upright
Zi and ∆xi ≥ 2σi for inverted Zi. If the spacecut legality constraints are violated in all
dimensions xi, but ∆t ≥ 2, a timecut can still be applied.

xi

t

t0

t0+t1
2

t1

x0,i x1,i

x0,i + σ0,i · ∆t
2 x1,i + σ1,i · ∆t

2

ZB

ZT

Figure 2.5: Decomposing an inverted projection trapezoid Zi with a spacecut.

A timecut is performed by splitting a hypertrapezoid Z in halves along dimension t,
resulting in the following two subtrapezoids (see Figure 2.5).

Z B = (t0, t0 +
∆t
2

; x0,i,x1,i,σ0,i,σ1,i ; . . .)

Z T = (t0 +
∆t
2
, t1 ; x0,i +σ0,i ·

∆t
2
,x1,i +σ1,i ·

∆t
2
,σ0,i,σ1,i ; . . .)

No parallel processing is possible in conjunction with a timecut, as Z T is dependent on
Z B.
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Pochoir generally tries to apply hyperspace cuts, which are performed by simultane-
ously applying spacecuts in as many spatial dimensions as possible. A hyperspace cut in
k ≥ 1 dimensions results in 3k subtrapezoids, which can be processed in k+1 sequential
steps [4]. In order to keep track of dependences between tiles, Pochoir assigns one of
k + 1 dependence levels to each tile, identifying the sequential step in which it can be
processed.

Pochoir’s Cache-Oblivious Parallel Algorithm

The algorithm at the heart of Pochoir is a parallel divide-and-conquer algorithm. It em-
ploys trapezoidal decompositions as introduced above to recursively decompose the it-
eration domain of a stencil computation into smaller tiles, before evaluating the kernel
function on all points within these tiles.

Given a well-defined hypertrapezoid Z , this algorithm proceeds as is shown in Fig-
ure 2.6. First at all, it is tried to apply a spacecut to Z in as many spatial dimensions as
possible (lines 3 to 8). If Z was decomposed in k ≥ 1 dimensions (line 9), dependence
levels 0, . . .k are assigned to the resulting 3k subtrapezoids (line 10). These indicate the
sequential step in which each subtrapezoid can be processed, as was explained above.
Subsequently, the algorithm iterates over the k+1 dependence levels and recursively pro-
cesses all subtrapezoids within one dependence level in parallel (lines 11 to 15).

If a hyperspace cut could not be applied to Z due to the tiling legality constraints
being violated, but ∆t ≥ 2, the algorithm applies a timecut instead (lines 16 to 19). Z is
split in half along the time dimension, resulting in the lower subtrapezoid Z B, which is
processed first, and the upper subtrapezoid Z T , which is processed second. If neither a
hyperspace cut nor a timecut are applicable, the base case of the recursion evaluates the
kernel function for all points in Z (lines 20 to 23). In order to reduce overhead due to
excessive recursion, in practice the base case is coarsened by choosing cut thresholds on
the size of a hypertrapezoid.

Compile-Time Optimizations

The Pochoir compiler is used to transform code written in the Pochoir specification lan-
guage into optimized C++ code. As explained in Section 2.1.1, code written in the Pochoir
specification language can be compiled without the use of the Pochoir compiler, which
results in unoptimized debug code that employs nested loops to perform a stencil com-
putation. Thus, the first optimization performed by the compiler is to redirect calls to
a Pochoir object’s Run method to the parallel algorithm described above. Various other
optimizations are performed, most of which target the user-specified kernel function.

As Pochoir allows the user to specify arbitrary boundary functions, ghost cells can not
be used to speed up boundary handling. Therefore, it is necessary to check for boundary
accesses when traversing the grid initially, which can easily dominate the runtime of a
stencil computation [4]. The Pochoir compiler resolves this problem by generating two
clones of the kernel function, a boundary clone and an interior clone. The boundary clone
is used to process hypertrapezoids that contain at least one boundary access, while the
interior clone is used when processing hypertrapezoids that do not contain any boundary
accesses, thus eliminating the need for boundary access checks in that clone. The type of
a hypertrapezoid is determined at runtime.
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Input: A well-defined, d +1-dimensional hypertrapezoid Z

1 procedure Trap(Z )
2 k← 0;
3 for i = 0 to d do
4 if min(∆xi, ∇xi) ≥ 2 ·σi then
5 Trisect Zi with a hyperspace cut;
6 k← k + 1
7 end
8 end

9 if k > 0 then
10 Assign dependence levels 0, . . . ,k to subtrapezoids;
11 for i = 0 to d do
12 parallel for each subtrapezoid S with dependence level i do
13 Trap(S );
14 end
15 end
16 else if ∆t ≥ 2 then
17 Apply timecut to Z ;
18 Trap(Z B) ;
19 Trap(Z T) ;
20 else
21 for t = t0 to t1 do
22 Evaluate kernel function for all points at time t within Z ;
23 end
24 end
25 end

Figure 2.6: Processing a well-defined hypertrapezoid Z using Pochoir’s cache-
oblivious parallel algorithm Trap

Whenever possible, the Pochoir compiler transforms accesses to Pochoir array objects
in the interior clone into C-style pointer manipulations. The resulting code is usually of
a type that allows Pochoir to rely on the autovectorization features of the underlying C++
compiler, instead of performing vectorization on its own. Because the Pochoir compiler
does not contain a complete C++ frontend, it may, however, not be able to parse the user-
specified kernel function. In that case, macro tricks are employed to eliminate boundary
checks in the interior clone. Apart from that, no further transformations are performed on
either the interior or boundary clone.

Finally, Pochoir reduces recursion overhead by coarsening the base case of the parallel
algorithm, i.e., stopping the recursion when the size of a hypertrapezoid falls below a
certain threshold. Pochoir employs some heuristics to choose reasonable threshold values,
however it is possible to autotune these values according to the developers of Pochoir [4].
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2.1.3 Known Limitations
Pochoir is able to generate high-performance code for a wide range of stencil computa-
tions. However, the Pochoir specification language puts limitations on the range of stencil
computations that can be represented with its help. There are also some limitations on the
performance Pochoir can achieve for certain types of stencil codes.

The Pochoir specification language allows the user to specify exactly one kernel
function per stencil computation, which operates on only one grid. This permits multi-
statement kernel functions, as they are used for example in implementations of Lattice
Boltzmann Methods [24]. However, it does not allow for complex stencil codes that op-
erate on multiple grids, possibly using multiple loops, which is for example required in
the Finite Difference Time Domain method [1, 25].

Under certain circumstances, Pochoir may achieve only little speedup in comparison
to a loop-based implementation. The most prominent reasons for this behavior are small
spatial grids and many branch conditionals or a high rate of memory accesses to floating
point operations in the kernel function [4]. In the first case, ample parallelism can not be
achieved due to only very few spacecuts being possible. In the second case, evaluation
of the branch conditionals and memory bandwidth constrain the runtime both for Pochoir
and a loop-based implementation, so Pochoir’s better cache efficiency and parallelism do
not have that much of an impact on performance.
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2.2 The PLUTO Compiler
PLUTO is an automatic parallelization framework which transforms C code from source
to source using the polyhedral model. It focuses mainly on finding affine transformations
that allow for efficient tiling and loop fusion, improving both data locality and coarse-
grained parallelism [5, 13]. The user can employ compiler directives to identify loops
that are amenable to parallelization, which are then automatically transformed to parallel
OpenMP code by PLUTO. As a result, PLUTO is not restricted to stencil computations,
but can handle any type of imperfectly nested affine loops.

2.2.1 Programming Interface
Writing source code for PLUTO is fairly straightforward. In fact, it barely differs from
writing regular C code. The only difference to vanilla C are the #pragma scop and
#pragma endscop compiler directives that are used to identify static control parts in
a user program (see Section 1.2.1). An example of a PLUTO program can be seen in
Figure 2.7.

1 void heat() {
2 int A[T][N];
3
4 // ... initialize A ...
5
6 int t, i;
7
8 #pragma scop
9 for (t = 1; t < T; t++) {

10 for (i = 1; i < N-1; i++) {
11 A[t+1][i] = 0.125*(A[t][i-1] - 2*A[t][i] + A[t][i+1]);
12 }
13 }
14 #pragma endscop
15 }

Figure 2.7: Implementation of the one-dimensional heat equation stencil introduced in
Figure 1.1 using PLUTO. Lines 8 and 14 identify the enclosed loops as a static control
part, the only difference to vanilla C. Note that ghost cells are used to simulate boundary
conditions.

For compilation, PLUTO is invoked on the original source code, producing parallel
OpenMP code as output. Various command line options can be used in order to customize
the behavior of PLUTO, by specifying tiling strategies, for example.

2.2.2 Optimization Approach
PLUTO is based on a powerful scheduling algorithm that operates on a polyhedral repre-
sentation of the input program [13,19]. This algorithm searches for affine transformations
that optimize the input program with regard to parallelism and data locality. For coher-
ence considerations, we refrain from studying the algorithm in its entirety, as it is able to
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handle a much wider range of input programs than we focus on in this thesis. Instead,
only the special case of stencil computations as defined in Section 1.1 is elaborated on.
In particular, we assume that the input program consists of exactly one perfect loop nest
with constant bounds, containing exactly one statement with only uniform dependences.
Such loop nests are static control parts and can always be represented in the polyhedral
model.

Finding the First Tiling Hyperplane

Finding a suitable affine transformation for a given loop nest poses a number of chal-
lenges, even under simplifying assumptions. Consider, for example, the loop nest used as
an example in Section 1.2.1. If the outer loop in Figure 1.3 were to be the time dimension
loop of a stencil computation, many affine transformations would be illegal, like for ex-
ample exchanging the inner and outer loops. Furthermore, legal affine transformations are
not guaranteed to have a beneficial effect on parallelism and data locality. The scheduling
algorithm used in the PLUTO compiler addresses these problems by imposing appropri-
ate constraints on tiling hyperplanes, and by introducing a cost function that measures the
quality of a tiling hyperplane [13]. In this section, we can safely assume that the offset
component of tiling hyperplanes is zero, i.e., we only examine linear transformations of a
statement [5].

Let S = {~v0, . . . ,~vn} be the shape of a d-dimensional stencil, and let φS be a one-
dimensional linear transformation for that stencil. For φS to be a legal tiling hyperplane,
the following constraint should be met for each ~vi ∈ S

−φS(~vi)≥ 0

The shape S of a stencil represents all dependences of that stencil, i.e., for any given
iteration~x, the set {~x−~vi | vi ∈ S} contains all iterations that depend on~x. Conversely, the
set {~x+~vi | vi ∈ S} contains all iterations that~x depends on. With the above constraint, the
inequality φS(~x−~vi) ≥ φS(~x) ≥ φS(~x+~vi) holds true for each iteration within these sets.
As φS determines at which time an iteration is executed in the transformed iteration space,
φS(~x−~vi)≥ φS(~x) implies that any iteration that is dependent on~x is executed after or at
the same time as ~x. Equally, φS(~x) ≥ φS(~x+~vi) ensures that any iteration that ~x depends
on is executed before or at the same time as~x.

A multidimensional linear transformation φ with full column rank necessarily trans-
forms different source iterations to different target iterations. Thus, if all tiling hyper-
planes of φ fulfill the tiling legality constraint and � is the lexicographic order, clearly
φ(~x−~vi)� φ(~x)� φ(~x+~vi) holds true for any iteration~x and ~vi ∈ S. Therefore, any rect-
angular tiling of the transformed iteration domain is valid if the tiling legality constraint
is met, as all dependences cross the tiling hyperplanes in the same direction.

There are many tiling hyperplanes that fulfill the tiling legality constraint. In order to
select the desired hyperplanes, a cost function is introduced. Let S and φS be defined as
above, and~x be an iteration. For each ~vi ∈ S, the affine form δvi with

δvi(~x) = φS(~x)−φS(~x+~vi)≥ 0

is used as cost function. If iterations along φS are executed sequentially, this function
measures the reuse distance, i.e., how many previous iterations along φS influence ~x. If,
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on the other hand, iterations along φS are executed in parallel, δvi provides information
about the degree of communication induced by dependences outside a single iteration.
Minimizing this function to a constant value or even zero by choosing a suitable tiling
hyperplane results in minimal or no communication along that hyperplane. Due to only
uniform dependences being considered, the cost function simplifies to

δvi(~x) =−φS(~vi)≥ 0

which is independent of the iteration vector. Accordingly, the cost function can be bound-
ed by a constant w for any choice of φS and vi, which is equivalent to the constraint

w−δvi(~x)≥ 0

The tiling legality constraints and the cost function bounding constraints are now gath-
ered in one constraint set, and w is appended as the outermost dimension to all tiling
hyperplanes. The lexicographic minimum among the vectors (w, . . . ,ci, . . .) that meets
all constraints in that set identifies a legal tiling hyperplane for which the cost function
is minimal. This lexicographic minimum can be computed, for example, by using the
simplex algorithm, which is implemented in most polyhedral libraries. Actually, the lex-
icographically minimal solution satisfying all constraints is the zero vector, however it
does not identify a feasible tiling hyperplane and is therefore excluded.

Determining further tiling hyperplanes

In order to obtain a linear transformation with full column rank, at least as many linearly
independent tiling hyperplanes as the dimensionality of the loop nest need to be found.
Hence, the algorithm augments the constraint set with additional constraints that ensure
linear independence with all previous solutions.

Let T be the transformation matrix containing all tiling hyperplanes that were already
found in the first rows and zero in the remaining rows. The rows of this matrix span
a space that all linearly dependent solutions lie within. Accordingly, all linearly inde-
pendent solutions lie in the subspace orthogonal to that space, which is spanned by the
rows of the right kernel ker(T ) of T . It would now be sufficient to add a constraint so
that the next solution has a single non-zero component in that orthogonal subspace, i.e.
ker(T )i◦φ T

S 6= 0 for any row ker(T )i of ker(T ). However, if every possible combination is
tried, this leads to a non-convex space and possibly combinatorial explosion [13]. There-
fore, additional constraints are added to ensure that only solutions with a non-negative
component for every row of ker(T ) are considered. In summary, the following constraints
are added to the constraint set each time another solution has been found

∀i : ker(T )i ◦φ
T
S ≥ 0

∑
i

ker(T )i ◦φ
T
S ≥ 1

where the latter constraint is equivalent to ker(T )i ◦φ T
S 6= 0 for any row ker(T )i of ker(T ).

Once T has full column rank, the algorithm stops.
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Enabling Concurrent Start

The PLUTO algorithm as it was described so far calculates a linear transformation for
a stencil that allows for rectangular tiling of the transformed iteration domain. Tiling
hyperplanes are chosen in such way, that both communication and synchronization are
optimized. However, as of now, this linear transformation commonly induces pipelined
startup due to the choice of tiling hyperplanes. Therefore, the algorithm was extended to
search for tiling hyperplanes that enable full or partial concurrent start along one face of
the iteration domain [5].

Concurrent start along a face ~f of the iteration domain is possible iff ~f is a strict conic
combination of the tiling hyperplanes ~hi, i.e.

k ·~f = λ1 · ~h1 + · · ·+λn · ~hn

where k,λi ∈ Z+ are strictly positive. This constraint is incorporated into the iterative
scheme of the PLUTO algorithm. Let n ∈ N be the number of tiling hyperplanes to be
found. For the first n−1 steps, constraints are added so that tiling hyperplanes are linearly
independent of ~f in addition to previously found solutions. For the last hyperplane ~hn,
the above constraint is added, ensuring that ~f is a strict conic combination of the tiling
hyperplanes. The coefficients λi and k can be eliminated using the affine form of Farkas
Lemma [13, 26]. An obvious choice for ~f would be, for example, the time dimension
identified by ~f = (1,0, . . . ,0).

2.2.3 Known Limitations
It was already mentioned above that the PLUTO compiler is able to handle a much wider
range of programs than just stencil computations. Nevertheless, there are some limitations
on programs that can be optimized using PLUTO.

The most prominent limitation is imposed on boundary conditions in loop nests. As
loop nests need to be static control parts in order to be amenable to optimization, no
dedicated handling of boundary conditions is possible. This leaves the use of ghost cells
as the only viable method to handle boundary accesses in loop nests. It is in theory
possible to employ macro or template tricks to perform boundary checks on every array
access, and perform arbitrary boundary calculations in response. However, executing
boundary checks on every array access is very likely to induce so great a slowdown, that
no performance benefit can be achieved.

Likewise, it is not possible to contain arbitrary C code in the loop nests, as it would be
possible with Pochoir, for example. This rules out certain stencil computations like, for
example, implementations of Lattice Boltzmann Methods [24], which incorporate rather
complex kernel functions. A common optimization for stencil computations is to main-
tain only as small a number of copies of the space grid as is necessary to correctly evaluate
the kernel function. This reduces the memory footprint of a stencil computation greatly.
However, the version of PLUTO we used in this thesis neither performs this optimization
on itself, nor is it able to parse C code with this optimization already performed. Again,
this leaves only macro or template tricks as a possible solution, leading to the same prob-
lems as above.
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2.3 The SDSL Compiler
The Stencil Domain Specific Language (SDSL) is a domain-specific language for spec-
ifying stencil computations. It enables the user to express a high-level specification of
complex stencil computations that allows for high-performance code generation on mul-
tiple platforms [8]. Currently, the SDSL compiler can translate SDSL code embedded in
C or C++ into CPU or GPU code using various techniques. Among the possible output
formats are affine C code that is meant to be processed further by polyhedral optimization
tools such as, for example, PLUTO, or C code that is optimized for short vector SIMD
architectures [1].

2.3.1 Programming Interface
The SDSL constitutes a very powerful tool in specifying stencil computations. As such,
the range of language features is much larger than we can detail reasonably in this sec-
tion. Therefore, we will only cover the specification of the one-dimensional heat equation
stencil using the SDSL, and refer to the SDSL user guide [8] for a complete language ref-
erence. The SDSL specification of said heat equation stencil can be found in Figure 2.8.

1 void heat() {
2 int A[N];
3
4 // ... initialize A ...
5
6 const double ONEEIGHTH = 0.125;
7 const double TWO = 2.0;
8
9 #pragma sdsl begin

10 int N;
11
12 double ONEEIGHTH;
13 double TWO;
14
15 grid g[N];
16
17 double griddata A on g at 0,1;
18
19 pointfunction compute(x) {
20 [1]x[0] = ONEEIGHTH * ([0]x[1] - TWO * [0]x[0] + [0]x[-1]);
21 }
22
23 iterate 50000 {
24 stencil main {
25 [1 : N - 2] : compute(A);
26 }
27 }
28 #pragma sdsl end
29 }

Figure 2.8: Embedded SDSL specification of the one-dimensional heat equation stencil
introduced in Figure 1.1.
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The actual SDSL specification is found in lines 10–27. Before that, the input and
output array has to be specified, as well as any parameters that are passed to the SDSL
part. Lines 10–13 define three parameters that are used within the SDSL specification.
Parameters are bound to values at the time of program execution. Line 15 defines the
grid geometry used for the stencil computation, namely a one-dimensional grid of size N.
Continuing, in line 17 a concrete instance of that grid is specified with the identifier A,
which exists at time offsets 0 and 1. This grid data is bound to the array A. Lines 19–21
define a point function with the identifier compute. A point function takes an arbitrary
number of grid data as arguments and performs an arbitrary number of computations on
that grid data. Every time a point function is invoked, it is at an arbitrary point within
the grids. All grid data references are expressed using offsets from that points. In the
example, [1]x[0] identifies the value of grid data x at time offset 1 and spatial offset 0.
In the context of this thesis, point functions correspond to the kernel function of a stencil
computation.

The main stencil computation is specified in lines 23–27. The iterate construct
specifies the number of time steps over which the stencil computation should be per-
formed. Note that the number of time steps has to be hard-coded. Lines 24–26 define
a stencil with the identifier main over a subset of the grid, omitting the boundary of the
grid. A stencil can contain an arbitrary number of pairs of grid subsets and expressions.
This allows, for example, the specification of complex boundary conditions.

The result of the SDSL computation is copied out to the according arrays that were
bound to grid data in the SDSL specification. Compilation of source code that contains
embedded SDSL is done similar to Pochoir and PLUTO. The SDSL compiler acts as
a preprocessor that, depending on user parameters, outputs different kinds of optimized
C code. This code can then be processed further by appropriate compilers. The SDSL
compiler is able to generate affine C code for use with polyhedral optimization tools,
optimized C code for short vector SIMD architectures, and CUDA C code for GPUs
using the OverTile backend [27].

2.3.2 Optimization Approach
The SDSL compiler contains multiple code generation backends. In the context of this
thesis, we will concentrate on code generation for short vector SIMD instruction sets,
such as SSE, AVX etc. During code generation for these architectures, the compiler
employs two main optimization techniques. First, a dimension-lifting-transpose (DLT)
data layout transformation is performed in order to address memory alignment issues
arising from arithmetic operations on physically contiguous data elements. Second, the
stencil computation is tiled using an approach that is compatible with this data layout
transformation [1, 20].

Data Layout Transformation

Stencil computations usually perform arithmetic operations on physically contiguous data
elements. The kernel function of the one-dimensional heat equation stencil (see Fig-
ure 1.1), for instance, accesses the adjacent array elements A[t][i - 1], A[t][i], and
A[t][i + 1]. When using vector loads, these physically contiguous data elements end
up in different slots of the same vector register. However, efficient vector operations are
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possible only if these data elements are located in the same slot of different vector reg-
isters (see Figure 2.10(a)). In order to achieve this register layout, either redundant and
probably unaligned vector loads, or inter- and intra-register shuffle operations are there-
fore required [20].
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(a) Original data layout
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(c) Dimension-lifted and transposed represen-
tation
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(d) Transformed data layout

Figure 2.9: The data layout transformation employed by the SDSL compiler, applied to a
one-dimensional array of length 24 for vector length 4.

The SDSL compiler overcomes this fundamental problem of stencil computations
through a data layout transformation. This transformation rearranges formerly adjacent
data elements, which are potentially accessed by arithmetic operations, so that they can
be loaded into the same vector register slot. We detail the data layout transformation us-
ing an example borrowed from [20], assuming a vector register size of 4. Let A and B
be one-dimensional arrays containing 24 double precision data elements each, with the
following computation to perform

for (int i = 1; i < 23; i++)
B[i] = A[i - 1] + A[i] + A[i + 1];

Note that this computation has the same data access layout as the one-dimensional heat
equation stencil. As displayed in Figure 2.9(b), the data elements contained in A can
also be viewed as a two-dimensional 4× 6 matrix, which has the same data layout as
A with row-major ordering. Figure 2.9(c) shows the transpose of this matrix, i.e., the
dimension-lifted transpose of A, which corresponds to the one-dimensional array depicted
in Figure 2.9(d). We shall refer to this array as D in the following.

There are several observations to be made now. First of all, data elements that were
contiguous in A are separated in D. For instance, A[0] and A[1] are both located in column
zero but different rows of the transposed matrix, mapping to the memory addresses D[0]
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and D[4]. Therefore, A[0] and A[1] are now both loaded into the first slot of a vector reg-
ister, and equally A[2] is. This allows for the additions (A[0] + A[1] + A[2]), (A[6]
+ A[7] + A[8]), (A[12] + A[13] + A[14]) and (A[18] + A[19] + A[20]), to be
performed using three aligned vector loads and subsequently two vector additions, with-
out any additional data movements (see Figure 2.10(b)). Furthermore, some of these
vector elements can be reused when performing the next operation.

0 1 2 3 4 5 6 7 8 9 10 11
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+ 1 2 3 4

+ 2 3 4 5

(a) Vector operations on the original data layout
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0 6 12 18

+ 1 7 13 19
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(b) Vector operations on the transformed data lay-
out

Figure 2.10: Vector operations on the original and transformed data layout. Without a
data layout transformation, the data elements in vector registers overlap, as is shown in
(a). No overlap is induced in (b), where a data layout transformation has been applied.

However, this data layout transformation introduces a new type of boundary case for
operands that are distributed over multiple columns of the transposed matrix. The addi-
tion (A[5] + A[6] + A[7]), for instance, can not be performed using vector operations
initially, since these elements are located in different vector slots. While it is possible to
handle these boundary cases using scalar operations, a more efficient way is to employ
masked vector operations. We refer to [20] for a detailed description of the latter strategy.
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Figure 2.11: Traditional rectangular tiling as performed by the SDSL compiler.
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Hybrid and Nested Split Tiling

Standard rectangular tiling is generally infeasible in conjunction with the data layout
transformation elaborated on in the previous section. With standard rectangular tiling,
tiles in the original iteration space are parallelogram-shaped, as displayed in Figure 2.11.
As inter-tile dependences occur along both the time and spatial dimensions, tiles can not
be processed concurrently along the spatial dimensions. However, this is a requirement
when using the DLT data layout transformation, as spatially separated data elements are
operated upon in parallel [1].

Instead of rectangular tiling, the SDSL compiler employs nested and hybrid split
tiling. Nested split tiling is remotely similar to Pochoir’s tiling approach, because it is
based on trapezoidal tiles. Tiles are not recursively decomposed, but of a predetermined
size, though. To begin with, consider a one-dimensional stencil with slope σ , and let TT
be the height of trapezoids, i.e. their size in the time dimension. Furthermore, let TU and
TI be the base width of upright and inverted trapezoids, respectively. The iteration do-
main is now sliced along the time dimension to produce bands of height TT , which have
to be processed sequentially. Each of these bands is then decomposed into trapezoids
with slopes ±σ that are alternately upright and inverted, where upright trapezoids have
width TU and inverted trapezoids have width TI . All upright trapezoids within one band
can be processed concurrently, as well as all inverted trapezoids within one band (see
Figure 2.12).

Nested split tiling of a multi-dimensional stencil computation is performed by recur-
sively split tiling each spatial dimension. This allows for parallelization of all spatial loop
nests in a stencil computation. Additionally, the DLT data layout transformation can now
be applied to the innermost loop dimension, because tiles can be processed concurrently
along this dimension.
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Figure 2.12: Split tiling as performed by the SDSL compiler.

There is, however, a limitation on nested split tiling especially for stencil computations
of higher dimensionality. In order to retain their trapezoidal shape, tiles must meet the
constraint TT ≥ 2 ·σ ·TU in each spatial dimension, similar to the tiling legality constraint
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for Pochoir tiles. This lower bound causes even small tile sizes to overflow the L1 and
L2 cache very quickly on most modern CPUs. The SDSL compiler addresses the tile size
constraints incurred by nested split tiling with a hybrid form of split tiling and standard
rectangular tiling.

Hybrid split tiling is applicable to stencil computations with a dimensionality of 2 or
higher. In hybrid split tiling, traditional rectangular tiling with size T P is performed on
the outermost spatial loop, while the remaining spatial loops are split-tiled recursively.
Rectangular tiling does not induce any constraints on tile size, so tiles can be scaled down
in the outermost dimension to counteract the larger tile size requirements in the split-tiled
dimensions. Therefore, the memory footprint of tiles can be significantly reduced, while
the DLT data layout transformation can still be applied to the innermost spatial loop.

2.3.3 Known Limitations
Most limitations of the SDSL compiler arise from the stencil domain specific language
specification. For instance, only one grid may be defined per SDSL program. Addition-
ally, grid data can only be defined at time offsets 0 and 1, excluding stencils with a depth
greater than 1. Furthermore, it has already been observed in Section 2.3.1 that the number
of time iterations of a stencil computation has to be hard-coded in the SDSL specification.
It is not possible to pass this number as a program parameter.

If the split tiling backend of the SDSL compiler is used, the size of the innermost
spatial dimension is required to be a multiple of the vector register size v and the sum
of upright and inverted tile sizes, i.e., dinnermost ≡ 0 mod v · (TU + TI). However, this
constraint can be fulfilled easily by padding the innermost spatial dimension.
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Chapter 3

Execution Order Optimization

We have found previously that the trapezoidal tiling algorithm of Pochoir could be op-
timized further for one-dimensional stencils [9]. In the following, we extend our opti-
mization approach to support multi-dimensional stencil computations, and apply it to the
tiling algorithms of the Pochoir, PLUTO and SDSL compilers. We take a closer look on
some problems experienced by these algorithms in Section 3.1, which encouraged our
optimization approach. Section 3.2 provides a high-level overview of the approach, and
in Section 3.3, we cover the details of our realization thereof as a C++ template library.

3.1 Motivation
During closer investigation of the tiling algorithms presented in the previous section, we
have identified the elimination of redundant dependences as a main starting point for
possible optimizations.

Dependences between tiles are handled implicitly by these algorithms, i.e., an appro-
priate processing order is chosen that does not violate any inter-tile dependences. The
PLUTO and SDSL compilers generate tiled loops that imply a valid processing order of
tiles, while the Pochoir compiler employs barrier synchronization during recursive de-
composition of the iteration domain in order to ensure that all dependences are met. In
both cases, this introduces a number of inter-tile dependences that do not correspond to
actual flow dependences (see Figures 3.1(a)–3.1(c)).

Initially, this behavior is intended and usually critical to the functionality of the re-
spective tiling algorithm. The DLT data layout transformation employed by the SDSL
compiler is, for instance, applicable only, if tiles within one time band are processed in
the same parallel step along the spatial dimension. Similarly, the tile processing order
contributes greatly to the cache efficiency of the Pochoir compiler. Nevertheless, these
redundant dependences may still induce a notable load imbalance at run time and thus
severely impact scalability on modern multi-core architectures. This was, for example,
observed by the developers of the PLUTO compiler [5, 28], and by us during the imple-
mentation of our preliminary optimization approach for Pochoir’s algorithm [9]. Addi-
tionally, and more severely so, inter-tile data reuse is hindered by these dependences for
diamond and split tiling. Both of these tiling algorithms process all tiles within one time
band in one sequential step. If the spatial dimensions of the data grid are sufficiently
large, this leads to all points at the boundary of tiles being expelled from the cache before
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(a) Redundant dependences for the Pochoir stencil compiler. A spacecut yields the two large
upright subtrapezoids colored in blue, which are processed in all before the red subtrapezoid.
Applying a second spacecut to these trapezoids thus induces the dependences colored in red.
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(b) Redundant dependences for the PLUTO compiler. Tiles are processed sequentially along the
time dimension, which introduces a number of additional dependences. A wider grid implies
more redundant dependences.
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(c) Redundant dependences for the SDSL compiler. All upright and inverted tiles that result from
split tiling a time band are processed in two sequential steps, leading to the dependences colored
in red. The number of these dependences increases with the number of upright and inverted tiles
within a time band.

Figure 3.1: Examples of redundant inter-tile dependences that are induced by the tile
processing order which the different stencil compilers choose. The numbers in circles
show the logical time at which a tile is processed. This adds the redundant dependences
colored in red, in addition to the actual dependences colored in black.

any dependent tile is processed. Especially for small tile sizes, as they are required for
stencil computations of higher dimensionality, a large number of redundant accesses to
slow main memory is therefore induced.
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3.2 Overview of Approach
We developed a two-stage algorithm that aims to minimize the amount of redundant syn-
chronization in tiling algorithms, while still maintaining a high level of data reuse. In the
first stage of our algorithm, a tile dependence graph is generated, which represents tiles
and their dependences like the original tiling algorithms suggest them. We then use a
polyhedral dependence analysis in order to identify and eliminate redundant inter-tile de-
pendences in this graph. In the second stage, the actual stencil computation is performed
by traversing the tile dependence graph in parallel, following a dynamic schedule. This is
possible with minimal synchronization and entirely without barrier synchronization.

The approach we propose is roughly equivalent to the compiler-assisted dynamic
scheduling approach suggested by Baskaran et al. [28], which enables extraction of inter-
tile dependences and dynamic scheduling of tiles at runtime. However, our approach is
not limited to tiling algorithms that are based on the polyhedral model, and as such is
applicable to a wider range of tiling algorithms. To the best of our knowledge, this is the
first work to study a dynamic scheduling approach for non-polyhedral tiling algorithms,
like they are employed by the Pochoir and SDSL compilers.

In the following, we give an abstract overview of our optimization approach, omitting
implementation details that are, for instance, specific to tiling algorithms. We will cover
all of these in Section 3.3. We assume that the shape S and the kernel function f of a
stencil have been provided as input data with suitable format to our algorithm.

3.2.1 Dependence Relation
In the polyhedral model, a dependence relation d maps source iterations to the corre-
sponding sink iterations, i.e., for any given iteration~x, the set of iterations that are depen-
dent on~x is specified by d(~x). Using the information the shape S of a stencil exposes, the
dependence relation is obviously defined by

d(~x) = {~x−~v |~v ∈ S}

We can now use this relation to characterize a dependence check on arbitrary tiles, repre-
sented by their set of iterations T1 and T2. The tile represented by T2 is dependent on the
tile represented by T1 iff the following condition holds true

d(T1)∩T2 6= /0

This dependence check can be implemented easily using a polyhedral library.

3.2.2 Generation of the Tile Dependence Graph
The tile dependence graph (TDG) is a directed acyclic graph that holds all information
necessary to model the decomposition of an iteration domain of fixed size. Each node in
the graph represents a single tile, and each edge V →W indicates an inter-tile dependence
between the tiles represented by V and W , respectively.

Given a tiling algorithm and appropriate tiling parameters, generation of the tile de-
pendence graph is performed as follows. The iteration domain is decomposed into tiles
according to the original tiling algorithm, and tiles are inserted as nodes into the TDG

35



while doing so. Every time the original tiling algorithm suggests a dependence between
two tiles, these tiles are represented as polyhedra and a dependence check is performed
using the previously calculated dependence relation. An edge between two tiles in the
TDG is added only, if this check confirms the suggested dependence. The actual imple-
mentation and optimization of this generation technique is dependent on the respective
tiling algorithm, and is described in detail in Section 3.3.2.

3.2.3 Traversal of the Tile Dependence Graph
After the TDG has been generated, the actual stencil computation can be performed by
traversing the graph in parallel. The traversal algorithm is displayed in Figure 3.2.

Input: A node V of the tile dependence graph

1 procedure Process(V)
2 Evaluate kernel function f for all points in the tile represented by V;
3 foreach edge V→ W do
4 Remove edge V→ W;
5 if W has no more incoming edges then
6 Spawn parallel task Process(W) ;
7 end
8 end
9 end

Figure 3.2: The recursive algorithm used for traversal of the tile dependence graph

When processing a node V during TDG traversal, the kernel function f is evaluated
for all points within the tile represented by this node first. This step accounts for most
of the time that is necessary to process a node. Second, all outgoing edges V →W of
the node are removed, and a new parallel task to process W is spawned if W has no more
incoming edges. Synchronization is required only while checking whether W has any
pending dependences and, if not, while spawning a new parallel task.

Traversal of the TDG is started by spawning parallel tasks for all nodes without any
incoming edges. These nodes correspond to tiles that are dependent only on the initial
conditions of the stencil computation. As the TDG is a connected, acyclic and finite
graph, the traversal algorithm obviously terminates after a finite number of steps, and
after processing all nodes within the TDG in a topological order.

3.3 Realization Details
The algorithm as outlined above was incorporated into a C++ template library that we
developed. This library offers a concise programming interface to our algorithm, allowing
for a intuitive specification of a stencil computation using standard C++. Subsequently,
a tile dependence graph and optimized kernel function code can be generated based on
this specification, which are then used to perform the actual stencil computation. We
implemented support for serialization after most of these intermediate steps, in order to
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facilitate the reuse of generated data. Our library relies on the integer set library (ISL) [14]
for representation and manipulation of polyhedra wherever needed.

The remainder of this section is arranged as follows. Section 3.3.1 outlines the pro-
gramming interface offered to the user. Generation of the TDG is described in detail in
Section 3.3.2 and code generation is elaborated upon in Section 3.3.3.

3.3.1 Programming Overview
The overall work flow when using our library is depicted in Figure 3.3. There are three
main components that the user normally interacts with. The precut component is respon-
sible for generating the TDG, and the code generator component outputs optimized kernel
function code. Both of these provide input for the traversal component, which performs
the actual stencil computation based on the input TDG and kernel function code.

Figure 3.3: Basic work flow when using our library. The specification of a stencil com-
putation is passed to the precut and code generation components, which results in a tile
dependence graph and optimized kernel function code. These are then passed on to the
traversal component, which performs the actual stencil computation and returns the re-
sults.

Continuing the running example of the previous chapters, Figure 3.4 shows the im-
plementation of the one-dimensional heat equation stencil using our library in its most
basic form. For clarity considerations, several aspects of our library have been omitted in
this example, such as serialization of intermediate data or interaction with the generation
process. We refer to the documentation of our header files for an in-depth description of
these.

Throughout the example, the desired tiling algorithm is passed as the template param-
eter STRAT to the function, which can currently be one of either POCHOIR, DIAMOND or
SPLIT. If applicable, a second template parameter identifying the dimensionality of the
stencil computation is passed to the library. Lines 4–5 specify the kernel function and the
grid size of the stencil computation. Subsequently, the tile dependence graph is generated
in lines 8–11. In order to speed up the process of TDG generation, all polyhedral opera-
tions are translated to C++ code and exported as a shared library in lines 8–9, instead of
directly calling ISL functions. This code expresses the respective polyhedral operations
as a function on a number of integer parameters, which can be evaluated faster than the
corresponding ISL function on an ISL data structure. In practice, one would only have to
generate this code once per stencil computation and tiling algorithm.

In lines 14–15 the kernel function is translated to optimized C++ code and is also
exported as a shared library. Again, this generation would have to be done only once
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1 template <Strategy STRAT >
2 void heat(int T, int N) {
3 // Specification
4 AST_Node <1>& kernel = 0.125 * (Array_1D ({-1, -1}) - 2.0 *

Array_1D ({-1, 0}) + Array_1D ({-1, 1}));
5 Grid_Info <1> grid_info = {T, N};
6
7 // TDG generation
8 Precut_Generator <STRAT , 1>(kernel.access_shape ()).

compile_to_file("precut.tmp", true);
9 Precut_Handle <STRAT , 1> precut_handle = Precut_Generator <STRAT

, 1>:: get_handle("precut.tmp");
10
11 Tile_Graph <STRAT , 1>* graph = Precut <STRAT , 1>(precut_handle ,

kernel.access_shape ()).precut(grid_info);
12
13 // Kernel Function Code Generation
14 Kernel_Generator <STRAT , 1>(kernel).compile_to_file("kernel.tmp

", true);
15 Kernel_Handle <STRAT , 1> kernel_handle = Kernel_Generator <STRAT

, 1>:: get_handle("kernel.tmp");
16
17 // Traversal
18 Traversal <STRAT , 1> traversal(kernel_handle , graph);
19 traversal.run();
20
21 // Results
22 Grid <1>& result = traversal.grid();
23 }

Figure 3.4: Implementation of the one-dimensional heat equation stencil using our library.

per stencil computation and tiling algorithm. Finally, the kernel function code and the
tile dependence graph are passed to the traversal component in line 18, and the actual
stencil computation is performed in line 19. Afterwards, the results are accessed in line
22. Figure 3.5 shows how the same stencil computation can be implemented when all
intermediate data has been serialized to files.

The generation of both precut and kernel function code can be customized by passing
Precut_Generator_Options and Kernel_Generator_Options objects to the respec-
tive component. This allows the user to specify custom tile sizes, for example. As the
generation of the tile dependence graph might take a considerably long time in some
cases, a tile dependence graph can be serialized to a file for later reuse. The user can also
modify the grid on which the stencil computation operates. It is possible, for instance,
to specify custom boundary conditions in the form of C++ lambda expressions, and to
specify initial conditions on a grid.

3.3.2 Precut Component
The precut component generates a tile dependence graph based on the specification of
a stencil computation. While the internal implementation is dependent on the employed
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1 template <Strategy STRAT >
2 void heat(int T, int N) {
3 // Load TDG
4 Tile_Graph <STRAT , 1>* graph = Tile_Graph <STRAT , 1>::

deserialize("graph.tmp");
5
6 // Load Kernel Function Code
7 Kernel_Handle <STRAT , 1> kernel_handle = Kernel_Generator <STRAT

, 1>:: get_handle("kernel.tmp");
8
9 // Traversal

10 Traversal <STRAT , 1> traversal(kernel_handle , graph);
11 traversal.run();
12
13 // Results
14 Grid <1>& result = traversal.grid();
15 }

Figure 3.5: Implementation of the one-dimensional heat equation stencil using our library.
In this code fragment, we assume that all intermediate data has been serialized to the
respective files prior to calling the heat function.

tiling algorithm, there is a common interface to the precut component for all tiling al-
gorithms. The user has to provide the shape S of a stencil and the desired grid size to
the component, which then returns the root node of the generated tile dependence graph.
Each node in the tile dependence graph is annotated with an algorithm-dependent tile rep-
resentation and an indicator whether the respective tile contains boundary accesses. Since
only the shape of a stencil is necessary to build the tile dependence graph, the latter can
be reused for multiple stencils with the same shape.

During the process of generation, several properties of tiles are checked by represent-
ing tiles as polyhedra and then performing some operations on these. In particular, the
dependence check outlined in Section 3.2.1 is one such operation. Additionally, we em-
ploy a polyhedral tile representation to check whether a tile contains any points within
the actual grid or any boundary accesses. In order to improve performance, we use poly-
hedral code generation to generate C++ functions that perform these operations, rather
than directly calling library functions of the ISL. We transform the respective property
check to an equivalent check that tests for emptiness of a polyhedron. Consider, for ex-
ample, the dependence check outlined in Section 3.2.1, which is phrased as an emptiness
test. Subsequently, using the polyhedral code generation capabilities of the ISL, a C++
expression is generated which performs the emptiness test in dependence of some in-
put parameters. These input parameters specify the polyhedra that should be checked.
Finally, the generated C++ code is compiled to a shared object file, which contains the
appropriate functions. In the following, we refer to these functions as dependent(V, W),
boundary(V) and domain(V), where dependent(V, W) returns whether tile W is depen-
dent on tile V, boundary(V) returns whether tile V contains any boundary accesses, and
domain(V) returns whether tile V contains any points within the actual grid.
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Trapezoidal Tiling

When using Pochoir’s trapezoidal tiling scheme, the tile dependence graph is built recur-
sively. At the core of our generation algorithm is an expansion function, which employs
spacecuts and timecuts as introduced in Section 2.1.2 in order to replace one node in the
tile dependence graph with several nodes representing subtrapezoids. The pseudocode
of this function is displayed in Figure 3.6. The generation algorithm starts off with one
trapezoid which contains the entire grid that was passed to the precut component. This
trapezoid is then decomposed recursively using the expansion function, until the size of
all trapezoids falls below a predefined threshold.

Input: A node V of the tile dependence graph

1 procedure Expand(V)
2 if not Domain(V) then
3 Delete V from the graph ;
4 else if Spacecut applicable and required then
5 Expand_Spacecut(V) ;
6 else if Timecut applicable and required then
7 Expand_Timecut(V) ;
8 end
9 end

Figure 3.6: The expansion function that is used to recursively decompose nodes in
the tile dependence graph when following Pochoir’s trapezoidal tiling scheme. If
a spacecut is used for decomposition, the Expand_Spacecut function displayed in
Figure 3.7 is called. If, on the other hand, a timecut is employed for decomposition,
the Expand_Timecut function displayed in Figure 3.8 is invoked.

Let V be a node of the tile dependence graph representing a trapezoid. In the follow-
ing, we will identify a trapezoid with the node by which it is represented unless otherwise
stated. If V does not contain any points within the actual grid of the stencil computation,
the node itself and all incoming and outgoing edges are deleted from the tile dependence
graph (lines 2–3). This may occur since the algorithm starts with a trapezoid that is larger
than the actual grid. Otherwise, if a spacecut is applicable - see Section 2.1.2 - and re-
quired in at least one spatial dimension of V , the node is decomposed using a spacecut
(lines 4–5). A spacecut is required in a spatial dimension if the size of V in that dimen-
sion exceeds a predefined threshold value. Different threshold values are maintained for
tiles that do or do not contain boundary accesses, so as to enable more coarse tiling in the
interior of the grid. If a spacecut is either not applicable or not required, it is then checked
whether a timecut is applicable and required, and if so, the node is decomposed using a
timecut (lines 6–7). A timecut is required when the height of V is larger than a predefined
threshold value, which again can be chosen differently for interior and boundary tiles.

Decomposition of a node V with a spacecut is done as shown in Figure 3.7. We keep
track of the subtrapezoids we obtain after applying spacecuts in the first i dimensions in
a set Qi, because all of these trapezoids have to be decomposed by any further spacecut.
Initially, the set Q0 contains only the node V (line 3). It is then iterated over all spatial
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Input: A node V of the tile dependence graph

1 procedure Expand_Spacecut(V)
2 i← 0 ;
3 Q0←{V} ;

4 foreach Spatial dimension d that needs to be cut do
5 Qi+1← /0 ;
6 foreach X ∈ Qi do
7 {XL,XC,XR}← Spacecut(X, d) ;

8 if X inverted in dimension d then
9 Add edges XC→ XL and XC→ XR ;

10 else
11 Add edges XL→ XC and XR→ XC ;
12 end

13 foreach Edge U → X and Y ∈ {XL,XC,XR} do
14 if Dependent(U, Y) then Add edge U → Y ;
15 end

16 foreach Edge X →U and Y ∈ {XL,XC,XR} do
17 if Dependent(Y , U) then Add edge Y →U ;
18 end

19 Delete X from the graph;
20 Qi+1← Qi+1∪{XL,XC,XR} ;
21 end
22 i← i+1 ;
23 end

24 foreach X ∈ Qi−1 do
25 Expand(X) ;
26 end
27 end

Figure 3.7: The expansion function that decomposes a node in the tile dependence
graph using a spacecut. Hypertrapezoids are identified with the nodes that represent
them, and the notation introduced in Section 2.1.2 is used for subtrapezoids resulting
from a spacecut.

dimensions that need to be decomposed (lines 4–23). Thus, let i be the number of space-
cuts already applied, and let d be the dimension in which the next spacecut is applied.
Furthermore, let Qi be the set containing all 3i subtrapezoids that result from the previous
spacecuts. A spacecut in dimension d is then applied to each trapezoid X ∈ Qi, which
yields subtrapezoids XL, XC and XR (line 7, see Section 2.1.2 for details). If X is inverted
in dimension d, the trapezoids XL and XR are dependent on XC, hence the edges XC→ XL

and XC→XR are added. Otherwise, XC is dependent on XL and XR, so the algorithm adds
the edges XL→ XC and XR→ XC (lines 8–12). Subsequently, all incoming edges U → X
of the original node X are checked, and if the dependence relation confirms a dependence
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between U and one of XL, XC or XR, the corresponding edge is added (lines 13–15). All
outgoing edges X →U are checked in the same fashion, and edges between XL, XC or
XR and U are created where needed (lines 16–18). That done, the original node X and all
its incoming and outgoing edges are deleted, and XL, XC and XR are appended to Qi+1
(lines 19–20), in order to be decomposed by a further spacecut. Finally, after applying all
necessary spacecuts, every newly created node is expanded recursively (lines 24–26).

Input: A node V of the tile dependence graph

1 procedure Expand_Timecut(V)
2 {V B,V T}← Timecut(V);
3 Add edge V B→V T ;

4 foreach Edge U →V and Y ∈ {V B,V T} do
5 if Dependent(U, Y) then Add edge U → Y ;
6 end

7 foreach Edge V →U and Y ∈ {V B,V T} do
8 if Dependent(Y , U) then Add edge Y →U ;
9 end

10 Delete V from the graph;
11 Expand(V B) ;
12 Expand(V T) ;
13 end

Figure 3.8: The expansion function that decomposes a node in the tile dependence
graph using a timecut. Hypertrapezoids are identified with the nodes that represent
them, and the notation introduced in Section 2.1.2 is used for subtrapezoids resulting
from a timecut.

A node V is decomposed using a timecut whenever a spacecut is either not applicable
or not required in any dimension. Figure 3.8 displays the correspondent algorithm. A
timecut is applied to V , resulting in subtrapezoids V B and V T , where V T is dependent on
V B. Therefore, the edge V B→V T is created immediately (lines 2–3). The incoming and
outgoing edges of the original node V are then checked in the same way as above, and
dependences confirmed by the dependence relation are added as incoming or outgoing
edges to V B and V T (lines 4–9). Eventually, the original node and all of its edges are
removed, and the new nodes V B and V T are processed recursively (lines 10–12).

The expansion algorithm terminates, since each spacecut or timecut results in sub-
trapezoids that contain strictly less grid points than the original trapezoid. Thus, the
number of grid points within a trapezoid strictly decreases in each recursive step. Fur-
thermore, the expansion algorithm is correct, i.e., the grid passed to the precut component
is contained in the conjunction of all trapezoids in the tile dependence graph, and all
inter-trapezoid dependences are represented as edges in the tile dependence graph.

This can be proved directly by relying on the correctness of Pochoir’s trapezoidal
tiling algorithm [4]. We employ the same spacecuts and timecuts as Pochoir, so surely
the conjunction

⋃
X∈Qi−1

X of all subtrapezoids resulting from a spacecut is equal to the
original trapezoid V , and equally V B∪V T = V when applying a timecut. Trapezoids are
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deleted without being replaced by equivalent subtrapezoids only if they do not contain any
points within the grid. Hence, the grid is contained in the conjunction of all trapezoids in
the tile dependence graph.

When applying a spacecut or timecut in a recursive expansion step, dependences are
handled in two steps. In the first step, all dependences between newly created subtrape-
zoids are added as edges in the tile dependence graph, just like the trapezoidal tiling
algorithm of Pochoir suggests them. In the second step, all incoming and outgoing de-
pendences of the original trapezoid are inherited by the subtrapezoids, with only redun-
dant dependences being removed. Since the subtrapezoids contain the same grid points
as the original trapezoid, no further dependences can possibly be induced by a spacecut
or timecut. In summary, all actual inter-tile dependences are preserved in each recursive
expansion step, and therefore the assertion follows.

Diamond Tiling

Besides using Pochoir’s trapezoidal tiling algorithm, it is also possible to generate the tile
dependence graph based on the diamond tiling algorithm that is employed by the PLUTO
compiler. Figure 3.9 displays the respective generation algorithm. For a d-dimensional
stencil, it accepts a d-dimensional linear transformation T and tile sizes O = (s1, . . . ,sd)
as input, where T has been computed using PLUTO’s transformation algorithm (see Sec-
tion 2.2.2). A tile dependence graph is then built that reflects rectangular tiling of the grid
that was passed to the precut component. The tile shape is determined by applying the
transformation T to the grid, and the tile size is determined by (s1, . . . ,sd).

The algorithm begins by representing the d-dimensional grid that was passed to the
precut component as a polyhedron D (line 2). This is just the polyhedron that represents
a perfect loop nest which traverses all points in the grid. Afterwards, d additional tile di-
mensions (z1, . . . ,zd) are appended as outermost dimensions to the polyhedron in prepara-
tion for rectangular tiling (see Section 2.2.2). The latter is then performed in each spatial
dimension, while implicitly applying the transformation T to the original grid (lines 3–5).
For each spatial dimension i, this is achieved by imposing the tiling constraints

φi ◦~x≥ zi · si

φi ◦~x≤ (zi +1) · si−1

on the polyhedron D , where ~x is the original iteration vector and φi is the i-th tiling
hyperplane of T . We can then obtain bounds on the tiling dimensions by eliminating
the original iteration vector ~x from D , which is a standard operation supplied by integer
programming libraries (line 6). This yields a polyhedron which contains all tile instances
(z1, . . . ,zd) identifying tiles that contain at least one point of the grid. Therefore, we
iterate over all of these coordinates and create the respective tile nodes (lines 7–9). Then,
inter-tile dependences are added for each tile node (lines 11–16). It is sufficient to check
all immediate neighbors of a tile node for dependences, as inter-tile dependences are unit
vectors along the bases of the transformed iteration space [5]. Also, we only need to
check dependences in one direction, as an outgoing dependence V →W for the node V
is equivalent to an incoming dependences for the node W . We chose to check incoming
dependences, as this allows us to identify at once tiles that are dependent only on the initial
conditions of the stencil computation (line 15). After this final step, the tile dependence
graph is complete, and we return its root node.
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Input: A d×d linear transformation matrix T as computed by PLUTO’s
transformation algorithm and tile sizes O = (s1, . . . ,sd)

1 procedure Generate(T , O)
2 Build grid polyhedron D that contains all grid points and add tile dimensions

(z1, . . . ,zd) ;

3 foreach Tiling hyperplane φi in T do
4 Add tiling constraints φi ◦~x− zi · si ≥ 0 and (zi +1) · si−1−φi ◦~x≥ 0

where~x is the original iteration vector to the grid polyhedron D ;
5 end

6 Eliminate the original iteration vector~x from D to obtain bounds on the tile
dimensions ;

7 foreach Valid tile coordinate (z0, . . . ,zd) do
8 Create tile node representing the tile with coordinates (z0, . . . ,zd) ;
9 end

10 Create root node R ;

11 foreach Tile node V do
12 foreach Neighboring tile node W do
13 if Dependent(W, V) then Add edge W →V ;
14 end
15 if V has no incoming edges then Add edge R→V ;
16 end

17 return Root node R
18 end

Figure 3.9: The generation algorithm that builds a tile dependence graph based on
PLUTO’s diamond tiling algorithm.

The correctness of this algorithm emerges from the correctness of PLUTO’s original
diamond tiling algorithm [5, 13]. The linear transformation that we apply to the grid
polyhedron D is obtained by using this algorithm. Bondhugula et al. prove that any
rectangular tiling is valid in the thereby transformed iteration space, so the tile nodes we
generate represent valid tiles. Furthermore, as stated above, dependences can only be
present between immediately adjacent tiles, so no inter-tile dependences are lost by the
algorithm.

Split Tiling

The final variation of tile dependence graph generation employs the hybrid or nested
split tiling algorithms of the SDSL compiler. Both of these have been unified in one
generation algorithm, which is illustrated in Figure 3.10. The tile dependence graph is
built depending on the tile sizes O that are passed to the algorithm. If nested split tiling is
used, tile sizes are defined by O = (sT ,sU

1 ,s
I
1, . . . ,s

U
d ,s

I
d), where sT is the size of a tile in

the time dimension, and sU
i and sI

i are the widths of upright and inverted tiles in the spatial
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dimension i, respectively. On the other hand, if hybrid split tiling is requested, tile sizes
are defined by O = (sT ,sP,sU

1 ,s
I
1, . . . ,s

U
d−1,s

I
d−1), where again sT is the size of a tile in the

time dimension, and sU
i and sI

i are the widths of upright and inverted tiles in the spatial
dimension i, respectively. Additionally, sP now identifies the width of parallelogram-
shaped tiles in the outermost spatial dimension d.

To begin with, the time dimension of the grid that was handed to the precut component
is tiled, i.e., subdivided into time bands of height sT (lines 4–12). For each of these time
bands, a tile node V is created and placed in a separate buffer (lines 5–6). The latter will

Input: Tile sizes O = (sT ,sU
1 ,s

I
1, . . . ,s

U
d ,s

I
d) for nested split tiling or

O = (sT ,sP,sU
1 ,s

I
1, . . . ,s

U
d−1,s

I
d−1) for hybrid split tiling

1 procedure Generate(O)
2 Create root node R ;
3 Determine the number n of time bands with height sT that is necessary to

subdivide the grid in the time dimension ;

4 for i = 1 to n do
5 Create tile node V representing the entire i-th time band ;
6 Create time band buffer Qi←{V} ;

7 if i = 1 then
8 Add edge R→V ;
9 else

10 Add edge W →V for W ∈ Qi−1 ;
11 end
12 end

13 foreach Spatial dimension d do
14 if d is outermost dimension and hybrid split tiling is performed then
15 foreach Time band i do
16 Tile_Traditional( O,Qi,d ) ;
17 end
18 else
19 foreach Time band i do
20 Tile_Split( O,Qi,d ) ;
21 end
22 end
23 end

24 return Root node R
25 end

Figure 3.10: The generation algorithm that builds a tile dependence graph based
on the SDSL compiler’s split tiling algorithm. For traditional tiling of a spatial
dimension, the Tile_Traditional function displayed in Figure 3.11 is called. If
split tiling is employed in a spatial dimension, the Tile_Split function displayed
in Figure 3.12 is invoked.
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Input: Tile sizes O, a time band buffer Qi and a spatial dimension d

1 procedure Tile_Traditional( O,Qi,d )
2 Remember the original buffer Qi as Ri;

3 foreach Node X ∈ Ri do
4 Determine the number n of parallelogram-shaped tiles with width sP that is

necessary to subdivide X in dimension d ;

5 for j = 1 to n do
6 Create tile node Yj representing the j-th tile ;

7 if j > 1 then
8 Add edge Yj−1→ Y j ;
9 end

10 end

11 foreach Edge U → X and Y ∈ {Y1, . . . ,Yn} do
12 if Dependent(U, Y) then Add edge U → Y ;
13 end

14 foreach Edge X →U and Y ∈ {Y1, . . . ,Yn} do
15 if Dependent(Y , U) then Add edge Y →U ;
16 end

17 Delete the original node X from the graph and Qi ;
18 Qi← Qi∪{Y1, . . . ,Yn} ;
19 end
20 end

Figure 3.11: The algorithm used for traditional parallelogram tiling of a time band
during hybrid split tiling.

be used during tiling of the spatial dimensions later, similar to how a buffer is employed
in the spacecut expansion function of trapezoidal tiling. Each time band is dependent
on the preceding time band in the backward direction along the time dimension, so the
corresponding edge is added next. The first time band is dependent on no other tiles, so
an edge to the root node of the tile dependence graph is added instead (lines 7–11).

Afterwards, each spatial dimension d is tiled one after another (lines 13–23). If d is the
outermost spatial dimension, and hybrid split tiling is requested, traditional parallelogram
tiling is performed in that dimension (lines 14–17). Otherwise, that dimension is split-
tiled (lines 18–22).

In order to traditionally tile a time band in a spatial dimension d, the tile sizes O, the
time band buffer Qi and the dimension d are passed to the Tile_Traditional function
(see Figure 3.11). First of all, the time band buffer is backed up, as tiling modifies the
contents of Qi (line 2). The spatial dimension d of each tile node X in the original time
band buffer is then subdivided into parallelogram-shaped tiles of width sP (lines 3–19),
and a tile node is created for each of these tiles (line 6). Due to the shape of tiles, this
newly created tile node is certainly dependent on the previous tile node in the backward
direction along the dimension d. Accordingly, an edge is added between these nodes
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Input: Tile sizes O, a time band buffer Qi and a spatial dimension d

1 procedure Tile_Split( O,Qi,d )
2 Remember the original buffer Qi as Ri;

3 foreach Node X ∈ Ri do
4 Determine the number n of parallelogram-shaped tiles with width sI

d + sU
d

that is necessary to subdivide X in dimension d ;

5 for j = 1 to n do
6 Create tile node Y I

j for the j-th inverted trapezoidal tile with width sI
d ;

7 Create tile node YU
j for the j-th upright trapezoidal tile with width sU

d ;
8 Add edge YU

j → Y I
j ;

9 if j > 1 then
10 Add edge YU

j−1→ Y I
j ;

11 end
12 end

13 foreach Edge U → X and Y ∈ {Y I
1 ,Y

U
1 , . . . ,Y I

n ,Y
U
n } do

14 if Dependent(U, Y) then Add edge U → Y ;
15 end

16 foreach Edge X →U and Y ∈ {Y I
1 ,Y

U
1 , . . . ,Y I

n ,Y
U
n } do

17 if Dependent(Y , U) then Add edge Y →U ;
18 end

19 Delete the original node X from the graph and Qi ;
20 Qi← Qi∪{Y I

1 ,Y
U
1 , . . . ,Y I

n ,Y
U
n } ;

21 end
22 end

Figure 3.12: The algorithm employed for split tiling of a time band.

(lines 7–9). Subsequently, the dependences of the original node X are checked, and if
the dependence relation confirms any of these dependences for one of the newly created
nodes, the corresponding edge is added to the tile dependence graph (lines 11–16). Fi-
nally, the original node is deleted from the tile dependence graph and the time band buffer
Qi, in which it is replaced by the new nodes (lines 17–18).

Split tiling a time band is done quite similar to traditional tiling, as is shown in Fig-
ure 3.12. Therefore, we take a closer look only at the differences between these two algo-
rithms, which lie with the creation of tile nodes. Instead of creating parallelogram-shaped
tiles of width sP, the algorithm initially subdivides the time band into parallelogram-
shaped tiles of width sI

d + sU
d (line 4). Each of these tiles is then composed of an inverted

tile of width sI
d and an upright tile of width sU

d , where the inverted tile is dependent on
the upright tile (lines 6–8). Additionally, the inverted tile is also dependent on the previ-
ous upright tile in the backward direction along the dimension d, if such a tile is present
(lines 9–11). Processing the dependences of the original node is done in the same way as
for parallelogram tiles once again.
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There are several observations to be made concerning the correctness of the gener-
ation algorithm. First of all, the way in which we subdivide the grid into time bands
clearly preserves all grid points and inter-band dependences. Second, traditional and split
tiling of a time band can be done independently in each spatial dimension by design [1].
Therefore, it remains to prove that the Tile_Traditional and Tile_Split algorithms
are correct. As we know the original tiling scheme employed by the SDSL compiler to
be correct, surely all grid points are preserved when subdividing a time band. All inter-
tile dependences within the time band that arise from subdivision are accounted for as
well. Every inter-tile dependence that lies outside the time band is initially inherited by
the newly created tile nodes, and is eliminated only if the dependence relation does not
confirm this dependence.

3.3.3 Code Generation Component
When performing a stencil computation, it is necessary to evaluate the kernel function on
the points of a physical data grid. For that purpose, optimized C++ code is generated by
the code generation component for a given specification of a stencil computation. This
C++ code is then compiled to a shared object file, which exposes several functions that
take a data grid and a tile representation as input, and in turn evaluate the specified kernel
function on the grid for all points within this tile. Different functions are generated for tiles
that do or do not contain boundary accesses, since more optimizations are applicable when
no boundary accesses have to be considered. Code generation varies slightly between
tiling algorithms, due to differing tile shape and tile representation. However, the general
strategy and the optimizations we perform do not change, so we refrain from discussing
these variations in detail.

As an example, the structure of the code that is generated for a one-dimensional trape-
zoidal tile is shown in Figure 3.13. When generating code for a d-dimensional stencil
computation, d + 1 nested loops are created, where the innermost loop contains the ac-
tual kernel function evaluation. The outermost loop scans the time dimension of a tile,

1 // Loop for time dimension
2 for (int iter_t = param_t0; iter_t < param_t1; iter_t ++) {
3
4 // Loop for spatial dimension 0
5 for (int iter_x0 = param_x0 [0]; iter_x0 < param_x1 [0];
6 iter_x0 ++) {
7 // Kernel function code
8 }
9

10 // Update inner loop bounds
11 for (int dim = 0; dim < 1; dim ++) {
12 param_x0[dim] += param_slope[dim];
13 param_x1[dim] -= param_slope[dim];
14 }
15 }

Figure 3.13: Structure of generated code for a one-dimensional Pochoir-like tile. All
variables param_XXX originate from the tile representation passed to the code.
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while the remaining loops scan one spatial dimension each. As a result, all dependences
between iterations are satisfied regardless of the actual shape of a stencil. This is valid,
since all dependences have a positive component in the time dimension by definition.
The spatial loops are ordered in such way, that the innermost loop scans the dimension
which allows for unit-stride access of the physical data grid elements. Thus, this loop is
amenable to vectorization. After the spatial dimensions have been scanned in a time step,
the bounds of the spatial loops are updated depending on the tile properties.

// Loop for spatial dimension 0
for (int iter_x0 = param_x0 [0]; iter_x0 < param_x1 [0]; iter_x0 ++) {

grid.interior(iter_t , iter_x0) = (0.125000 *
((grid.interior(iter_t + (-1), iter_x0 + (-1))

- (2.000000 * grid.interior(iter_t + (-1), iter_x0 + ( 0))))
+ grid.interior(iter_t + (-1), iter_x0 + ( 1))));

}

(a)

ptr_array_0 = grid.storage_ptr(iter_t - 0, param_x0 [0]);
ptr_array_1 = grid.storage_ptr(iter_t - 1, param_x0 [0]);

// Loop for spatial dimension 0
for (int iter_x0 = param_x0 [0]; iter_x0 < param_x1 [0]; iter_x0++,

ptr_array_0 ++,
ptr_array_1 ++) {

*ptr_array_0 = (0.125000 * (( ptr_array_1 [(-1)]
- (2.000000 * ptr_array_1 [0])) + ptr_array_1 [(1)]));

}

(b)

Figure 3.14: Kernel function code for the one-dimensional heat equation stencil. In (a),
grid elements are accessed through the respective access function of the grid object,
while in (b), C-style pointer manipulations are employed.

Several further optimizations are now performed on the code that is generated for inte-
rior tiles. First of all, we replace accesses to grid elements with C-style pointer manipula-
tions, as is shown in Figure 3.14. This reduces the number of index calculations that have
to be done on each access. Additionally, autovectorization is facilitated for the underlying
C++ compiler. In the rare case that the compiler nevertheless fails to vectorize the kernel
function code, e.g., due to overly complex kernel functions, we can also generate vec-
torized code ourselves for different vectorization instruction set architectures. However,
we have never encountered issues concerning autovectorization during our experimental
evaluation. Finally, the user can choose to unroll the second-to-innermost spatial loop, if
applicable. This reduces the stress on the memory subsystem on some architectures, be-
cause data elements can be reused between iterations of the second-to-innermost spatial
loop.
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Chapter 4

Empirical Evaluation

Extensive experimental evaluation of our proposed approach was performed, using a num-
ber of stencil benchmarks on different hardware platforms. As a performance reference,
we used the original implementations of the trapezoidal tiling scheme of Pochoir (version
0.5), the diamond tiling approach of PLUTO (version 0.10.5), and the split tiling system
of the SDSL compiler (version 0.3.1) [1, 4, 5]. The hardware and benchmarks used for
evaluation are presented in Section 4.1, and the results are discussed in Section 4.2.

4.1 Experimental Setup
Hardware

We performed benchmarks on two hardware platforms, one based on an AMD processor
and one based on an Intel processor. The former is an AMD Phenom II X6 1045T hexa-
core x86-64 processor, which is clocked at 2.7 GHz. It supports the SSE2 instruction set,
and therefore exhibits a double precision peak performance of 10.8 GFLOPS per core
(64.8 GFLOPS aggregate). The latter is an Intel Core i7-2630QM quad-core x86-64 pro-
cessor, clocked at 2.0 GHz. The AVX instruction set is supported by this CPU model, so
the double precision peak performance per core is 16.0 GFLOPS (64.0 GFLOPS aggre-
gate). Dynamic frequency and voltage scaling features and hyper-threading, if applicable,
were disabled on these processors during benchmarks, in order to acquire reproducible
and comparable results. On both platforms, benchmarks were compiled using the Intel
C++ Compiler v14.0, with the -O3 -ipo -xHOST optimization flags.

Benchmarks

A variety of stencil codes was used in our benchmarks, which we introduce by the names
that later are used to refer to them. The one-dimensional three-point heat equation stencil
that was used as an example throughout this thesis is referred to as heat-1d. We also
implemented two- and three-dimensional variants of the heat equation stencil, which are
identified by heat-2d and heat-3d, respectively. The two-dimensional variant is a five-
point stencil, while the three-dimensional variant is a seven-point stencil. Furthermore,
several Jacobi smoother stencils were implemented. j1d3 is a one-dimensional three-point
stencil, j2d5 and j2d9 are two-dimensional five-point and nine-point stencils and j3d7 is a
three-dimensional seven-point stencil.
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The memory footprint of the data grid was set to 47.68 MB for one- and two-di-
mensional benchmarks. This was achieved by choosing spatial dimension sizes of 6.25 ·
106 grid points for one-dimensional stencils, and 25002 grid points for two-dimensional
stencils. Stencil computations were performed over 2000 time steps each. Three dimen-
sional stencil computations were performed on a data grid of size 4003 over 200 time
steps, resulting in a memory footprint of 488.28 MB. Thus, the data grid is large enough
to overflow the last level cache on both platforms for sure.

We employed autotuning to find near-optimal tile sizes for our implementation, the
PLUTO compiler and the SDSL compiler. No autotuning was performed for the Pochoir
stencil compiler, as it does not expose tile sizes to the user. In doing so, we relied on
the autotuning tool distributed with the PATUS framework [6], which can be used for
autotuning of arbitrary programs. Since a genetic algorithm is employed, the time needed
for autotuning was reduced significantly in comparison to plain traversal of the entire
parameter search space.

Split tiling can be performed either as fully nested split tiling or as hybrid split tiling,
which was detailed in Section 2.3.2. Hybrid split tiling generally exhibits higher perfor-
mance than nested split tiling, due to smaller tile sizes being valid in stencil computations
of higher dimensionality. For that reason, we decided to evaluate only hybrid split tiling
on the two- and three-dimensional benchmarks. Hybrid split tiling is not applicable to
one-dimensional stencil computations, so nested split tiling was performed on the respec-
tive benchmarks.

4.2 Experimental Results
Figure 4.1 shows absolute performance for all benchmarks on the AMD-based platform,
and Figure 4.2 does so for experiments on the Intel-based platform. Our optimization ap-
proach exhibits a strong performance benefit for two- and three-dimensional stencil codes
on both platforms, while falling behind the SDSL compiler for several one-dimensional
stencil codes.

One-Dimensional Benchmarks

Based on the preliminary evaluation of our approach for Pochoir’s trapezoidal tiling al-
gorithm [9], a notable performance improvement over Pochoir and PLUTO was expected
for one-dimensional benchmarks. This expectation proved true on both platforms. On the
AMD platform, optimized trapezoidal tiling outperforms Pochoir between 1.27× on j1d3
and 1.59×, while the speedup of optimized diamond tiling over PLUTO ranges from a
low of 1.50× on heat-1d to a high of 1.60× on j1d3. Slightly lower speedup is achieved
on the Intel platform, where optimized trapezoidal tiling performs up to 1.32× faster than
Pochoir on heat-1d, and optimized diamond tiling performs up to 1.59× faster on j1d3.

The optimized vector parallelism provided by the SDSL compiler proved to be con-
siderably more effective than trapezoidal or diamond tiling, performing comparable to
our approach on the AMD platform, and outperforming it on the Intel platform by up
to 1.28×. Consistent with the results reported by Henretty et al., the SDSL compiler
achieved a major speedup over Pochoir and PLUTO on all one-dimensional benchmarks.
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Figure 4.1: AMD Phenom II X6 1045T SSE2 Performance

Two-Dimensional Benchmarks

The performance improvement our approach achieves increases significantly for two-di-
mensional benchmarks. On the Intel quad core platform, optimized diamond tiling and
split tiling outperform Pochoir, PLUTO and the SDSL compiler across all benchmarks.
Especially hybrid split tiling was able to benefit greatly from execution order optimiza-
tion, resulting in a speedup over the SDSL compiler between 1.35× on heat-2d and 2.14×
on j2d9. Optimized diamond tiling achieved a speedup over the PLUTO compiler rang-
ing from 1.37× on j2d5 to 1.89× on j2d9. Although the SDSL compiler falls behind
our implementation, it still yields a considerable performance increase over Pochoir and
PLUTO on most benchmarks.

On the AMD hexacore platform, optimized split tiling also exhibits high performance,
while optimized diamond tiling falls behind the SDSL compiler on heat-2d. Speedup
for split tiling ranges from a low of 1.18× on j2d9 to a high of 1.68× on j2d5, while
optimized diamond tiling achieves a speedup over PLUTO of up to 1.64× on j2d5. On
both platforms, optimized as well as unoptimized trapezoidal tiling fell behind diamond
tiling and split tiling on most benchmarks, which has already been observed in previous
research, and was therefore expected [1, 5].

Hybrid split tiling as performed by the SDSL compiler limits parallelism to the inner-
most spatial dimension for two-dimensional stencil computations, because the outermost
dimension is decomposed into parallelogram shaped tiles which are processed sequen-
tially. Our optimization approach eliminates dependences that restrict parallelism to the
innermost spatial dimension, thus improving parallelism. Additionally, Henretty et al. ob-
served load balancing issues on an AMD hexacore platform for two-dimensional stencil
computations, which are addressed by our dynamic scheduling approach as well.
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Figure 4.2: Intel Core i7-2630QM AVX Performance

Three-Dimensional Benchmarks

Since the number of redundant dependences increases with dimensionality of the sten-
cil computation, high performance was expected of optimized diamond tiling and split
tiling for three-dimensional benchmarks, and was indeed observed. Again, the perfor-
mance of optimized diamond tiling and split tiling exceeds that of all remaining tiling
algorithms on both platforms. However, optimized split tiling falls behind optimized di-
amond tiling, most likely due to the tile size requirements imposed on split tiles (see
Section 2.3.2). On the AMD hexacore platform, speedup of optimized diamond tiling
over PLUTO ranges from a low of 1.85× to a high of 2.48×, while optimized diamond
tiling exhibits a speedup of 1.23× up to 1.53×. Benchmarks on the Intel quadcore plat-
form yield a speedup ranging from 1.38× to 1.54× for diamond tiling and 1.60× for split
tiling.

In compliance with previous research, PLUTO’s diamond tiling outperforms Pochoir
on all benchmarks. However, we were not able to reproduce a performance drawback of
the SDSL compiler’s hybrid split tiling in comparison to Pochoir or PLUTO, as it was
observed by Henretty et. al. [1]. Generally, PLUTO exhibited a significantly lower than
expected performance across all benchmarks on all platforms, which peaked in a 2.48×
speedup of optimized diamond tiling over PLUTO for heat-3d on the AMD platform.
We suspect that this performance anomaly can be traced back to PLUTO not being able
to parse and process modulo operations in array subscripts. The kernel functions of all
stencil computations that we used for benchmarks access only the value of grid points
in the previous time step. Therefore, it is sufficient to maintain two copies of the space
grid at a time, one of which contains values at time t +1, and the other contains values at
time t. As opposed to our implementation, as well as to Pochoir and the SDSL compiler,
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PLUTO does not account for this during code generation. The workaround employed by
the original examples shipped with the PLUTO compiler is to modify the source code ac-
cordingly after code generation through a shell script. However, we decided against this
workaround, since is highly error-prone. Instead, we map array accesses to the respective
grid copy using modulo operations that are performed by a wrapper template. The down-
side of this solution is that now modulo operations are performed on each single array
access, leading to the considerable slowdown that we observed.
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Chapter 5

Conclusion

In this thesis, we have proposed an approach to increase the performance of existing
tiling schemes in stencil computations further. This is achieved by eliminating redundant
inter-tile dependences, and by employing a dynamic schedule for tile processing, thus
improving both load balance and data reuse. Inter-tile dependences correspond to either
implicit or explicit synchronization, so reducing the number of dependences decreases the
amount of synchronization that is necessary during a stencil computation. In particular,
by dynamically scheduling tiles onto available processor cores, we were able to avoid
barrier synchronization entirely. The latter is, for example, commonly present at the end
of parallelized loops, as they are generated by the PLUTO and SDSL compilers. Our op-
timization approach follows the general idea of the compiler-assisted dynamic scheduling
approach proposed by Baskaran et al. for the PLUTO compiler [28], but we have studied
the applicability of dynamic scheduling techniques for a wider range of tiling algorithms.

We implemented our optimization approach as a C++ template library for the tiling
algorithms employed the Pochoir stencil compiler, the PLUTO compiler, and the SDSL
compiler. Experimental evaluation of the approach on a number of stencil benchmarks
exhibits a strong performance increase over the original tiling schemes of the respective
compilers. While we fell behind the SDSL compiler for one-dimensional stencil com-
putations, a consistent speedup frequently exceeding 1.5× was observed for two- and
three-dimensional stencil computations on both an AMD-based and an Intel-based plat-
form. Peak speedup values beyond 2.0× were observed, however these were traced back
to a technical limitation of the original tiling framework.

Tight restrictions were imposed on stencil codes throughout this thesis, since we ex-
amined only single-statement stencils with constant dependences. Future research is nec-
essary in order to determine to what extent our approach can be applied to arbitrary sten-
cil computations. Furthermore, our scheme could be enhanced further in several ways.
For instance, we did not incorporate the DLT data layout transformation performed by
the SDSL compiler into our implementation, leaving room for improvements concerning
fine-grained vector parallelism. We also relied entirely on the OpenMP scheduler for dis-
tributing tile processing tasks, which is another starting point for additional optimizations.
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