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Abstract

The Polyhedron Model is an abstract representation of loop programs. Optimized
schedules are usually obtained by heuristics solving linear inequalities [55]. This
master’s thesis explores the search space of legal multi-dimensional schedules for
a Static Control Part (SCoP) by randomly selecting regions of the search space
and generating samples from each region. Furthermore, a performance prediction
function is trained with machine learning techniques.

Static analysis tools, such as Polly [4], extract the Static Control Parts (SCoPs)
of a program. With the use of dependency information, a given algorithm selects
regions of the search space and models them as a list of polyhedra. Each polyhedron
corresponds to one schedule dimension.

The result of normalization and performance measurement on a high number
of generated schedules provides the input data for machine learning a performance
prediction function. Features like the possibility for parallelization, out-of-order
execution and tiling, cache hit rate and computational overhead prediction are ex-
tracted from the schedule representation and form the basic factors of the learned
function. Benchmarks from the Polybench suite [5] are used to evaluate the predic-
tion function.
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Chapter 1

Introduction

Automatic loop optimization is highly relevant in high performance computing
[17, 18, 31]. Most algorithms, for example the PLuTo algorithm [18], build an
optimized parallel execution order by solving linear inequalities. Recent work has
shown that exhaustive search in the space of legal loop transformations can lead to
better transformation sequences that are out of the range of classical compiler opti-
mizations [53, 55]. But the huge number of runtime evaluations needed for iterative
compilation optimization is computationally expensive.

This chapter motivates the need for a surrogate function that approximates the
performance of different loop transformations in the polyhedron model. Further-
more, an overview of the components of such a function is given.

1.1 Motivation
Iterative compilation techniques usually optimize compiler flags and parameters.
Among others, Pouchet et al. [53, 55] extended this approach to the variety of differ-
ent transformation sequences of the program using a genetic algorithm. The genetic
algorithm iteratively improves a set of schedules by joining up the transformations of
the best schedules, which are determined by the runtime of the transformed program.
For this purpose, the whole set of programs must be executed at each iteration of the
algorithm. A fitness function that classifies a schedule by its performance-related
key features without executing them can accelerate this process. Furthermore, if
the fitness function performs significantly faster than the actual program execution
takes, the number of generations and/or schedules per generation can be increased.

Just-In-Time(JIT) compilers can also benefit from such a surrogate function
that approximates the runtime of a transformed program by its schedule. The
performance of a schedule highly depends on the target platform, e.g. the cache size
and number of cores. Furthermore, some optimizations can only be applied with
the knowledge of the runtime parameters. With a surrogate function, JIT compilers
can verify whether a given (pre-optimized) schedule is likely to perform well on the
target hardware. Since JIT compilers operate at runtime, it is necessary to decide
rapidly whether code generated from a specific schedule is worthwhile.
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1.2 Approach
This master’s thesis proposes to build a surrogate function that predicts the perfor-
mance of a schedule in the polyhedron model and performs faster than the actual
execution time. In order to learn such a function with machine learning techniques,
different features, which are expected to highly influence the performance of a sched-
ule, are inspected:

• Parallelism. Parallel computation of (transformed) loops can reduce the
execution time drastically, especially if the target platform has a huge number
of CPU cores [18, 42].

• Data Locality. Programs whose performance is bounded by memory band-
width can benefit from CPU caches, because recently used data are kept for
reuse in faster memory levels. A transformed loop program will utilize the
caches better if the number of distinct memory accesses between two mem-
ory references to the same cell is small. Loop tiling can further increase data
locality [18, 36].

• Overhead. Loop transformations that result in expensive boundary checks
and/or require additional if-statements inside the loops produce computational
overhead. This affects the performance of the transformed program, especially
if the program is computation bound.

• Inner Parallelism. The absence of dependencies at the innermost loop can
exploit instruction level parallelism and hide cache latency [37, 67]. Both
influence the performance of a loop program.

These features are evaluated on several programs of the Polybench Benchmark
Suite [5]. For each program, one thousand schedules are sampled well distributed
from 50 different regions of the search space of legal transformation sequences. The
measured runtime of the generated programs and the result of the features, that
are calculated on the normalized schedule representation, form the input data of
machine learning a performance prediction function.

1.3 Evaluation
First, we evaluate the runtime of the proposed sampling algorithm. Furthermore,
the feature calculation time is of high interest, since it must not exceed the measured
runtime of the generated programs, otherwise the performance prediction function
has no advantage over simple runtime measurement.

Second, the correlation between the feature values and the measured data is
examined. The feature results form the input vector for the machine learning algo-
rithms and, hence, must correlate with the execution times in order to get a accurate
performance prediction.

Finally, we learn performance prediction models with linear regression and the
k-nearest neighbor algorithm. For the input data set we chose the following six
benchmark programs from the Polybench Suite: cholesky, gemm, seidel-2d, syrk,
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syr2k and trmm, which are some variation of matrix multiplications, a matrix de-
composition and a two-dimensional 9-point stencil. Using both machine learning
algorithms, the prediction models are trained on three of the six chosen benchmark
programs and validated on the other three benchmarks.

1.4 Related Work
Nisbet [49] used a prediction function in the GAPS framework for Single Program
Multiple Data (SPMD) execution, in order to evaluate the performance of different
loop transformations in a genetic algorithm approach. The naive fitness function
simply calculates the sum of loop and synchronization costs of the program. As-
suming that not the whole program but single loops are computed in parallel, our
fitness function includes the granularity of parallelism of the program. Furthermore,
fast sequential parts of a program rely on good cache reuse, which is not part of the
prediction function by Nisbet.

Caşcaval and Padua [19] proposed a stack histogram algorithm to estimate the
number of cache misses. For each memory reference m to a memory cell C the
stack distance (number of distinct memory references between m and the last refer-
ence to the same cell C) is computed using a stack processing algorithm [43]. The
number of memory references is accumulated for each stack distance to obtain the
stack histogram. The sum of all memory references that have a larger stack distance
than the cache size estimates the total number of cache misses. Even with efficient
algorithms [10], the stack histogram computation is not applicable at run-time. For
so-called loop-carried dependencies (two loop iterations reference the same memory
cell) the number of loop iterations between the two memory references is computed
and referred to as the distance vector. The set of intermediate memory references
between two depending loop iterations is computed symbolically for the entire loop
by one single formula, which depends on the iteration variable of the surrounding
loop. The cardinality of this set is the stack distance for the target memory reference
and is identical for all dependency instances of the loop, as long as the dependency is
uniform (the distance vector is constant for all dependency instances), loop bound-
aries are constant or loop invariant and there are no conditional instructions in the
loop body. But loop skewing [69] transforms nested loops such that the variables of
inner loops depend on outer loop variables. This changes the execution order of the
memory references inside this loop nest and can, hence, enable additional loop tiling
[36] to improve data locality. This thesis includes schedules that can have skewed
loops. In that case, the loop boundaries are neither constant nor loop invariant and
the stack distance can only be computed inaccurately with the stack histogram algo-
rithm. Some other loop transformations, like loop fusion, can introduce conditional
instructions inside a loop body, which also leads to inaccuracy. Furthermore, the
dependency analysis, needed for the stack histogram algorithm, is computational
expensive on highly skewed loops [56].

Chatterjee et al. [21] propose an alternative way to compute cache misses based
on the cache architecture. The commonly used n-way cache is organized in different
cache sets, which store n cache lines. A cache line is a set of data that is transfered
from RAM to the caches. A memory reference to a cache line B results in a cache
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miss if there is an earlier reference to a different cache line mapping to the same
cache set as B and there is no access to B between this earlier access and the current
access. These conditions are expressed by a set of Presburger formulas and define
a polytope, whose number of elements is equal to the number of cache misses of
the loop nest. Since the initial cache state is not known, the analysis is divided
into interior misses, which can be counted by analyzing the loop in isolation, and
potential boundary misses, which depend on the initial cache state.

1.5 Result
The proposed sampling algorithms is fast enough to obtain a huge number of sched-
ules in a reasonable time. Experiments showed that this is valid for at least half of
the benchmark programs of the Polybench Suite.

During the experiments we made one interesting observation, that a good cache
hit rate (independent of the cache level) does not imply a fast execution time for all
of the six chosen benchmark programs. That explains that only some of the pro-
posed features correlate directly with the measured data of the generated programs.
For some features the outcome is totally different with schedules from different
SCoPs. The learned prediction functions are over-fitted to the trainings benchmark
programs, such there is no correlation between the predicted and measured execu-
tion times of schedules from some of the testing benchmarks. This means that the
prediction model cannot be used with arbitrary programs.

From this result we conclude that some of the proposed feature metrics are not
suitable for performance prediction of a schedule. We believe that there must be
other features that lead to a better correlating performance prediction model.
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Chapter 2

Polyhedron Model

Automatic parallelization and data locality optimization is an important topic in
high performance computing [17, 18, 31]. The polyhedron model permits to ex-
plore a wide range of loop transformations systematically. Among others, the set
of expressible transformations comprises loop reversal, loop interchange, and loop
skewing [9, 11, 12, 69]. This chapter starts with background knowledge about the
polyhedron model and describes some loop transformations that can be applied. A
short part at the end shows different schedule representations in the polyhedron
model.

2.1 Basics
The polyhedron model is an abstract representation of a loop program as a computa-
tion graph [30]. Each node of the graph, representing an iteration of a statement, is
associated with a point in a Z-polyhedron, which is inferred from the bounds of the
surrounding loops. The set of code regions that are expressible in the polyhedron
model is limited to so-called Static Control Parts (SCoP), although recent work
tries to enhance the application field [32, 16]. A SCoP is the maximal set of con-
secutive static control statements, like for-loops and if-statements, where conditions
and array subscript functions are limited to affine functions of iteration variables
and global parameters, that are known at compile time. The exact mathematical
definition of an affine function and a Z-polyhedron, also called lattice-polyhedron,
is given in Definitions 2.1 and 2.2. A more detailed view on polyhedral theory and
integer programming is presented by Schrijver [58].

Definition 2.1 (Affine Function). A function f : Km → Kn is affine if there exists
a vector ~b ∈ Kn and a matrix A ∈ Km×n, such that:

∀~x ∈ Km : f(~x) = A~x+~b

Definition 2.2 (Z-Polyhedron). A set P ∈ Zm is a Z-polyhedron if there exists a
system with a finite number of inequalities A~x ≤ ~b, such that:

P = {~x ∈ Zm|A~x ≤ ~b}
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for(i = 0; i < n_i; i++) {
C[i] = 0; // statement S[i]
for(j = 1; j < n_j; j++)

C[i] = C[i] + A[i][j - 1] + B[j]; // statement R[i,j]
}

Example 2.3: Simple SCoP example

The program code in Example 2.3 represents one SCoP over two nested loops with
a total of two different non-control statements S and R.

For each statement of a SCoP, S and R in our example, the control and the
data flow are expressed by three algebraic structures: an iteration domain, sub-
script functions and a schedule [14, 53]. Several algorithms and tools exist that can
regenerate code from this abstract model [14, 57].

Iteration Domain. The iteration domain of a statement S contains all dynamic
instances that are executed within the statement’s surrounding loops. Each state-
ment instance is identified uniquely by the values of the iteration variables of the
statement’s surrounding loops, also called the iteration vector ~x. Since all loop
bounds are affine inequalities, the iteration domain of each statement in a SCoP can
be represented by a polyhedron. This polyhedron is bounded by constraints that
are derived from the bounds of the statement’s surrounding loops.

Statement R from Example 2.3 is executed within two loops i and j. The itera-
tion domain, as a polyhedron, is spanned according to the bounds of the loops and
is defined by

DR = {(i, j) | 0 ≤ i < ni ∧ 1 ≤ j < nj}.

Subscript Function. Inside a SCoP, all memory accesses are considered to be
array references (a reference on a variable is just a specific array reference). The
subscript function is an affine function that calculates the data location on which a
statement operates. There is one subscript function for each memory access of each
statement. This allows to analyze the data flow within the SCoP.

In Example 2.3 the subscript function for the read access on A[i][j − 1] of state-
ment R is defined by f(i, j) = (i, j − 1).

Schedule. A schedule is a function which provides an execution date for each in-
stance of a statement. All instances are executed according to the increasing order
of the execution dates. As a simplification, only affine scheduling functions are con-
sidered, since non-affine functions yield significant problems in code generation [34].
Given a statement S, the scheduling function θS can be written in the form

θS : Zdim(DS) → Zp : xS → K

 xS
~n
1

 , K ∈ Zp×(dim(DS)+dim(~n)+1)

where xS is the vector of iteration variables, ~n is the parameter vector specified
at compile time and K is a constant coefficient matrix. In case K has multiple
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rows (p > 1), θS is a multi-dimensional schedule and the scheduling function of di-
mension d is referred to as θdS. The p-dimensional result of the scheduling function
(c1, . . . , cp) is interpreted like a clock. The first schedule dimension is the most
significant one and is treated like the hours, next one like minutes, and so on. Ac-
cording to Feautrier [29](Theorem 2) every SCoP has a multi-dimensional schedule.
The schedule of a SCoP is a set of scheduling functions for all its statements and is
named θ.

A schedule for a statement S is defined as complete, if the scheduling function
θS is injective. This means that each statement instance of S is assigned a different
execution date. The schedule of a SCoP θ is complete, if all scheduling functions are
injective and it does not map instances of different statements to the same execution
date.

Example 2.3 has the following multi-dimensional scheduling functions: θS(i) =
(i, 0) and θR(i, j) = (i, j). The instances of both statements are executed according
to i in the first schedule dimension. The second dimension orders the statement
instances, such that one instance of S is executed at time 0 and the instances of R
are executed after S according to j, because j ∈ [1, nj − 1].

Dependencies. The space of possible coefficients in the scheduling function’s ma-
trix for multi-dimensional schedules is large and contains a wide range of different
schedules for the same SCoP. But choosing coefficients for the schedule matrix K
randomly can likewise result in an illegal program version. Among others, Nisbet
observed that arbitrary coefficients likely lead to an illegal schedule [48, 50].

To avoid this problem, the coefficients must be selected by additionally consider-
ing the dependencies between statement instances. There is a dependency between
two statement instances, if both access the same memory location and at least one
access is a write operation. A dependency can be modeled as a relation between
two sets of statement instances. Instances of the second set depend on instances
from the first set, according to the relation. The commonly used mathematical
representation of a dependency is the dependency polyhedron, which is a subset of
the Cartesian product of the iteration domains of two statements R and S. Each
point inside this polyhedron corresponds to a dependency between two statement
instances ~xR and ~xS [27, 55].

A schedule is legal, if it satisfies all dependencies of the SCoP. The mathematical
description for dependency satisfaction is given in Definition 2.4.

Definition 2.4 (Dependency Satisfaction). Let S and R be two statements, DS,R

be a dependency relation, and θS and θR be the scheduling functions of the two
statements. θS and θR solves the dependency DS,R, if

∀d : ~xS → ~xR ∈ DS,R : θS(~xS) ≺ θR(~xR) (≺ denotes the lexicographical ordering.1)

One-dimensional scheduling functions must carry all dependencies within the sin-
gle time dimension. Using multi-dimensional schedules, a dependency needs to be
weakly solved (θR(~xR)− θS(~xS) � 0) for the first time dimensions until it is strongly
solved (θdR(~xR)− θdS(~xS) > 0) at a given time dimension d. This schedule dimension

1(a1, . . . , an) ≺ (b1, . . . , bm) iff there exists an index 1 < i < min(n, m) such that
(a1, . . . , ai−1) = (b1, . . . , bi−1) and ai < bi
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d satisfies the dependency. Once a dependency is solved strongly, no further time
dimension d′ > d need to solve this dependency [55].

In this context one also talks about dependency directions. The direction of a
dependency is defined in Definition 2.5.

Definition 2.5 (Direction of a Dependency). Let S and R be two statements, DS,R

be a dependency relation and θS and θR be the scheduling functions.
At schedule dimension d, the direction function of the dependency between two

statement instance ~xS → ~xR ∈ DS,R is defined as:

dirθd
S ,θ

d
R

(~xS → ~xR) =


1 (forward) , if θdS(~xS)− θdR(~xR) > 0
0 (no direction) , if θdS(~xS)− θdR(~xR) = 0
−1 (backward) , if θdS(~xS)− θdR(~xR) < 0

The total dependency relation DS,R has a direction, if all ~xS → ~xR ∈ DS,R have the
same direction.

Example 2.3 contains two data dependencies. The first one

{S[i]→ R[i, 0] : 0 ≤ i < ni}

is the dependency between the two instances S[i] and R[i, 0] and indicates, that the
statement instance R[i, 0] must be executed after S[i] for all i ∈ [0;ni − 1], because
both access the same memory cell C[i]. The second dependency

{R[i, j]→ R[i, j + 1] : 0 ≤ i < ni ∧ 1 ≤ j < nj − 1}

only affects the statement R and implies that the inner loop cannot be executed in
parallel, since there is a read and write access on the same memory cell C[i] in each
j-iteration.

Most scheduling algorithms, e.g. Pluto [17, 18] or the iterative approach by
Pouchet et. al. [55, 53], use dependency information to construct a schedule for
a given SCoP. More details on constructing a search space, containing only legal
schedules, are given in Chapter 3.

2.2 Loop Transformations
The schedule, as the iteration domain transformation function, describes the exact
execution date of each statement instance. The execution sequence of the statement
instances can be rearranged by applying a different loop transformation on the
iteration domain. The resulting target code can potentially have more data locality
and the possibility to execute more loops in parallel, which improves the runtime of
the SCoP [17].

Within the polyhedron model each unique coefficient matrix for the schedule
represents a different iteration domain transformation for the given SCoP. It is
recalled that this schedule is only legal if it satisfies all the dependencies. This
chapter will illustrate the following transformations: loop interchange, loop reversal,
loop skewing, loop distribution, loop fusion and loop peeling [52, 54]. Additionally,
the more complex tiling transformation is discussed.
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2.2.1 Loop Interchange
In perfectly nested loops, which means that all statements occur in the innermost
loop [8], the order of the loops can be interchanged. This is only legal if it does not
invalidate the program. In Example 2.6 (a) the statement S is surrounded by two
loops. After swapping the two schedule dimensions of θS in part (b), now the loop
with the iteration variable j is the outermost loop.

θS(~xS) =
(

1 0 0 0
0 1 0 0

)
i
j
n
1

 = (i, j)

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)

S(i,j)

(a) original schedule and program code

θS(~xS) =
(

0 1 0 0
1 0 0 0

)
i
j
n
1

 = (j, i)

for(j = 0; j < n; j++)
for(i = 0; i < n; i++)

S(i,j)

(b) schedule with interchanged loops and
program code

Example 2.6: Example of loop interchange: (a) the original schedule and (b) after loop
interchange transformation.

2.2.2 Loop Reversal
The direction, in which a loop processes its iteration range, can be reversed. This
can be done for each nested loop separately. Example 2.7 shows a loop reversal
transformation. The iteration over the instances of S is reversed by negation of
the iteration variable’s coefficient. After the transformation (b), the resulting code
executes the statement instances of S in reversed order, beginning with the last
element of the iteration range.

θS(~xS) =
(
1 0 0

) i
n
1

 = (i)

for(i = 0; i < n; i++)
S(i)

(a) original schedule and program code

θS(~xS) =
(
−1 0 0

) i
n
1

 = (−i)

for(i = n - 1; i >= 0; i--)
S(i)

(b) schedule reversed loop iteration and
program code

Example 2.7: Example of loop reversal: (a) the original schedule and (b) after loop
reversal transformation.
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2.2.3 Loop Skewing
With skewing, the boundary of an inner loop depends on an outer loop variable [69].
Consider the SCoP in Example 2.8, which has the following three dependencies:
S[i, j] → S[i + 1, j + 1], S[i, j] → S[i, j + 1] and S[i, j] → S[i + 1, j]. Part (a) and
(b) show the schedule and the program code before and after the transformation.
The graphs in (c) and (d) show the execution date of the statement instances. Each
point corresponds to a statement instance and an arrow represents a dependency
instance. For both graphs, the parameter n is set to 4. As can be seen in (c),
neither the i nor the j-loop can be executed in parallel, because each statement
instance depends on instances that are executed before in both dimensions. After
the skewing transformation (d), the inner loop can now be computed in parallel,
since the dependencies are shifted towards the first dimension (j-loop).

θS(~xS) =
(

1 0 0 0
0 1 0 0

)
i
j
n
1

 = (i, j)

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)

S(i,j)

(a) original schedule and program code

0 1 2 3
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1

2

3

5

6

4

c1

c2

(c) Neither the i nor the j loop can be
executed in parallel.

θS(~xS) =
(

1 1 0 0
0 1 0 0

)
i
j
n
1

 = (i+j, j)

for(i = 0; i < 2*(n -1) +1; i++)
for(j = max (0, i-n+1);

j < min(i+1, n);
j++)

S(i - j,j)

(b) schedule with skewed loop and pro-
gram code

0 1 2 3
0

1

2

3

4

5

6
c1

c2

(d) The inner j loop does not carry de-
pendencies and can be parallelized.

Example 2.8: Example of loop skewing: (a) the original schedule and (b) after loop
skewing transformation. (c) and (d) shows the execution date of the statement instances.
Each point corresponds to an instance and an arrow represents a dependency.
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2.2.4 Loop Distribution and Fusion
Loop distribution splits a single nested loop, with more than one statement, into
many loop nests. This can create a total order on statements, where all instances
of one statement are executed before or after the instances of another statement.
It is also possible to fuse two statements into the same nested loop. Example 2.9
shows the distribution of the loop that surrounds the two statements R and S.
In part (a), both statements are executed in the same loop. The second schedule
dimension determines the execution order inside the loop. In the transformed code
(b) all instances of S are shifted back by the value of n, such that all instances of
R are executed before S. The second schedule dimension of the new schedule does
not influence the execution order of the statement instances anymore and can be
removed. A more detailed description of multi-dimensional schedule normalization
is presented in Section 3.3.

θR(~xR) =
(

1 0 0
0 0 0

) i
n
1

 = (i, 0)

θS(~xS) =
(

1 0 0
0 0 1

) i
n
1

 = (i, 1)

for(i = 0; i < n; i++) {
R(i)
S(i)

}

(a) original schedule and program code

θR(~xR) =
(
1 0 0

) i
n
1

 = (i)

θS(~xS) =
(
1 1 0

) i
n
1

 = (i+n)

for(i = 0; i < n; i++)
R(i)

for(i = n; i < 2*n; i++)
S(i - n)

(b) schedule with distributed loops and
program code

Example 2.9: Example of loop distribution: (a) the original schedule and (b) after loop
distribution transformation.

2.2.5 Loop Peeling
The peeling transformation extracts one or more statement instances of a given loop.
If the coefficient value is at least as high as the parameter n, the execution sequence
of two or more statements can be reordered. The loop peeling transformation is
depicted in Example 2.10. The original schedule in part (a) executes S[i] straight
after R[i]. After the transformation (b) the execution date of S is shifted back by
one. As a result, S[i − 1] is now directly executed after R[i] and the first instance
of R and the last one of S are executed before and after the loop.
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θR(~xR) =
(

1 0 0
0 0 0

) i
n
1

 = (i, 0)

θS(~xS) =
(

1 0 0
0 0 1

) i
n
1

 = (i, 1)

for(i = 0; i < n; i++) {
R(i)
S(i)

}

(a) original schedule and program code

θR(~xR) =
(

1 0 0
0 0 0

) i
n
1

 = (i, 0)

θS(~xS) =
(

1 0 1
0 0 1

) i
n
1

 = (i+1, 1)

R(0)
for(i = 1; i < n; i++) {

R(i)
S(i -1)

}
S(n -1)

(b) schedule with an extracted single
statement instance from the loop and
program code

Example 2.10: Example of loop peeling: (a) the original schedule and (b) after loop
peeling transformation.

2.2.6 Loop Tiling
On modern processors the reuse of cached data is of high importance. Tiling is
a transformation that can improve data locality of a loop nest by changing the
execution order of the statement instances without invalidating the semantics of
the program. From a mathematical perspective, tiling is a partitioning of the loop
iteration space that induces a renumbering and a reordering of the iterations. A
partition of the iteration space is called a tile. Unlike many other transformations,
tiling is not unimodular because it modifies the iteration domain [36]. Tiling can
have a huge performance impact [35].

The tiling transformation doubles the number of loops n around a statement.
The outer n loops enumerate the tiles and the inner n loops are used to execute
all the iterations of each tile. Tiling is only legal if there are no dependency cycles
between the tiles. The schedule dimensions that generate the tiled loops must solve
all of the remaining dependencies of the SCoP at least weakly as a sufficient condition
for tiling [17, 36, 70].

Example 4.19(a) shows a schedule with these two dependencies: D1 : S[i, j] →
S[i + 1, j + 1] and D2 : S[i, j] → S[i + 1, j]. The iteration domain is given as
DS = {(i, j) | 0 ≤ i < 6 ∧ 0 ≤ j < 6}. The two dependent statement instances of
D1 access the same memory cell, but they are executed in different iterations of the
outer loop i (c). If the number of array references from iterations of the inner loop j
is to high, the data of the memory cell may not be present in the cache at the second
access. The tiling transformation adds two new iteration coefficients to the iteration
domain of S, that iterate over the tiles. Each tile contains only a partition of the
original iteration domain. The new execution order is depicted in (d). The outer
two dimensions enumerate the four rectangular tiles. Inside a tile, the statement
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DS = {(i, j)|0 ≤ i < 6 ∧ 0 ≤ j < 6}

θS(~xS) =
(

1 0 0 0
0 1 0 0

)
i
j
n
1

 = (i, j)

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)

S(i,j)

(a) iteration domain, original schedule
and program code

0 1 2 3 4 5 6 7

0

1

2

3

4

5
c1

c2

(c) 5 statement instances are executed
between the two instances of the red de-
pendency.

DS = {(ti, tj, i, j)|0 ≤ i < 6 ∧ 0 ≤ j < 6
ti = bi/3c ∧ tj = bj/3c}

θS(~xS) =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0





ti
tj
i
j
n
1


= (ti, tj, i, j)

for(ti = 0; i < n; ti +=3)
for(tj = 0; j < n; tj +=3)

for(i = 3ti; i < 3ti +3; i++)
for(j = 3tj; j < 3tj +3; j++)

S(i,j)

(b) iteration domain, loop tiled schedule
and program

0 1 2 3 4 5 6 7

0

1

2

3

4

5

1 2

3 4
c1

c2

(d) The i and j loop are tiled with a
tile size of 3. Now only 2 statement in-
stances must be executed between the two
instances of the red dependecy.

Example 2.11: Example of loop tiling: (a) the original schedule and (b) after loop
tiling transformation with tile sizes of 3. (c) and (d) shows the execution order of both
schedules. Each point corresponds to a statement instance and an arrow represents a
dependency.
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instances are executed in the order of the original schedule. It is possible to define
another execution order for the statement instances inside a tile as well. For a given
dependency instance inside a tile (e.g. the marked one in the graph) the number
of statement instances that are executed between the two dependent instances is
smaller than with the original schedule. This dramatically increases data locality
inside a tile.

Unlike the loop transformations before, tiling modifies the iteration domain.
Thus, it is hard to integrate tiling in the search space of legal schedules. But tiling
can also be seen as a post-scheduling transformation. Some tools, like Polly [4],
recognize tilable schedule dimensions and can perform the tiling transformation on
them.

2.3 Schedule Representation
There are different ways to represent multi-dimensional schedules in the polyhedron
model. This chapter discusses the representation of a schedule as a matrix, a union
map and as a schedule tree. Further tree-like representations are illustrated and
compared by Verdoolaege et al. [65].

The schedule of each statement of a SCoP may be specified by a scheduling
function with a coefficient matrix, like it is introduced in Section 2.1. The overall
schedule for all statements is a set of scheduling functions with the specified matrices.
From this representation, it is hard to derive the order in which the statement
instances are executed.

A very similar schedule representation is the union map. It provides a multi-
dimensional affine linear expression for each statement Sk, which is the result of
the matrix vector product of the schedule matrices KSk

with the vectors ( ~xk, ~n, 1)T .
The union map representation omits unnecessary zero coefficients, but the execution
order relation between two statements is still hard to identify.

Schedules in the polyhedron model naturally have the form of a tree [65]. Both,
the schedule matrix and the union map, only express the tree implicitly. Verdoolaege
et al. [65] provide a comparison of different schedule representations and introduce
a generic schedule tree, which is also used in this thesis. The tree is built with the
following node types.

• Context: The context node introduces new constants or constraints on known
constants.

• Domain: The domain node defines the iteration domain of all statements that
are scheduled by the descendant nodes.

• Sequence: The sequence node defines the specific order, in which the children
nodes are processed.

• Set: The set node processes its children nodes in arbitrary order.

• Filter : The filter node is typically the child of a sequence or set node and
selects a subset of statement instances introduced by outer domain nodes.
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• Band: The band node contains a multi-dimensional affine scheduling function
for statement instances defined by outer domain nodes and selected by outer
filter nodes. Additionally, properties like the possibility to compute schedule
dimensions in parallel or the option to perform tiling are included.

• Mark: The mark node can be used to mark its subtree with a user-specified
label.

Each node of a schedule tree can have only one child, except sequence and set nodes.

Example 2.12 shows the schedule of Example 2.3 in different representations. The
iteration domains of the two statements are: DS = {i | 0 ≤ i < n} and DR =
{(i, j) | 0 ≤ i < n ∧ 1 ≤ j < n}. In part (a) the schedule is represented with single
scheduling functions for each statement. The representation in (b) is the matrix
vector product and is called union map, whereas in (d) the same schedule is given
in schedule tree notation.

θS(~xS) =
(

1 0 0
0 0 0

)  i
n
1



θR(~xR) =
(

1 0 0 0
0 1 0 0

) 
i
j
n
1



(a) scheduling functions for each statement.

{S[i]→ [i, 0], R[i, j]→ [i, j]}

(b) schedule as a union map.

Context{n > 0}

Domain{S[i] : 0 ≤ i < n;
R[i, j] : 0 ≤ i < n ∧ 1 ≤ j < n}

Band{S[i]→ [i], R[i, j]→ [i]}

Sequence

Filter{S[i]} Filter{R[i, j]}

Band{R[i, j]→ [j]}

(c) schedule as a tree.

Example 2.12: Different schedule representations with the iteration domains DS = {i |
0 ≤ i < n} and DR = {(i, j) | 0 ≤ i < n ∧ 1 ≤ j < n}.
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Chapter 3

Sampling Schedules from the
Schedule Search Space

Choosing the coefficients of a schedule matrix at random likely leads to an ille-
gal program version [48, 50]. There exist algorithms for computing an optimized
schedule, one example is PLUTO, an automatic parallelization tool by Bondhugula
et. al., which computes a multi-dimensional affine schedule with parallel loops on
outer dimensions and loops with dependencies on inner dimensions [17, 18].

While it is easy to verify a posteriori that a given schedule preserves all depen-
dencies, one would like to create a search space containing only the legal schedules.
This faces two combinatorial problems. First, if using multi-dimensional schedules,
the earliest dimension in which each dependency is solved strongly can vary. This
results in a large number of different search polyhedra for each schedule dimension.
Second, the search polyhedra can contain an infinite number of schedules and the
coefficients must therefore be limited to a specific range [55]. Section 3.1 shows dif-
ferent solutions for how to construct a search space for multi-dimensional schedules.

In order to produce input data for the machine learning algorithms, a schedule
sampling strategy is needed to obtain uniformly distributed schedules from different
regions of the search space. In Section 3.2, this problem is reduced to picking points
from a Z-polyhedron uniformly. For that, different strategies are presented. Each
sampled point from a polyhedron corresponds to the coefficient vector of a matrix
row in the scheduling function.

The selected schedules are then transformed into schedule trees. Since two dif-
ferent schedules can produce the same generated imperative target code, a nor-
malization pass on schedule trees is presented in Section 3.3. This normalization
can improve analysis and readability of different schedules because it eliminates un-
used coefficients, which have no influence on the execution order of the statement
instances. It also enhances further compiler optimizations, like tiling.

3.1 Generation of the Search Space
Only multi-dimensional schedules are considered here, because according to Feautrier
not every program has a one-dimensional schedule [29]. Thus, there is one search
polyhedron for each schedule dimension.
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Building Search Polyhedra. One solution to the enormous number of possible
polyhedra is the greedy algorithm developed by Feautrier [29]. It tries to maximize
the number of dependencies that are strongly solved in the first schedule dimension
and continues recursively. The resulting search space has one search polyhedron per
schedule dimension and as few schedule dimensions as possible [29, 55].

Pouchet modified the algorithm of Feautrier slightly [55]. Additionally to solve as
many dependencies in the outer dimensions as possible, his algorithm processes the
dependencies in a specific order, determined by two criteria. First, the dependencies
are sorted by the amount of data traffic, that they generate. The more memory cells
are accessed by the statements of a dependency, the better it is placed in an inner
schedule dimension. This minimizes traffic in outer loops, whereas the reuse of data
in inner loops is maximized. If the order of two dependencies is not decidable by
the amount of traffic, the second criterion applies. Similar to Feautrier, the number
of dependencies that are solved in one schedule dimension should be maximized.
This is done by prioritizing the dependency that interferes with the lowest number
of other dependencies. Two dependencies interfere, if no one-dimensional schedule
exists that satisfies both two dependencies strongly.

The approach in Polyite proposed by Ganser et. al. expands the search space by
the dependency-to-dimension mapping, that means which dependency is satisfied
by which schedule dimension. The algorithm selects the dependencies that must
be solved strongly for each dimension randomly and returns a region of the total
search space. As a result, several of such regions must be inspected to obtain sched-
ules from the complete search space. The resulting schedule potentially has more
dimensions than necessary, but the normalization passes developed by Ganser et. al.
(described in Section 3.3) remove redundant dimensions. A step-by-step explana-
tion of the search space construction is given in Figure 3.1. First (1), the total set
of dependencies G, that are necessary for the correctness of the SCoP, is computed.
For each dependency DR,S ∈ G the space of legal schedules WDR,S

weakly solving
DR,S and SDR,S

strongly solving DR,S is precomputed. The order in which the de-
pendencies of the SCoP are processed is random. The following steps (4)(a)-(f) are
executed until G is empty. Each iteration creates a new schedule dimension d. In
order to span the search space polyhedron of the new schedule dimension in step
(a), a set of dependencies GS ⊆ G, that should be solved strongly in this dimension,
is randomly determined. The probability for the set to be empty is configurable.
Thus, outer parallel schedule dimensions are possible. The next steps, (b) and (c),
initialize a polyhedron Ld to the full space and add the constraints for solving all
remaining dependencies from G weakly. It is recalled that a dependency must be
solved weakly, until it is solved strongly in any dimension d. All further dimensions
d′ > d do not need to solve this dependency anymore. Additionally, in step (d) the
algorithm tries to solve the dependencies from GS, which should be solved strongly
in this dimension. If two dependencies interfere and, therefore, the resulting poly-
hedron would be empty, only the first dependency is chosen to be solved strongly in
this schedule dimension. Remember that the order of the dependencies is random.
As a last step (e), all dependencies from G that are solved strongly by this schedule
dimension are removed from the set of unsatisfied dependencies G.
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Data: SCoP Information (Read/Write access and iteration variable for each
Statment)

Result: Schedule Search Space
(1) Compute the set G of pairwise dependences for the SCoP;
(2) foreach dependency DR,S ∈ G do

(a) Compute WDR,S
- the space of legal schedules weakly solving DR,S:

θS(~xS)− θR(~xR) ≥ 0;
(b) Compute SDR,S

- the space of legal schedules strongly solving DR,S:
θS(~xS)− θR(~xR) > 0 ;

end
(3) d← 1;
(4) while G 6= ∅ do

(a) Select random number of dependecies to carry strongly in this schedule
dimension and put them in GS ⊆ G (P (GS = ∅) is configurable);

(b) Initialize Ld - the space for legal schedules for dimension d - to
full-space polyhedron;

(c) foreach dependency DR,S ∈ G do
Ld ← Ld ∩WDR,S

;
end
(d) foreach dependency DR,S ∈ GS do

if Ld ∩ SDR,S
6= ∅ then

Ld ← Ld ∩ SDR,S
;

end
end
(e) Remove all dependences from G that are strongly solved in Ld;
(f) d← d+ 1;

end

Figure 3.1: Construction of a Schedule Search Space

All the aforementioned algorithms can find only affine schedules. Vivien et. al. [66]
showed that the approach by Feautrier is known to be non-optimal, in sense of
finding all possible parallelism of the program. This is not due to the design of the
algorithm, but it relies on the limitation of the underlying framework. First, that
only affine schedules are considered, but handling more general scheduling functions
will cause problems in code generation [34]. Second, the polyhedron model has the
limitation that each statement only has one scheduling function. Griebl et al. [33]
developed a solution to split the iteration domain of a statement.

This master’s thesis uses the algorithm by Ganser et. al. to span multiple regions
of the search space, because later the performance prediction function is intended
to work within the Polyite project.

Bounding Search Polyhedra. After modeling a search space region, there is
one polyhedron for each schedule dimension, but each can contain an infinite num-
ber of points. For a reasonable search space exploration, it is necessary to limit
the value of the coefficients, so that the polyhedra are bounded. Pouchet et. al.
allowed coefficient values within {−1, 0, 1}, because they only considered sequential
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codes and wanted to minimize control-flow overhead [55]. With iteration coefficients
bounded to {−1, 0, 1} only unit-skewing is possible. This restriction eliminates a lot
of schedules with dimensions that expresses parallelism.

But what is a reasonable boundary for the coefficient values? Obviously, if a
value a ∈ N can be assigned to a coefficient, the negative −a should be assignable
as well. If it is an iteration coefficient, this expresses the reversal transformation,
otherwise the loop or instance-wise shift is inverted. If a is a large number, the
quantity of schedules in the search space will explode, which makes a detailed search
space exploration impossible. Further, as it will be discussed in Section 3.3, the two
schedules

θS(~x) = (5, 0, 0)

 i
n
1

 = 5 · i

(θS)′(~x) = (1, 0, 0)

 i
n
1

 = 1 · i

will produce code that iterates the statement instances of S in the same order.
Allowing high values for the coefficients will add a lot of redundant schedules to the
search space.

DS = {(i, j)|0 ≤ i < 6 ∧ 0 ≤ j < 6}

D1 : S[i, j]→ S[i+ 1, j + 1]
D2 : S[i, j]→ S[i+ 1, j − 1]

θS(~xS) =
(

3 1 0 0
2 1 0 0

)
i
j
n
1


= (3i+ j, 2i+ j)

(b) iteration domain, dependencies and
schedule that can be tiled and parallized.
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(d) The i and j loop is tiled by a tile size
of 3. Inside each tile the j loop can be
computed in parallel.

Example 3.2: Example for a schedule with coefficients limited to {−3, . . . , 3}.

The direction of simple dependencies that only span one or two iterations of each
surrounding loop can be inverted by skewing with coefficient values up to 3. This
can result in the possibility to compute dimensions in parallel and/or in tiles. The
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iteration domain of the statement S in Example 3.2 is DS = {(i, j) | 0 ≤ i < 6∧ 0 ≤
j < 6} and there are two simple dependencies that only span one iteration of each
loop D1 : S[i, j]→ S[i + 1, j + 1] and D2 : S[i, j]→ S[i + 1, j − 1]. With the given
schedule θS(~xS) = (3i+ j, 2i+ j) the iteration instances of the statement S can be
computed in tiles and the inner loop j inside each tile can be parallelized.

The skewing transformation can produce better performing code by enabling
tiling and parallel computation if the dependencies only span a small number of it-
erations of the surrounding loops. Otherwise that leads to high iteration coefficients
and the tiles will only contain a few statement instances producing more overhead
than speed-up. Consequently, the coefficient values are limited to {−3, . . . , 3} in
this thesis.

3.2 Schedule Sampling Strategies
The algorithms presented in Section 3.1 construct one Z-polytope for each schedule
dimension to model the search space or a region of the space, respectively. Picking
one point from each Z-polytope forms the matrix of a multi-dimensional schedul-
ing function. With the aim of exploring the search space, the schedule should be
uniformly chosen, but this yields two problems. First, because of the huge number
of possible different regions of the search space of a SCoP it is infeasible to inspect
all regions. Furthermore, the different regions are not pairwise distinct and can
have diverse dimensionality, which makes schedule comparison impossible. Second,
different selected schedules (even from one region) can produce code that processes
the statement instances in the same execution order.

Even though it is impossible to uniformly sample schedules from a search space,
we create several regions of the search space and sample a huge number of schedules
from each region. The row vectors of the schedule matrix are uniformly picked from
the corresponding Z-polytope. The selected schedules are normalized by the normal-
ization passes given in Section 3.3 and duplicate schedules are removed. This does
not produce a set of uniformly sampled schedules, but guarantees a good distribution
inside the search space.

There are several methods how to uniformly pick points from a Z-polytope.
Below, four sampling strategies are discussed regarding these two questions: How
many points are needed to obtain a uniform distribution on the Z-polytope, and
what is the computational effort?

3.2.1 Enumeration Sampling
The simplest way to obtain a uniformly sampled point from a discrete geometric
body x ∈ P ⊆ Zd, is to enumerate all points of P and select one randomly. Let
x1, . . . , xcard(P ) be all points in P and X a discrete random variable with the discrete
uniform distribution

P (X = xi) = 1
card(P ) .

Sampling the random variable X returns a uniform point from P .
This method does not need a minimum number of points to get a uniform dis-

tribution. The computational effort can be specified with O(card(P )), since first,
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all points must be enumerated, and sampling one point only costs O(1). It also
needs O(card(P )) memory. Enumerating all points is computationally infeasible
for Z-polytopes with a very large number of points. It can only be used with thin
polytopes, containing only a few thousand points.

3.2.2 Rejection Sampling
Another way to sample points from a Z-polytope is rejection sampling, as a type of
the Monte Carlo method [47]. First, build the minimal bounding box Bmin around
the polytope P and then uniformly select points from it. A point can be used, if it
is inside P too, otherwise reject it. Obviously, a uniformly sampled point p in Bmin,
is also uniform in P , if p ∈ P .

Let mini and maxi be the minimum and maximum value for dimension i of the
minimal bounding box Bmin. For each dimension i, define Xi as a discrete uniform
random variable with the outcome Ωi = [mini,maxi] ∩ Z. Now a vector p can be
constructed by combining the uniformly sampled results ωi of each random variable
Xi to a vector.

p = (ω1, . . . , ωd)
Each obtained point p is uniformly distributed in the minimal bounding box Bmin.
This experiment must be repeated, until a point p ∈ P is obtained. The probability
to hit a point in P is card(P )

card(Bmin) . Hence, to retrieve n points from the polytope P , one
must statistically generate and check a total of n∗ card(Bmin)

card(P ) points. If the polytope P
only covers a small area of the minimum bounding box Bmin this number explodes.

3.2.3 Hit and Run - Markov Chain Monte Carlo Method
There are other stochastic solutions to sample points from a Z-polytope. The
Markov Chain Monte Carlo (MCMC) methods are a class of sampling algorithms
based on Markov Chains [47]. A Markov Chain is a state machine with state tran-
sitions that are weighted with probabilities. The probabilities of all outgoing tran-
sitions of a state must sum up to 1. The method of sampling points in a geometric
body is also called Hit and Run (HR). For a convex polytope in P ⊆ Rd, hit and
run methods, also known as random walk, start with an arbitrary point p ∈ P . This
is the current state of the Markov Chain. Then a point y ∈ Rd from the unit ball is
chosen uniformly random, such that the intersection of the line l = {p+α·y | α ∈ R}
and P is not empty (l ∩ P 6= ∅). An oracle O can determine the point of intercep-
tion of the line l and the convex hull of P . With this information, it is possible
to uniformly sample one point on l ∩ P , which is the next point in the Markov
Chain [47]. This may possibly be the same point p. The hit and run method needs
a specific number of experiment runs, until it approximately reaches the desired
distribution. The more samples are generated, the better they convergence to the
desired distribution.

Several algorithms have been developed to efficiently sample uniform points from
a convex continuous polytope in Rd [23, 24, 26]. But, sampling lattice points
from a Z-polytope is harder. Consider a high-dimensional Z-polytope PZ = P ∩
{−3,−2,−1, 0, 1, 2, 3}d, similar to our search space polytopes. Then, it is hard to
find a line l in Rd through a given lattice point p ∈ PZ, that hits, at least, one point of
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PZ \ {p}. Furthermore, an arbitrarily chosen line through a point p ∈ P can contain
a maximum of 7 points. As a consequence, it is unlikely to find a suitable line and,
if one is found, the number of points on that line is very small, which likely leads
to staying at the starting point. Both concerns highly increase the computational
effort to get a reasonable number of uniformly distributed lattice points.

Baumert et. al. developed a discrete hit and run algorithm (DHR), that samples
integer points from a subset of an integer hyper-rectangles [15]. It uses two indepen-
dent nearest neighbor random walks instead of a line, but for each sampled point a
new random biwalk is computed. Mete et. al. improved the runtime of the discrete
hit and run algorithm by doing fixed, pattern based biwalks [45]. Thus, a random bi-
walk must not be generated in every iteration of the algorithm. They also extended
their algorithm to perform efficiently on polytopes with knapsack constraints [44].
A knapsack constraint is of the form ∑n

j=1 ajxj < b, where aj is non-negative and
b is positive. With only one knapsack constraint, the convergence rate of PHR to
a uniform distribution on P is in O(n5.5). With m knapsack constraints it is also
polynomial in n, but the exponent contains m as a factor [44].

The search space considered in this thesis can have constraints that cannot be
expressed as a knapsack constraint. Furthermore, the dimensionality of the poly-
topes is very high; thus sampling with hit and run methods would not scale, because
the number of points that must be sampled to obtain approximately uniform distri-
bution explodes.

3.2.4 Geometric Sampling
Igor Pak [51] provides a divide and conquer algorithm for sampling integer points
from a polytope. This method requires an oracle that can determine the number of
lattice points in a polytope. For example, Barvinok’s algorithm can be used as the
oracle [13]. Figure 3.3 outlines Pak’s approach. First, it tries to find a hyperplane
H that halves the given polytope P ⊂ Rn by the number of lattice points inside it.
This is the case, if α = |P ∩H+|/|P | < 1

2 and β = |P ∩H−|/|P | < 1
2 holds, where H+

and H− are the half-spaces of Rn \H. Then, one of the polytopes P ∩H+, P ∩H−
or the hyperplane P ∩H is chosen randomly, depending on the number of included
lattice points. These two steps are recursively applied to the chosen sub-polytope,
until one single point remains. At each reduction step, either the total number of
remaining points is reduced by a factor of > 2 (in case P ∩H+ or P ∩H− is chosen)
or the dimensionality of the subproblem is decremented by one (in case choosing
P ∩H).

The normal vector of the required hyperplane H is of the form H = (x1, . . . , xn),
where xi = c and xj 6=i = 0. Clearly, for some dimension i and some constant value c,
a hyperplane with the given constraints exists. The constant c is determined by bi-
nary search. For both steps, finding the hyperplane H and selecting the subproblem,
the oracle, respectively Barvinok’s algorithm, is needed.

Pak’s algorithm runs in polynomial time. It calls the oracle O(n2L2) times. L
is the bit size of the input. Additionally, Pak proposes an improved version, which
only calls the oracle O(n2 logL) times. In theory, a run of Barvinok’s algorithm
costs LO(n), but it highly depends on the complexity of the constraints [51].
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Data: Z-polytope P ⊂ Rn

Result: uniform sampled point from P
PAK(P )
(1) Find a Hyperplane H, such that α = |P ∩H+|/|P | < 1

2 and
β = |P ∩H−|/|P | < 1

2 , where H+ and H− are the half-spaces of Rn \H.
(With γ = |P ∩H|/|P | this equation holds: α + β + γ = 1.)

(2) Sample a random variable X with three outcomes at the probabilities of
α, β and γ.

(3) Set P ′ to P ∩H+, P ∩H− or P ∩H, depending on the output of X .
(4) if |P ′| = 1 then return the element of P ′ else PAK(P ′);

Figure 3.3: Sampling uniformly from a Z-polytope.

A hybrid approach of geometric and enumeration sampling is used in this master’s
thesis to obtain uniformly distributed integer points from a polytope. Starting with
the geometric divide and conquer method, the bounded polytope of each schedule
dimension is shrunk, until the number of remaining points reaches a threshold and
enumeration sampling can be performed on them.

Since none of the sampling strategies perfectly scales with the dimensionality of
the arising polytope, the task of uniformly sampling points from a high-dimensional
Z-polytope remains for future investigation.

A schedule is built by uniformly picking one point for each schedule dimension
from the corresponding search space polytope. The coordinates of each point reveals
the values for the coefficients of the matrix row. It is only necessary to generate
new schedule dimensions, until all dependencies are solved strongly. This keeps the
number of schedule dimensions low. After that, further schedule dimensions with
linear independent iteration coefficients are added. Each selected schedule is con-
verted to the schedule tree representation [65]. During this step, the normalization
passes described in the following Section 3.3 are applied.

3.3 Schedule Normalization
Two schedules of a SCoP are equivalent iff they define the same lexicographic or-
der on all statement instances and all unsatisfied dependencies at each schedule
dimension have the same direction. A formal description is given in Definition 3.4.
Pouchet [52] specified a definition for semantic-preserving schedules, but in addition
to that the normalization must preserve the execution order and the possibility to
compute dimensions in parallel or to apply the tiling transformation.

Definition 3.4 (Schedule Equivalence). Let S1,...,k be all statements of a SCoP with
the following p-dimensional scheduling functions for each statement Sj∈{1,...,k}:

θSj
: Zdim(DSj

) → Zp : xj → K

 xj
~nj
1

 , K ∈ Zp×(dim(DSj
)+dim(~nj)+1)

where xj is the vector of iteration variables and ~nj is the vector of parameters of the
statement Sj.
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For a SCoP, the two schedules θ and θ′ are equivalent, if

(a) The execution order of all statement instances is the same.
∀Sa, Sb : a, b ∈ {1, . . . , k} : ∀~xa ∈ Sa, ~xb ∈ Sb :

θSa(~xa) ≺ θSb
(~xb)⇔ (θSa)′(~xa) ≺ (θSb

)′(~xb)

(b) and for each dimensions d all unsatisfied dependencies between two statement
instances have the same direction.
∀d ∈ {1, . . . , p} : ∀DSa,Sb

∈ Dd : ∀~xa → ~xb ∈ DSa,Sb
:

dirθd
Sa
,θd

Sb

(~xa → ~xb) = dir(θd
Sa

)′,(θd
Sb

)′(~xa → ~xb)

where Dd is the set of unsatisfied dependencies at schedule dimension d.

It is possible that two schedules with different matrices express the same execution
order and direction of dependencies. For a better comparison one would like to
normalize the representation of the schedule. The following normalization steps,
introduced by Ganser et. al., are based on the schedule tree representation. During
the construction of the schedule tree in Polyite, the total order on statements is
extracted to sequence nodes as a first step of normalization. Sequence and set nodes
cannot be further normalized, because they are already the elementary represen-
tation for executing their children in a specific order [65]. Among the other node
types, only band nodes hold execution order information that can be normalized.
If a band node contains a multi-dimensional schedule, it is processed dimension by
dimension. For simplification we assume that the schedule is complete.

The first four normalization passes are developed by Ganser, whereas their
proof of correctness is part of this thesis. Due to the lexicographic order of multi-
dimensional schedules each pass starts at the root node (outer schedule dimension)
of the schedule tree and is then processed recursively. The result is an equivalent
schedule with a higher number of coefficients equal to zero and a possibly lower
dimensionality.

In addition to the four normalization passes of the Polyite project, a further
normalization step is introduced in this master’s thesis. This step detects hidden
statement sequences in schedule dimensions that express both, loop iterations by
linear independent iteration coefficients and a sequence of statements by ascending
constant coefficients.

3.3.1 Common Constant Offset
The parameter and constant coefficients produce a constant offset for all statement
instances. If all statements have a common offset o ∈ Z at dimension d, this offset
can be subtracted from each of the scheduling functions. The effect is a shift of
the execution dates of all statement instances by the constant offset in the time
dimension cd. Because the common offset o can be expressed as a linear expression
over the parameters and the constant vector, the resulting scheduling functions
have more parameter and constant coefficients equal to zero. If only one statement
is scheduled at the band node, the constant offset can be completely omitted.
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The schedule S[i] → [i + 2] of Example 3.5(a) has an offset of 2. It maps the
statement instances S[0], S[1], S[2] and S[3] to the execution dates 2, 3, 4 and 5.
Since no statement instance is scheduled at time date 0 and 1 the shift of +2 is
unnecessary and can be omitted. The equivalent schedule is shown in part (b).

Context{n = 4}

Domain{S[i] : 0 ≤ i < n }

Band{S[i]→ [i+2]}

0 1 2 3 4 5 c1

(a) original schedule tree and execution
order.

Context{n = 4}

Domain{S[i] : 0 ≤ i < n }

Band{S[i]→ [i]}

0 1 2 3 4 5 c1

(b) normalized schedule tree and execu-
tion order.

Example 3.5: Example with a common offset that can be reduced.

Theorem 3.6. Let S1,...,k be all statements that are scheduled at the current band
node at schedule dimension d with the scheduling functions for each statement Sj∈{1,...,k}:

θdSj
: Zdim(~xj) → Z : (~xj)→ (~ij, ~pj, cj)

 ~xj
~nj
1


Define (θdSj

)′(~xj) = θdSj
(~xj)− o as the new scheduling function with a constant offset

o ∈ Z for each statement Sj.
Then θ and θ′ are equivalent.

Proof.

(a) Execution Order: Obviously, the ordering at dimension d′ 6= d is equivalent.
Now, we show that the execution order of the statement instances at dimension
d does not change, when subtracting a common offset o ∈ Z. ∀Sa, Sb : a, b ∈
{1, . . . , k} : ∀~xa ∈ Sa, ~xb ∈ Sb :

θdSa
(~xa) < θdSb

(~xb)⇔ (θdSa
)′(~xa) < (θdSb

)′(~xb)

⇒:
Let Sa and Sb be two statements scheduled at the band node, ~xa be a instance
of Sa and ~xb be a instance of Sb, such that θdSa

(~xa) < θdSb
(~xb). Obviously, this

is true:
(θdSa

)′(~xa) = θdSa
(~xa)− o < θdSb

(~xb)− o = (θdSb
)′(~xb)

⇐: Similar to ⇒.

(b) Dependency Direction: Obviously, the direction of unsatisfied dependen-
cies at dimension d′ 6= d is equivalent. Now, we show that the direction of the
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unsatisfied dependencies at dimension d does not change, when subtracting a
common offset o ∈ Z. ∀DSa,Sb

∈ Dd : ∀~xa → ~xb ∈ DSa,Sb
:

dirθd
Sa
,θd

Sb

(~xa → ~xb) = dir(θd
Sa

)′,(θd
Sb

)′(~xa → ~xb)

Let DSa,Sb
be an unsatisfied dependency between two statements Sa and Sb,

~xa be a instance of Sa and ~xb be a instance of Sb, such that ~xa → ~xb ∈ DSa,Sb
.

The condition for the direction of the dependency is equal for both scheduling
functions θd and (θd)′.

(θdSa
)′(~xa)− (θdSb

)′(~xb) = θdSa
(~xa)− o−

(
θdSb

(~xb)− o
)

= θdSa
(~xa)− θdSb

(~xb)− o+ o

3.3.2 Uninfluential Schedule Dimension
There may be schedule dimensions that do not affect the executable code at all.
These schedule dimensions do not introduce a new ordering on the statement in-
stances of the band node and can be removed completely. The resulting scheduling
function has one time dimension less.

The schedule of the Example 3.7 (a) produces execution dates with three dimen-
sions. At the second dimension, the value of i is already fixed by the outer dimension
and therefore only one unique statement instance is scheduled for each step of the
outer dimension. This schedule is equivalent to the one in the Example 3.7 (b). The
second dimension of the execution dates is projected out.

Context{n = 4}

Domain{S[i, j] : 0 ≤ i, j < n }

Band{S[i, j]→ [i,−i,j]}

(a) original schedule tree and execution
order. The green axes denotes the first
time dimension c1, the red one the second
c2 and the blue one the third dimension
c3.

Context{n = 4}

Domain{S[i, j] : 0 ≤ i, j < n }

Band{S[i, j]→ [i, j]}

0 1 2 3

0

1

2

3
c1

c2

(b) normalized schedule tree and execu-
tion order.

Example 3.7: Example with an uninfluential dimension that can be omitted.
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Theorem 3.8. Let S1,...,k be all statements that are scheduled at the current band
node at schedule dimension d with the scheduling functions for each statement Sj∈{1,...,k}:

θdSj
: Zdim(~xj) → Z : (~xj)→ (~ij, ~pj, cj)

 ~xj
~nj
1


Define the prefix schedule as:

Pre(θdSj
)(~xj) = (θ1

Sj
, . . . , θd−1

Sj
)(~xj)

Further, let θdSj
not introduce a new ordering on the statement instances. That equals

to the following condition:

∀Sa, Sb : a, b ∈ {1, . . . , k} : ∀~xa, ~xb : Pre(θdSa
)(~xa) = Pre(θdSb

)(~xb)⇒ θdSa
(~xa) = θdSb

(~xb)

Define (θSj
)′(~xj) = (θ1

Sj
, . . . , θd−1

Sj
, 0, θd+1

Sj
, . . . , θpSj

)(~xj) as the new scheduling func-
tion, where the dimension d is omitted.

Then θ and θ′ are equivalent.

Proof.

(a) Execution Order: The execution order of the statement instances does not
change, when omitting schedule dimension d. ∀Sa, Sb : a, b ∈ {1, . . . , k} :
∀~xa ∈ Sa, ~xb ∈ Sb :

θSa(~xa) ≺ θSb
(~xb)⇔ (θSa)′(~xa) ≺ (θSb

)′(~xb)

⇒:
Let Sa and Sb be two statements, ~xa be a instance of Sa and ~xb be a in-
stance of Sb, such that θSa(~xa) ≺ θSb

(~xb). Obviously, the order on Pre(θdSj
)

and Pre((θdSj
)′) is equivalent. Now, consider only statement instances that

are mapped to the same execution date Pre(θdSa
)(~xa) = Pre(θdSb

)(~xb). Since
dimension d does not introduce a new ordering on those instances one has:
θdSa

(~xa) = θdSb
(~xb). Under that condition the lexicographic ordering of those

statement instances relies on the next time dimensions, independent of the
value of θdSj

(~xj). One can set this value to zero for all scheduling functions
without changing the execution order, resulting in the schedule θ′ with equiv-
alent execution order.

(θ1
Sj
, . . . , θd−1

Sj
, 0, θd+1

Sj
, . . . , θpSj

)(~xj) = (θSj
)′(~xj)

⇐: Similar to ⇒.

(b) Dependency Direction: Obviously, the direction of unsatisfied dependen-
cies at dimension d′ 6= d is equivalent. Now, we show that the direction of
the unsatisfied dependencies at dimensions d does not change, when omitting
schedule dimension d. ∀DSa,Sb

∈ Dd : a, b ∈ {1, . . . , k} : ∀~xa → ~xb ∈ DSa,Sb
:

dirθd
Sa
,θd

Sb

(~xa → ~xb) = dir(θd
Sa

)′(θd
Sb

)′(~xa → ~xb)
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Let DSa,Sb
∈ Dd be an unsatisfied dependency between two statements Sa

and Sb, ~xa be a instance of Sa and ~xb be a instance of Sb, such that ~xa →
~xb ∈ DSa,Sb

. The dependency DSa,Sb
is unsatisfied in all previous schedule

dimensions. That means that the prefix execution dates of both dependent
statement instances are equal Pre(θdSa

)(~xa) = Pre(θdSb
)(~xb). (Otherwise the

dependency is already satisfied.) Since dimension d does not introduce a new
ordering on both instances one has: θdSa

(~xa) = θdSb
(~xb). Obviously, the condi-

tion for the direction of the dependency is equal for both scheduling functions
θd and (θd)′.

θdSa
(~xa)− θdSb

(~xb) = 0 = (θdSa
)′(~xa)− (θdSb

)′(~xb)

3.3.3 Common Factor
If the scheduling functions θSj

of all statements that are scheduled at the same
schedule dimension d at a band node have a common factor f ∈ N \ {0}, the
coefficients of the scheduling functions can be reduced by this factor.

The schedule S[i]→ [2 · i] in Example 3.9 (a) produces a grid of execution times,
where not every iteration step contains a statement instance. It maps the statement
instances S[0], S[1], S[2] and S[3] to the execution dates 0, 2, 4 and 6. Since no
other statement instances are scheduled at the time dates in between, the factor 2
is unnecessary and can be omitted. The new schedule is shown in part (b).

Context{n = 4}

Domain{S[i] : 0 ≤ i < n }

Band{S[i]→ [2·i]}

0 1 2 3 4 5 6 c1

(a) original schedule tree and execution
order.

Context{n = 4}

Domain{S[i] : 0 ≤ i < n }

Band{S[i]→ [i]}

0 1 2 3 4 5 6 c1

(b) normalized schedule tree and execu-
tion order.

Example 3.9: Example with a common factor that can be reduced.

Theorem 3.10. Let S1,...,k be all statements, that are scheduled at the current
band node at schedule dimension d with the scheduling functions for each statement
Sj∈{1,...,k}:

θdSj
: Zdim(~xj) → Z : (~xj)→ (~ij, ~pj, cj)

 ~xj
~nj
~1j


Define (θdSj

)′(~xj) = f ·θdSj
(~xj) as the scheduling function with common multiplication

factor f ∈ N \ {0} for each statement Sj.
Then θ and θ′ are equivalent.
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Proof.

(a) Execution Order: Obviously, the ordering at dimension d′ 6= d is equivalent.
Now, we show that the execution order of the statement instances at dimension
d does not change, when multiplying with a common factor f ∈ N \ {0}.
∀Sa, Sb : a, b ∈ {1, . . . , k} : ∀~xa ∈ Sa, ~xb ∈ Sb :

θdSa
(~xa) < θdSb

(~xb)⇔ (θdSa
)′(~xa) < (θdSb

)′(~xb)

⇒:
Let Sa and Sb be two statements scheduled at the band node, ~xa be a instance
of Sa and ~xb be a instance of Sb, such that θdSa

(~xa) < θdSb
(~xb). Obviously, this

is true:
(θdSa

)′(~xa) = f · θdSa
(~xa) < f · θdSb

(~xb) = (θdSb
)′(~xb)

⇐: Similar to ⇒.

(b) Dependency Direction: Obviously, the direction of unsatisfied dependen-
cies at dimension d′ 6= d is equivalent. Now, we show that the direction of the
unsatisfied dependencies at dimension d does not change, when multiplying
with a common factor f ∈ N \ {0}. ∀DSa,Sb

∈ Dd : ∀~xa → ~xb ∈ DSa,Sb
:

dirθd
Sa
,θd

Sb

(~xa → ~xb) = dir(θd
Sa

)′(θd
Sb

)′(~xa → ~xb)

Let DSa,Sb
be an unsatisfied dependency between two statements Sa and Sb,

~xa be a instance of Sa and ~xb be a instance of Sb, such that ~xa → ~xb ∈ DSa,Sb
.

Case 1: θdSa
(~xa)− θdSb

(~xb) > 0

0 < θdSa
(~xa)− θdSb

(~xb)
≤ f ·

(
θdSa

(~xa)− θdSb
(~xb)

)
= f · θdSa

(~xa)− f · θdSb
(~xb)

= (θdSa
)′(~xa)− (θdSb

)′(~xb)

Case 2: θdSa
(~xa)− θdSb

(~xb) = 0
Obviously true.

3.3.4 Injective Prefix
If the prefix schedule of dimension d is injective for all statement instances that are
scheduled in a subtree, one can cut off the subtree. An injective schedule assigns
a globally unique execution date to each statement instance. Further schedule di-
mensions can only define the order on one single statement instance and therefore
cannot change the execution order.

The schedule S[i]→ [i, i] in Example 3.11 (a) has two time dimensions c1 and c2.
The schedule for dimension c1 is already injective θ1

S(i) = i. Therefore the second
schedule dimension can be removed. The resulting schedule is shown in part (b).
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Context{n = 4}

Domain{S[i] : 0 ≤ i < n }

Band{S[i]→ [i, i]}

0 1 2 3

0

1

2

3
c1

c2

(a) original schedule tree and execution
order.

Context{n = 4}

Domain{S[i] : 0 ≤ i < n }

Band{S[i]→ [i]}

0 1 2 3 c1

(b) normalized schedule tree and execu-
tion order.

Example 3.11: Example with an injective subtree that can be omitted.

Theorem 3.12. Let S1,...,k be all statements that are scheduled at the current sched-
ule node at schedule dimension d with the scheduling functions for each statement
Sj∈{1,...,k}:

θdSj
: Zdim(~xj) → Z : (~xj)→ (~ij, ~pj, cj)

 ~xj
~nj
~1j


Define the prefix schedule as:

Pre(θdSj
)(~xj) = (θ1

Sj
, . . . , θd−1

Sj
)(~xj)

Further, let Pre(θdSj
)(~xj) be injective. Define (θSj

)′(~xj) = Pre(θdSj
)(~xj) as the new

schedule.
Then θ and θ′ are equivalent.

Proof.

(a) Execution Order: Obviously, the ordering at dimension d′′ < d is equivalent.
Because Pre(θdSj

) is injective, it defines the total order on all elements of ~xj.
Schedule dimensions d′ ≥ d does not change the order on the execution date,
due to the definition of lexicographical ordering.

(b) Dependency Direction: Obviously, the direction of unsatisfied dependen-
cies at dimension d′ 6= d is equivalent. Because Pre(θdSj

) is injective, it defines
the total order on all elements of ~xj. There are no unsatisfied dependencies
left for schedule dimensions d′ ≥ d.
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3.3.5 Hidden Sequence
Each schedule dimension of a band node is inspected whether it encodes a hidden
sequence on the statements. In this context, hidden means that there is not a to-
tal ordering of the statements in this schedule dimension (which is detected during
schedule tree construction), but instances of different statements are executed alter-
nately, always with the same statement order. The hidden sequence can be extracted
to a separate sequence node that orders the statements according to the value of
their constant coefficients. The conditions that must hold in order to perform this
normalization step are described in Theorem 3.14 (a) - (d).

Consider the schedule in Example 3.13(a). The number and the value of the
iteration coefficients are identical for both statements S and T . Furthermore, the
parameter coefficients of both statements are zero and the constant coefficients are
in the range [0, 1], which is lower than 3 (the value of the iteration coefficients).
Hence, the hidden sequence normalization can be applied and part (b) of Example
3.13 shows the resulting schedule tree.

Context{n > 0}

Domain{S[i] : 0 ≤ i < n,
T [i] : 0 ≤ i < n}

Band{S[i]→ [3i];T [i]→ [3i+ 1]}

(a) original schedule tree and execution
order.

Context{n > 0}

Domain{S[i] : 0 ≤ i < n,
T [i] : 0 ≤ i < n}

Band{S[i]→ [i];T [i]→ [i]}

Sequence

Filter{S[i]} Filter{T [i]}

(b) normalized schedule tree and execu-
tion order.

Example 3.13: Example with a hidden sequence that can be extracted to a seperate
sequence node.

Theorem 3.14. Let S1,...,k be all statements that are scheduled at the current band
node at schedule dimension d with the scheduling functions θdSj

for each statement
Sj∈{1,...,k}:

θdSj
: Zdim(~xj) → Z : (~xj)→ (~ij, ~pj, cj)

 ~xj
~nj
1j


Further, let all scheduling functions θdSj

fulfill the following conditions:

(a) The number of iteration coefficients in ~ij that are unequal to zero are identical
for all statements Sj.

(b) The values of all iteration coefficients in~ij that are unequal to zero are identical
for all statements Sj.

(c) The parameter coefficients ~pj are identical for all statements Sj.
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(d) The range of the constant coefficients cj of all statements Sj is lower than the
value of the iteration coefficients.

Define (θdSj
)′(~xj) = (~ij, ~pj, 0)

 ~xj
~nj
1j

 as the new schedule dimension d and (θSj
)′(~xj) =

(θ1
Sj
, . . . , θd−1

Sj
, (θdSj

)′, cj, θd+1
Sj

, . . . , θpSj
) as the new schedule for statement Sj.

Then θ and θ′ are equivalent.

Proof.

(a) Execution Order: The execution order of the statement instances does not
change, when extracting a sequence from the schedule dimension d. ∀Sa, Sb :
a, b ∈ {1, . . . , k} : ∀~xa ∈ Sa, ~xb ∈ Sb :

θSa(~xa) ≺ θSb
(~xb)⇔ (θSa)′(~xa) ≺ (θSb

)′(~xb)

⇒:
Let Sa and Sb be two statements, ~xa be an instance of Sa and ~xb be an instance
of Sb, such that θSa(~xa) ≺ θSb

(~xb). Obviously, the order on the first d −
1 dimensions is identical. Now, consider only statement instances that are
mapped to the same execution date Pre(θdSa

)(~xa) = Pre(θdSb
)(~xb). Dimension d

does not change the order in which the instances of one statement are executed,
because all instances are shifted simultaneously by the constant coefficient.
The execution order between instances of different statements is dissolved in
this dimension, but restored in the following sequence node. Note, that this
is only legal due to the constraint that the stride (minimum number of time
space iterations between two instances of the same statement) is greater than
the range of the coefficients cj if the statements.
⇐: Similar to ⇒.

(b) Dependency Direction: Obviously, the direction of unsatisfied dependen-
cies at dimension d′ < d is identical. Now, we show that the direction of the
unsatisfied dependencies at dimensions d does not change, when extracting a
sequence from the schedule dimension d.
Let DSa,Sb

∈ Dd be an unsatisfied dependency between two statements Sa
and Sb, ~xa be a instance of Sa and ~xb be a instance of Sb, such that ~xa →
~xb ∈ DSa,Sb

. The dependency DSa,Sb
is unsatisfied in all previous schedule

dimensions. That means that the prefix execution dates of both dependent
statement instances are equal Pre(θdSa

)(~xa) = Pre(θdSb
)(~xb). (Otherwise the

dependency is already satisfied.)
Case 1: The dependency DSa,Sb

is only weakly solved in dimension d of the
original schedule θ.

θdSa
(~xa)− θdSb

(~xb) = 0

In that case, this dependency must be weakly solved in both of the two new
schedule dimensions d and d+ 1 of the new schedule θ′.

(θdSa
)′(~xa)− (θdSb

)′(~xb) = 0 ∧ (θd+1
Sa

)′(~xa)− (θd+1
Sb

)′(~xb) = 0
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Obviously, this is true, since the new schedule has the same execution order
of all statement instances.
Case 2: The dependency DSa,Sb

is strongly solved in dimension d of the original
schedule θ.

θdSa
(~xa)− θdSb

(~xb) > 0

This dependency can either be strongly solved in dimension d (band node) or
in the newly introduced dimension d+ 1 (sequence node) of the new schedule
θ′.

(θdSa
)′(~xa)− (θdSb

)′(~xb) > 0
∨ (θd+1

Sa
)′(~xa)− (θd+1

Sb
)′(~xb) > 0

Case 2.1: θdSa
(~xa)−θdSb

(~xb) ≥ x, where x is the value of the iteration coefficient
~ij of condition (b). Further, according to condition (d) the following holds:
|cb − ca| < x. The dependency is satisfied by the band node in dimension d of
the new schedule, because it is spanned between two statements instances of
different loop iterations. The subtraction of the constant value cj from θdSj

for
each statement Sj does not change the direction of the dependency, because

(θdSa
)′(~xa)− (θdSb

)′(~xb) =
(θdSa

(~xa)− ca)− (θdSb
(~xb)− cb) =

θdSa
(~xa)− θdSb

(~xb)︸ ︷︷ ︸
≥x

+ (cb − ca)︸ ︷︷ ︸
>−x

> 0

Case 2.2: θdSa
(~xa)−θdSb

(~xb) < x, where x is the value of the iteration coefficients
~ij of condition (b). The execution date at dimension d of a statement instance
~xj can be expressed by a composition of three parts and is computed with

θdSj
(~xj) =~ij • ~xj︸ ︷︷ ︸

A

+ ~pj • ~nj︸ ︷︷ ︸
B

+ cj︸︷︷︸
C

According to (c), the parameter coefficients are identical for all Sj and, there-
fore, part B of the execution date is identical, as well. Further, as the value of
the iteration coefficients ~ij is x, the value of part A cannot differ between the
statement instances ~xa and ~xb, otherwise θdSa

(~xa) − θdSb
(~xb) would be greater

than x. As a result, |ca − cb| > 0 and the dependency is satisfied by the se-
quence node in dimension d + 1 of the new schedule, because it is spanned
between two statement instances of the same loop iteration.

(θd+1
Sa

)′(~xa)− (θd+1
Sb

)′(~xb) =
ca − cb > 0

In both cases, the direction of the dependency remains unchanged.
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These normalization passes do not produce the minimal normalized schedule, but
reduce the number of redundant coefficients and schedule dimensions drastically.

As mentioned in Section 2.2, schedule normalization can further improve the
runtime of the schedule. As an example, consider a SCoP with only one statement
S and one dependency D : S[i, j] → S[i + 1, j]. The schedule is given by θS(~xS) =
(i,−i, j). This scheduling function satisfies the dependency D in the first schedule
dimension.

θ1
S(i, j)− θ1

S(i+ 1, j) = 1 > 0

It is neither possible to perform tiling on the first two nor the last two dimensions,
because θ2

S(i, j) = −i does not satisfy the dependency D weakly. Since θ2
S does not

introduce a new ordering on the statement instances, it is omitted by one of the
normalization passes and the resulting simplified schedule is θ′S(i, j) = (i, j). The
two remaining dimensions of the schedule can now be executed in tiles.
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Chapter 4

Performance Prediction Function

The performance prediction function, introduced in this chapter, aims to predict the
performance of different schedules of a given SCoP. With this prediction, the sched-
ules can be classified into schedules producing well-performing codes and schedules
producing codes with a lower performance. Using this classification, iterative opti-
mization algorithms can detect good/bad schedules of a given SCoP without time
critical runtime measurement of the transformed program.

The performance prediction function proposed in this master’s thesis is a compo-
sition of different features based on the control and data-flow information provided
by the polyhedron model. We propose features classifying the following performance
aspects:

• Parallelism. CPUs with more than one core can benefit from parallel exe-
cution of loop iterations [18, 42]. The parallelization feature determines the
amount of parallelism in the (transformed) program. All schedule dimensions
that produce parallel loops are identified and ranked by the necessary amount
of synchronization and thread management overhead.

• Data Locality. Good cache utilization and loop tiling can improve the perfor-
mance of a program, especially if the performance of the program is limited by
the memory bandwidth [18, 36]. The cache feature approximates the expected
cache hit rate and the tiling feature inspects the schedule tree for possibilities
to perform tiling.

• Overhead. Additional if -conditions inside a loop and computational expen-
sive loop boundaries can arise of loop fusion and loop skewing. The conditional
overhead feature classifies a schedule by the placement of if -guards in the gen-
erated code and the skewing overhead feature determines the skewing level of
a schedule.

• Out-of-Order Execution. In modern CPUs the upcoming instructions are
stored in an instruction buffer. If the processing units of the CPU stall, e.g.
waiting for data from the cache, any other independent micro-operation is
picked from the instruction buffer and executed out-of-order. The absence of
loop-carried dependencies at the innermost loop allows out-of-order execution
of instructions from different loop iterations.
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The point of interest is comparing different schedules of the same SCoP. The exe-
cution time of the operations of the statements itself is not part of the prediction
function, since it is equal for all different schedules of a SCoP. The different features
are combined by machine learning techniques to a performance prediction function.
The runtime of this prediction function should be less than the actual runtime of
the generated program, otherwise the practical usage of such a function is very
restricted.

Polyite Toolchain. The prediction function is designed to work within the Polyite
toolchain. In Polyite, the input program is inspected by the SCoP detection of
Polly [4, 59], which transforms each identified SCoP into the corresponding poly-
hedron model representation. This representation contains the domain of all state-
ments, all memory references and the original schedule of the SCoP. Polly can re-
generate executable code from the polyhedron model representation, whereby the
schedule of the SCoP can be changed.

input.c
input.jscop
-memory references
-domain
-schedule

Genetic 
Algorithm

output.ll

Polly

extract 
SCoP

Construct search space 
and sample first generation

measure 
runtime

compile with
new schedule

Figure 4.1: Polyite toolchain.

Using data flow analysis, provided by the isl library [63, 64], the dependencies be-
tween statement instances of the input program can be computed. Polyite executes
a genetic algorithm that iteratively searches for good performing schedules. The
initial population is sampled randomly from different regions of the search space
of legal schedules. The construction of a region of the search space is described in
Section 3.1. Using Polly, executable code is then generated for all schedules of the
current generation and the measured runtime of the transformed program is used for
schedule comparison. The best performing schedules are joined up to the population
for the next iteration, until the configured number of populations is reached.
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The machine learned prediction function of this master’s thesis is intended to (partly)
replace the expensive runtime measurement of the transformed programs.

4.1 Features
The feature vector of a schedule consists of the features described in the following
section. Each feature is quantified by a normalized value between zero and one.
Higher values refer to good performance, whereas lower values imply bad perfor-
mance in the aspect of the feature.

4.1.1 Parallelization
The parallelization feature classifies a schedule on the basis of the possibility to
compute loops around statements in parallel. This yields two questions: First,
which schedule dimensions generate loops and second, which of these loops can be
computed in parallel?

Parallel Loops

A schedule dimension d generates a loop nest around a statement S if the iteration
coefficients of the scheduling function θdS at dimension d are linearly independent
to all previous dimensions. Obviously, if the iteration coefficients are zero at a
certain schedule dimension, all statement instances, which are assigned to equal
execution dates by the prefix-schedule, have the same constant execution date at this
dimension. Thus, this dimension does not produce a loop around these statement
instances. Similar to this, schedule dimensions with linearly dependent iteration
coefficients produce the same execution date, which depends on outer loop variables,
for all statement instances with equal prefix execution dates. The mathematical
description for a loop generating schedule dimension is given in Definition 4.2. Loops
around different statements are fused if their prefix schedule is equal. In the schedule
tree representation, naturally, only the band nodes can produce loops.

Definition 4.2 (Loop Generating Dimension). Let S be a statement with the schedul-
ing function θdS at dimension d:

θdS : Zdim(~xS) → Z : ~xS → (~idS, ~p dS , cdS)

 ~xS
~n
1

 ,
where ~idS are the iteration coefficients, ~p dS the parameter coefficients and cdS the con-
stant coefficients.

The schedule dimension d generates a loop around the statement S iff the iter-
ation coefficient vector ~idS is linearly independent of the iteration coefficient vectors
~i1S, . . .~i

d−1
S of the previous dimensions.
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Consider the normalized schedule tree in Example 4.3. The scheduling functions,
that can be extracted from the tree, are:

θS(~xS) =


1 0 0 0
1 0 0 0
0 0 0 1
0 1 0 0



i
j
n
1

 , θT (~xT ) =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



i
j
n
1


The statement instances are mapped to four-dimensional execution dates, but not
every schedule dimension creates a loop around a statement. For example, schedule
dimension 2 of the statement S with the scheduling function

θ2
S(~xS)

(
1 0 0 0

)
i
j
n
1

 = (i)

has non-zero iteration coefficients, but they are linearly dependent of the coefficients
of θ1

S. Therefore, this schedule dimension does not create a nested loop around S, it
simply defines the iteration of the loop around statement T , in which the instances
of S are executed (compare the corresponding code given in Example 4.3). The
generated code has an if -instruction that selects a certain iteration step of the j1-
loop around the statement T , at which the instances of S are computed.

Context{n > 0}

Domain{S[i, j] : 0 ≤ i, j < n; T [i, j] : 0 ≤ i, j < n}

Band{S[i, j]→ [i, i], T [i, j]→ [i, j]}

Sequence

Filter{T [i, j]} Filter{S[i, j]}

Band{S[i, j]→ [j]}
for (i = 0; i < n; i++) // generated by θ1

S and θ1
T

for (j1 = 0; j1 < n; j1 ++) { // generated by θ2
T

T(i, j1);
if (j1 == i) // θ2

S only defines position of S
for (j2 = 0; j2 < n; j2 ++) // generated by θ3

S

S(i, j2);
}

Example 4.3: Example of loop generating dimensions: The given schedule maps the
statement instances to a four-dimensional execution date, but not every dimension pro-
duces a loop.

A schedule dimension can be computed in parallel, if no unsatisfied dependency is
solved strongly in this dimension. If such a dependency exists, the different iterations
at this dimension depend on each other and must be executed sequentially. The

40



schedule dimension that represents a sequence node in the schedule tree cannot be
parallelized, since a sequence node describes a predefined sequential execution order
of its children. The children of a set node can be processed in arbitrary order. This
includes the possibility of parallel computation, but the level of parallelization is
limited by the number of children, which is usually very small. In order to check the
parallelism of a schedule dimension d in a band node, all unsatisfied dependenciesDd,
that only affect the statements at this band node, must be considered. The formal
conditions for parallel schedule dimensions at a band node are given in Definition 4.4.

Definition 4.4 (Parallel Dimension). Let S1, . . . , Sk be all statements that are sched-
uled at a band node with the scheduling functions θdS1 , . . . θ

d
Sk

for dimension d. Let Dd
be the set of unsatisfied dependencies at dimension d, only containing dependencies
between S1, . . . , Sk.

The schedule dimension d of this subtree is parallel if

∀DSa,Sb
∈ Dd : ∀~xa → ~xb ∈ DSa,Sb

: θdSa
(~xa)− θdSb

(~xb) = 0

Context{n > 0}

Domain{S[i, j] : 0 ≤ i < n ∧ 0 ≤ j < n}

Band{S[i, j]→ [i+ j, j]}
for(i = 0; i < 2*n -1; i++)

parfor (j = max (0, i-n+1);
j < min(i+1, n);
j++)

S(i - j,j)

(a) Above: schedule tree and program.

(b) Right: Execution dates with n = 5.
Each point represents a statement in-
stance and the arrows illustrate the de-
pendencies between them. The inner loop
c2 can be parallelized. 0 1 2 3 4

0

1

2

3

4

5

6

7

c1

c2

Example 4.5: Example of loop parallelization: (a) the schedule and (b) execution order
of the statement instances with all the dependencies.

The schedule tree in Example 4.5 has only one band node and the scheduling function
is θS(i, j) = (i+ j, j). The given SCoP has the following two dependencies:

D1 : S[i, j]→ S[i, j + 1]
D2 : S[i, j]→ S[i+ 1, j]

Obviously, the two schedule dimensions of θS produce loops. The set of unsatisfied
dependencies D1 contains both dependencies at the first schedule dimension. Since
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D1 and D2 are solved strongly, the first dimension cannot be parallelized.

D1 : θ1
S(i, j)− θ1

S(i, j + 1) = (i+ j)− (i+ j + 1) = 1
D2 : θ1

S(i, j)− θ1
S(i+ 1, j) = (i+ j)− (i+ 1 + j) = 1

For the second dimension, the set of unsatisfied dependencies D2 is empty and all
iterations of this dimension can be computed in parallel. The execution dates of
the statement instances are shown in Example 4.5 (b). All instances at the same
iteration of the outer loop c1 can be computed in parallel, because no dependencies
exists among them.

Parallelization Feature

The parallelization feature focuses on the parallelism of loops. Now, the task is to
identify the schedule dimensions that produce parallel loops. Both properties can
be verified by a depth-first search on the schedule tree. The search starts at the root
node and processes the schedule tree in pre-order. Band nodes with more than one
schedule dimension are processed dimension-by-dimension. The complete algorithm
is outlined in Figure 4.6.

It starts with the root node N , the set of linearly dependent iteration vectors
LSj

for each statement Sj, which is initially empty, and the set of unsatisfied de-
pendencies D containing all dependencies of the SCoP. Context, domain and mark
nodes are skipped and the algorithm is called recursively on their children with un-
altered parameters. Set nodes and sequence nodes are processed similarly, with the
difference that all dependencies that are solved strongly at these nodes are removed
from the set of unsatisfied dependencies D. At filter nodes, only the dependencies
between the filtered statements are passed to the recursive call on their child nodes.

For each schedule dimension d at a band node the set of strongly solved de-
pendencies Sd is computed in step (1). If Sd is empty, this dimension is marked
as parallel (2). After that, the set of unsatisfied dependencies D is updated (3).
Finally (4), the algorithm checks whether dimension d produces a loop. This is the
case if the iteration vector ~idSk

of any statement Sk scheduled at the band node is
linearly independent of the previous iteration vectors.

The marking of parallel and loop generating dimensions can be done in one single
depth-first search as depicted in Figure 4.6, but during the schedule tree construction
by Ganser all parallel dimensions are already marked for code generation. Therefore,
only the loop generation property must be inspected by a separate run of a depth-
first search.

After identification of all schedule dimensions that produce parallel loops, the level
of parallelization must be rated. Parallel execution of the outermost loop of a
loop nest only needs one synchronization step after the loop and is hence better
than inner parallel loops, which need synchronizations after each iteration of the
outer loop. Additionally, more thread management overhead results from inner
parallelism. Consequently, Polly only generates parallel loops for the outermost
parallel dimensions. These loops can be easily extracted from the marked schedule
tree.
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Data: tree node: N , set of linearly dependent iteration vectors LSj
for each

statement Sj: L, set of unsatisifed dependencies: D
Result: marked schedule node N (loop generation and parallel)
PARLOOP(N , L, D)
switch N do

case does not exist do
done;

end
case context, domain or mark node do

PARLOOP(N .child, L, D);
end
case sequence or set node do

(1) Compute S - the set of strongly solved dependencies at that node;
(2) foreach C of N .children do

PARLOOP(C, L, D \ S);
end

end
case filter node do

(1) Compute R - the set of dependencies of D only affecting the
filtered statements;

(2) PARLOOP(N .child, L, R);
end
case band node do

foreach schedule dimension d do
(1) Compute Sd - the set of strongly solved dependencies;
(2) if Sd = ∅ then

mark dimension d as parallel
end
(3) D ← D \ Sd;
(4) foreach statement Sk do

if iteration vector ~idSk
is non-zero and independent to LSk

then
(a) mark dimension d as loop generating;
(b) add ~idSk

to LSk
and update L;

end
end

end
PARLOOP(N .child, LDS, D);

end
end

Figure 4.6: Algorithm for marking all schedule dimensions that produce loops and that
are parallel. The initial parameters are the root node of the schedule tree, an empty set
LSj for each statement Sj and the full set of dependencies of the SCoP.
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The overhead of a parallel loop is defined as the number of loop executions multi-
plied by a constant parallelization cost C. Parallel loops can only be generated by
band nodes and the calculation of the overhead value at a band node is shown in
Definition 4.7. The prefix schedule of the parallel schedule dimension d provides a
polytope containing all execution dates where the parallel loop at dimension d is
executed.

Definition 4.7 (Overhead of parallel loop). Let S1, . . . , Sk be all statements that
are scheduled at a band node at schedule dimension d with the scheduling functions
θdS1 , . . . , θ

d
Sk
. Further, let dimension d generate a parallel loop.

Define the prefix schedule as:

Pre(θdSj
)(~xj) = (θ1

Sj
, . . . , θd−1

Sj
)(~xj)

We define the overhead for the parallel loop produced by schedule dimension d as

Oh(d) = C ·
∣∣∣ Sk⋃
S=S1

( ⋃
~xS∈DS

Pre(θdS)(~xS)
)∣∣∣

︸ ︷︷ ︸
# loop executions

where C is the constant cost of synchronization and thread management for one
parallel loop.

for(i = 0; i < n; i++)
parfor (j = 0; j < n; j++)

S(i,j)

(a) Without tiling the parallelization
overhead of the j loop is C · n.

for(it = 0; it < n; it += 32)
for(jt = 0; jt < n; jt += 32)

for(i = 0; i < 32; i++)
parfor (j = 0; j < 32; j++)

S(it + i,jt + j)

(b) With tiling applied the outermost par-
allel loop is the j loop and the overhead
is C · n2

32 .

Example 4.8: Example of loop parallelization with tiles.

There are two special cases: First, if neither a band node nor its subtree produce any
parallel loops, the calculated overhead is equal to zero. Second, in case the band node
which produces a parallel loop will later be tiled by Polly and the outermost parallel
loop is not the outermost loop of this band node, the number of loop executions
increases because the loops are reordered by the tiling transformation. Polly only
tiles the schedule dimensions at a tilable band node if the band node is a leaf of the
schedule tree. Example 4.8 (a) shows a loop nest where the outermost parallel loop
is the j loop. The overhead of this loop nest without tiling is C · n. After tiling
of both loops (b), the parallel loop is moved inside the loop nest and is executed
n2

32 times. To overcome this issue, one could apply all tiling transformations on the
schedule tree as Polly would do. But with highly skewed loops, the cardinality
computation to obtain the number of loop executions with Barvinok’s algorithm
[13] becomes computationally expensive. A simpler, but less exact approach is to
divide the total number of statement instances - scheduled at the tilable band node
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- by the number of statement instances executed inside the parallel part of the tiles
(in Example 4.8 the tile size is 32). We assumed that each iteration inside a tile
executes one statement instance. This calculation is exact as long as only non-
skewed schedules are used. The tiles at the edge regions of skewed schedules are
neglected and the actual execution number of the parallel loop is slightly higher.

The parallelization features needs to calculate the parallelization overhead of the
total schedule tree and weight the different parallel loops according to the number
of statement instances executed inside the body. Therefore, the total parallelization
cost is determined by a depth-first search. Sequence and set nodes sum up the cost
of their children C1, . . . , Ck.

Cost(N) = Cost(C1) + . . .+ Cost(Ck)

At a band node, the parallelization overhead is calculated like in Definition 4.7 if
none of the two special cases applies. Otherwise, it is computed as described above.
Additionally, the total number of sequential loop nest iterations is added to the
overhead.

Cost(N) =


Cost(N.child) no dimension at N produces a parallel loop
Oh(d) + Inst(N)

cores
dimension d produces a parallel loop

0 + Inst(N) special case 1
C · Inst(N)

Tile
+ Inst(N)

cores
special case 2

where Inst(N) is the total number of statement instances scheduled at the node N ,
cores is the number of available processor cores and Tile is the number of statement
instances inside the parallel part of the tiles.

If the depth-first-search reaches a non-parallel leaf node, all statement instances
in this subtree are executed sequentially and the parallelization cost is equal to the
number of statement instances It(N). All other node types are skipped and the
parallelization cost of the child is returned.

Cost(N) =

It(N) if N is leaf node
Cost(N.child) otherwise

The value of the parallelization feature is computed as shown in Definition 4.9. If all
loops are processed sequentially the parallelization cost of the schedule tree is equal
to the number of statement instances of the SCoP, which yields a zero parallelization
feature value. If the cost exceeds the number of statement instances the schedule
receives a zero parallelization value as well. A well parallelized program has less
overhead cost and the result is close to one.

Definition 4.9. Let T be a schedule tree and I be the total number of statement
instances scheduled by this schedule tree. Further, let Cost(T ) be the parallelization
cost of T .

We define the parallelization feature value as

Fpar(T ) =

1− Cost(T )
I

if Cost(T )
I
≤ 1

0 otherwise
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In Example 4.10, the j and k loops can be computed in parallel. Note, that the
parameters are n = 1000, m = 3000, C = 200 and the number of processor cores is
10. The overhead cost of the schedule tree is

((C · n+ n2

cores
) + n) + (C + m

cores
) = 301500

and the SCoP has a total of

n2 + n+m = 1004000

statement instances. The parallelization value for this example is 0.700, which
correlates to a good parallelization level.

Context{n = 1000; m = 3000}

Domain{S[i, j] : 0 ≤ i, j < n; T [i] : 0 ≤ i < n; U [k] : 0 ≤ k < m}

Sequence
Cost: ((C · n+ n2

cores
) + n) + (C + m

cores
)

Filter{S[i, j]; T [i]}

Band{S[i, j]→ [i]; T [i]→ [i]}

Sequence
Cost: (C · n+ n2

cores
) + n

Filter{S[i, j]}

Band{S[i, j]→ [j]}
Cost: C · n+ n2

cores

Filter{T [i]}
Cost: n

Filter{U [k]}

Band{U [k]→ [k]}
Cost: C + m

cores

for(i = 0; i < n; i++) {
parfor (j = 0; j < n; j++)

S(i,j)
T(i)

}
parfor (k = 0; k < m; k++)

U(i)

Example 4.10: Example of parallelization overhead cost. The overhead cost is denoted
at each node of the schedule tree.

4.1.2 Cache Behavior
This feature aims to approximate how much cached data is reused by a schedule. The
reuse of cached memory cells depends on the number of different memory accesses
between two references to the same cell. If the number of accesses is too high, the
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data will likely not be present in the cache at the second reference and must be
transfered from a slower memory level. Tilable schedule dimensions can increase
data locality by reducing the average number of memory accesses in between.

Cache

The memory hierarchy of a computer architecture orders the memory levels by
increasing latency and storage size. The pyramid in Figure 4.11 shows the four
main memory levels [62]: internal memory (like CPU registers and cache), Random
Access Memory (RAM), mass storage and off-line bulk storage. For computational
purpose, only the first two levels, which are close to the processor, are relevant.

Offline Bulk Storage (e.g. CD)

Mass Storage (e.g. hard disk)

Random Access Memory

L3 Cache
L2 Cache
L1 Cache
Register

CPU

Figure 4.11: Pyramid of computer memory hierarchy.

Modern CPUs have several cache levels with increasing sizes and access delays. The
purpose of these caches is to store recently used or prefetched data and instructions
such that they can be (re-)accessed fast. The data is transfered and stored in
blocks with a fixed size, the so-called cache lines. For each memory reference, it is
checked whether the corresponding data is located in the cache. If the requested
data is found, one speaks of a cache hit. The cached copy may directly be used for
computation. In case of a cache miss, the cache line containing the memory cell
must be transfered from slower RAM to the processor, which causes a delay.

The caches can be organized in three different ways: direct mapped, n-way set
associative or fully associative. In direct mapped caches each block of the main
memory has its predefined location in the cache, which can be calculated by the
memory address of the block. It is easy to check whether the cache contains a given
data block. The n-way set associative caches are partitioned into sets and each
set can hold n different cache lines. The set number is derived from the memory
address and the memory bank inside the set is free to choose, depending on the
cache replacement policy. Fully associative caches are equal to n-way caches with
only one set. Each memory address can reside anywhere in the cache. Modern high-
performance processors, like the Intel Xeon, whose cache configuration is shown in
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Table A.1, use n-way caches. Since the data of a program might be stored at different
locations each time the program is executed, it is impossible to model the correct
n-way associative cache. Instead, we assume that the cache is fully associative and
uses the least recently used (LRU) cache replacement policy.

Modern CPU architectures permit to queue one data request and one instruction
request in parallel. Therefore, cache levels must have separate areas for data and
instructions. They are implemented as banked. On the other hand, unified caches
mix data and instruction blocks and process the requests sequentially. Since all
requests of the processor always reach the L1 cache first, the L1 cache is usually
banked. Nested loops typically have a low number of different instructions that
tend to fit into the L1 instruction cache. Our cache feature focuses on the data
cache.

Multi-level caches can have different inclusion strategies between the cache levels.
An inclusive cache level stores a copy of all blocks located in the upper cache level.
For instance, if the L2 cache is inclusive, the data contained by the L1 cache is a
subset of the data in the L2 cache. An exclusive cache level only contains blocks
that are not part of the upper cache levels. This increases the total usable cache
size, but it is more expensive to check whether a block is present in the cache at any
level. The Non-Inclusive Non-Exclusive (NINE) cache strategy enforces none of the
aforementioned policies. Our cache feature approximates the total cache hit rate,
whether data is fetched from any cache level or must be transfered from the slower
main memory. We assume that all cache levels are inclusive and therefore that the
total cache size is at least as large as the size of the Last Level Cache (LLC).

In multi core CPUs a cache can be privately attached to one CPU core or be
shared among all cores of the CPU. Since one cannot be aware of which loop itera-
tions of a parallel loop are executed at the other CPU cores that have access to the
same shared L3 cache, it is hard to determine the exact number of different memory
references between two references to the same cell. Therefore, we assume that the
total capacity of the cache is equally distributed among all cores, i.e., the total L3
cache size is divided by the number of CPU cores. Again, the assumption introduces
an inaccuracy to the cache hit rate approximation.

Cache Feature

The caches are transparent for the program, hence one cannot allocate memory at
a specific cache level. But if there are few different memory accesses between two
references to the same cell the data will likely be present in the cache. The cache
feature actually tries to approximate the cache hit rate, which is a value between
zero and one.

At SCoP detection, Polly constructs the read and write access relations, which
are given in the following two Definitions 4.12 and 4.13. With these access relations,
all pairs of statement instances, that accesses the same memory cell and are executed
in a specific order, can be computed using dependence analysis. In theory, there are
four different dependence types: flow (RAW: Read-After-Write), anti (WAR: Write-
After-Read), output (WAW: Write-After-Write) and input (RAR: Read-After-Read)
[25, 28, 40]. For the legality of the schedule only the dependence types flow, anti
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Definition 4.12 (Read Access Relation). The read access relation R is a binary re-
lation that maps each statement instance to each data element read by the statement
instance.

R = {~xSk
→ m | Sk statement of the SCoP ∧

~xSk
∈ DSk

∧
m memory cell read by ~xSk

}

Definition 4.13 (Write Access Relation). The write access relation W is a bi-
nary relation that maps each statement instance to each data element written by the
statement instance.

W = {~xSk
→ m | Sk statement of the SCoP ∧

~xSk
∈ DSk

∧
m memory cell written by ~xSk

}

and output are needed, since two statement instances cannot influence each other
by reading from the same memory cell. In order to analyze the cache reuse, all
four dependence types are inspected, because every memory reference passes the
cache and, therefore, consecutive read accesses on the same memory cell influence
the cache behavior, as well. The dependency relations can be computed similarly
as described by Verdoolaege [64]. Let us consider the read-after-write dependency
as an example. First, the pairs of statement instances, one performing a write and
one performing a read on the same memory cell, are obtained by

R−1 ◦W (◦ denotes the composition of binary relations.1).

The dependency relation should only hold those pairs of statement instances, where
the first instance is executed before the second one. Therefore, the relation is inter-
sected with the ordering relation <θ of the schedule θ

(R−1 ◦W ) ∩ <θ .

The ordering relation can be computed from the schedule θ and is given by

<θ= {~xSk
→ ~xSl

| Sk, Sl statements of the SCoP∧
~xSk
∈ DSk

∧ ~xSl
∈ DSl

∧
θSk

(~xSk
) ≺ θSl

(~xSl
)}.

The other dependency relation types are computed similarly by

(W−1 ◦W ) ∩ <θ (WAW),
(R−1 ◦R) ∩ <θ (RAR),

(W−1 ◦R) ∩ <θ (WAR).

The resulting dependency relations might still contain pairs of statement instances
that are not relevant for cache reuse analysis. Consider the code and the access

1B ◦A = {i→ j | ∃k : i→ k ∈ A ∧ k → j ∈ B}
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relations of Example 4.14 (a). The read-after-write dependency relation, depicted
in part (c), can be expressed as the union of these three relations: {R[i] → S[i] :
1 ≤ i < 5}, {R[i] → T [i] : 1 ≤ i < 5} and {R[i] → R[i + 1] : 1 ≤ i < 4}. Between
each two depending statement instances of the last two relations (dotted arrows),
other statement instances which references the same memory cell are executed.

R ={S[i]→ A[i] : 1 ≤ i < 5} ∪
{T [i]→ A[i] : 1 ≤ i < 5} ∪
{R[i]→ A[i− 1] : 1 ≤ i < 5}

W ={R[i]→ A[i] : 1 ≤ i < 5}

for(i = 1; i < 5; i++) {
A[i] = A[i - 1] // R
B[i] = A[i] + 1 // S
C[i] = A[i] * 2 // T

}

(a) read and write access relations and
code.
c2

c1

R[1] R[2] R[3] R[4]

S[1] S[2] S[3] S[4]

T [1] T [2] T [3] T [4]

(b) RAR dependency relation.

c2

c1

R[1] R[2] R[3] R[4]

S[1] S[2] S[3] S[4]

T [1] T [2] T [3] T [4]

(c) RAW dependency relation.

c2

c1

R[1] R[2] R[3] R[4]

S[1] S[2] S[3] S[4]

T [1] T [2] T [3] T [4]

(d) memory-based dataflow dependency
for cache analysis.

Example 4.14: Dependency example: (a) code and access relations, (b) read-after-
read dependency relation, (c) read-after-write dependency relation and (d) memory-based
dataflow analysis. The example does not have any write-after-read nor write-after-write
dependencies. The filled statement instances in (b)-(d) are read and write accesses to a
memory cell and the unfilled are only read accesses.

With the purpose of analyzing the cache reuse we actually need all pairs of state-
ment instances, where the source is executed directly before the sink of the relation
without an intermediate memory reference to the same cell. For this reason dataflow
analysis is used. Conceptually, dataflow analysis removes all dependencies with an
intermediate memory access to the same cell. The removed dependencies are called
to be killed [64]. There are two kinds of dataflow analysis. Memory-based analysis
simply removes all dependencies with an intermediate memory access independent
whether it is a read or a write access, whereas value-based analysis deletes depen-
dencies which reference a different value of the memory cell (in case the intermediate
memory access is a write). The cache reuse feature uses the memory-based dataflow
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analysis. Consequently, each statement instance with a read or write access to a
memory cell is the sink of only one dependency relation regarding this memory cell.
The union of the remaining dependencies build a partial order on the statement
instances. In Example 4.14, the dotted dependency arrows of the read-after-read
(b) and read-after-write (c) dependency relations are killed by the dataflow analysis.
Part (d) shows the union of the remaining dependency relations used by the cache
reuse analysis.

Since the data is transmitted and stored in cache lines, the target cache line
(referenced by the sink of a dependency instance) might be accessed in between the
two depending instances, as well. Thus, the cache reuse feature must determine the
last reference to the target cache line before the sink of the dependency instance
is executed. If the number of different cache lines, that are accessed in between,
fit into the cache, a cache hit is expected. In Example 4.15, the two statement
instances S and R are in dependence and both access the same data cell of the first
cache line. There is a second reference to another data element of the same cache
line shortly before the execution of the sink statement instance R. In that case, the
target cache line is reloaded or marked as shortly used (the cache will first replace
all the other cache lines according to the LRU replacement policy) and only the
number of different cache lines referenced after the second access are required for
the cache hit rate computation.

RAM Cache

S

R

Example 4.15: S and R are in dependence but there is one reference to the same
cache line in between.

There are two limitations: First, dataflow analysis on a loop program is related
to finding an integer solution for a system of equations which is NP-complete and
inefficient with highly skewed schedules [56]. Second, it is infeasible to test every
dependency instance in a reasonable time.

The first problem can be softened by computing the dataflow analysis on the
original schedule and, then, using the new schedule for cache hit approximation.
Dataflow analysis is practicable on the original schedule, because it is also needed
for the construction of the search space. Since the new schedule must preserve
the semantics of the program, only the direction of read-after-read dependencies
can be inverted by the new schedule. Using the sink of a dependency instance for
cache hit approximation is still accurate if the sink is part of a read-after-write
dependency relation, too. Example 4.16 (a) shows a legally transformed program
of Example 4.14, where the statements T and S are interchanged. In part (b)
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the dataflow dependency relations are shown with the execution dates of the new
schedule. Taking all sink instances into account, one has exactly the same depending
statement instances as with the original schedule.

for(i = 0; i < 4; i++) {
A[i] = A[i - 1] // R
C[i] = A[i] * 2 // T
B[i] = A[i] + 1 // S

}

(a) transformed code.

c2

c1

R[1] R[2] R[3] R[4]

S[1] S[2] S[3] S[4]

T [1] T [2] T [3] T [4]

(b) memory-based dataflow dependency of
the original schedule with the new execu-
tion order.

Example 4.16: Transformation of Example 4.14.

Since it is infeasible to check whether the referenced memory cell of each dependency
instance is present in the cache, the feature approximates the cache hit rate on the
basis of a limited number of dependency instances. First, the dependency relation
is split into several relations with the same source and sink statements, that can be
expressed by a basic map in the isl library [63]. Additionally, the involved memory
cell of this dependency is annotated along with the dependency relation. Test de-
pendency instances can now be sampled from the sink space of each relation, which
is a subset of the iteration domain of a statement. Dimension-by-dimension this
statement iteration polytope is divided into slides of a fixed size, which is defined
by the number of samples that should be generated. From each slide, the center
hyperplane is chosen and weighted by the number of statement instances of the slide,
until a single point is obtained. All memory references of the sampled dependency
instances are tested for a cache hit and the overall cache hit rate of the dependency
relation can be computed as a weighted average over the cache samples.

The algorithm in Figure 4.17 approximates the cache hit rate for one dependency
D of the SCoP. A set of dependency instances (cache samples) is computed in the
first step (1). For all of these cache samples the memory cells, accessed by both
statement instances, are extracted. Then, for each of these memory cells m, the
algorithm builds the time space interval Im, which spans from the last access to the
target cache line of m to the execution time of the sink statement instance. At this
step, the tiling transformation, applied by Polly, must be considered, because the
statement instances are reordered by the tiling transformation. If the number of
different cache lines accessed within this interval is lower than the total number of
cache lines that fit into the Last Level Cache (LLC), the memory reference to m at
the sink of the dependency instance will result in a cache hit.
The cache reuse feature approximates the cache hit rate for all dependency relations
of the SCoP and weights the result by the number of dependency instances. The
formal description is given in Definition 4.18.
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Data: dependency of the input program D, schedule θ and memory reference
information Mem(xj)

Result: approximated cache hit rate of all instances of D
CACHEHITRATE(D, θ, Mem(xj))
(1) Compute a set of dependency instances DT ⊆ D;
(2) foreach xa → xb ∈ DT do

foreach m ∈Mem(xa) ∩Mem(xb) do
(a) Compute the interval Im in the time space between the last
reference to the cache line containing m and θ(xb);

(b) Compute the number of diverse cache lines L referenced within Im;
(c) if L < LLC cache lines then

cache hit of memory cell m for this dependency D;
end

end
end
(3) return the average cache hit rate over all tested dependency instances;

Figure 4.17: Algorithm for calculating the cache hit rate for one dependency relation.

Definition 4.18 (Cache reuse feature). Let D1, . . . , Dk be all dependency relations
of a SCoP, that are computed for the cache reuse analysis. Further, let pi be the
approximated cache hit rate for the dependency relation Di.

We define the cache reuse feature value as

Fcache(T ) =
k∑
i=1

|Di|∑k
i=1 |Di|

· pi

This approach for cache hit approximation has several limitations and inaccuracies:

• The parameters, especially the loop bounds, must be known at analysis time,
as well as the overall cache size of the target system.
• The cache hit rate is only calculated for several dependency instances and then

extrapolated to the whole dependency relation, which introduces inaccuracy.
• Edge regions of the time space polytope can achieve a 100% cache hit rate,

but are not inspected separately by the cache hit rate approximation.
• In contrast to Caşcaval et al. [20], only the interior cache hit rate can be

computed. The first reference to a memory cell is neither treated as a cache
hit nor a cache miss, because the initial cache state is unknown.
• Every rerun of the generated loop program can produce a different memory

cell to cache line mapping, depending on the kernel’s memory placement in
the RAM.
• In order to count the number of distinct cache line references in the interval
Im, we use Barvinok’s algorithm. This can result in a huge execution time of
the feature calculation.
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4.1.3 Tiling
A more efficient way to identify schedules with a good cache hit rate is inspecting
the schedule tree regarding for possibilities of tiling. Typically, consecutive loop
iterations reference the same cache line or even the same memory cell. Schedule
dimensions are blocked and reordered by the tiling transformation, such that the
number of intermediate memory references between depending statement instances
is reduced. This transformation can improve the data locality and, hence, a higher
cache hit rate is expected [17, 36]. Tiling is only a heuristic to obtain data locality
but does not necessarily improve the cache hit rate.

The more schedule dimensions are involved in the tiling transformation, the
more advantage can be taken from data locality. Consider the two schedules in
Example 4.19. Both satisfy the dependency D1 : S[i, j, k] → S[i + 1, j − 1, k] in
the outermost schedule dimension. Obviously, every schedule dimension produce
a loop at the code generation step. The schedule in part (a) allows tiling of only
the innermost two loops. As a result, the dependency D1 spans between statement
instances of two different tiles and a low data reuse is expected. In part (b), all
three generated loops can be tiled and most of the depending memory references are
resolved inside one tile, improving data reuse.

Domain{S[i, j, k] : 0 < i, j, k < n}

Band{S[i, j, k]→ [i]}

Band{S[i, j, k]→ [j, k],
permutable: 1}

0 1 2 3

0

1

2

3

c1

c2

4

4

1 2

43

5

6

(a) Only the innermost two schedule di-
mension can be tiled.

Domain{S[i, j, k] : 0 < i, j, k < n}

Band{S[i]→ [j, i+ j, k],
permutable: 1}

0 1 2 3

0

1

2

3

c1

c2

4

4

1 2

3

(b) All three schedule dimension can be
processed in tiles.

Example 4.19: Example of different tile dimensions. The top shows schedules in the
schedule tree representation and the bottom depicts the projection of the execution dates
on the first two dimensions of the time space. Additionally, the tiles are marked and
numbered according to their execution order.
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The schedule optimizer in Polly applies the tiling transformation on the innermost
band nodes of the schedule tree, if the schedule dimensions of that band nodes are
interchangeable. Polly then introduces new loops that enumerate the single tiles.
The conditions that must hold in a band node for the tiling transformation in Polly
are described in Definition 4.20.
Definition 4.20 (Tilable Band Node). Let S1, . . . , Sk be all statements that are
scheduled at a band node B. Further, let B contain e schedule dimensions with
the scheduling functions θdSi

, . . . , θ
(d+e−1)
Si

. Let G be the set of dependencies that are
not solved strongly by schedule dimensions d′ < d and only concern the statements
S1, . . . , Sk.

Polly applies the tiling transformation on all e schedule dimensions of B if
(a) B contains at least two schedule dimensions (e ≥ 2).

(b) B is the innermost band node of the subtree (d+ e− 1 = dim(θSi
)).

(c) The schedule dimensions of B are interchangeable
∀DS,R ∈ G : ∀~xS → ~xR : ∀d′ ∈ {d, . . . , d+ e− 1} : θd′

S (~xS) ≤ θd
′

R (~xR)

Tiling Feature

The tiling feature processes the schedule tree statement-by-statement. First, the
innermost band node of each statement is identified. If the tiling transformation
can be applied on that band node, the number of surrounding loops is used to
classify the impact of the transformation. If not, the tiling value for this statement
is rated with zero. The overall feature value is the weighted sum of the tiling values
of all statements of the SCoP. The exact calculation is given in Definition 4.21.
Definition 4.21. Let S1, . . . , Sk be all statements of the SCoP and T be a schedule
tree. Further, let pi ∈ {0, 1} indicate whether the tiling transformation can be applied
on the innermost band node Bi, which schedules the statement Si. Let di be the
number of loops generated around Bi.

We define the tiling feature value as

Ftiling(T ) =
k∑
i=1

|DSi
|∑k

i=1 |DSi
|
· pi ·

(1
2

)di

Overhead, produced by the tiling transformation, is not considered in this feature. A
typical tile size is 32 or 64 iterations per dimension, but if only each fourth iteration
of each loop executes a statement instance, the number of instances grouped in one
tile is significantly lower as with full tiles. Hence, the performance overhead of the
additional loops, introduced by the tiling transformation, might exceed the benefit
of data locality.

4.1.4 Computation Overhead
Two major aspects that produce computational overhead are addressed by the two
overhead features. First, additional if -instructions inside a loop can influence the
runtime of the program. Second, if a schedule is highly skewed - inner loop variables
depend on many outer loop variables - the calculation of the loop boundaries can
impact the performance of the schedule as well.
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Feature: Conditional Overhead

The conditional overhead feature aims to classify a schedule by the number of if -
instructions generated inside the loop nest. It compares the iteration polytopes of all
statements of a generated loop and verifies whether all iterations execute the same
statements. In case not, if -conditions are placed inside the loop body as guards
around the statements.

The iteration polytope of a statement describes the execution dates of a loop on
which instances of this statement are executed. Given a loop at dimension d, the
iteration polytope of a statement simply contains all execution dates produced by
the prefix-schedule of the statement at dimension d+ 1.

Definition 4.22 (Iteration Polytope). Let S be a statement of the SCoP with the
scheduling function θS.

The iteration polytope of statement S at schedule dimension d is defined as

PS,d = {(θ1
S(~x), . . . , θdS(~x)) | ~x ∈ DS}

The overhead cost for if -instructions is obtained by depth-first search on the schedule
tree and is the overall number of loop iterations containing an if -guard. Sequence
and set nodes sum up the overhead values of their children C1, . . . , Ck.

IF(N) = IF(C1) + . . .+ IF(Ck)

Among the other node types, only band nodes can generate loops. For each loop
generating dimension d at a band node the iteration polytopes PSi,d are computed
for all statements Si scheduled at that band node. If the polytopes are congruent,
no if -guards are needed. Otherwise, if -instructions are placed to guard at least one
of the statements. Since the additional if -guard must be checked in every iteration
step, the total number of loop iterations is used as the overhead cost of this loop.
The band node returns the sum of the overhead cost of all its schedule dimensions
d′ ∈ {d, . . . , d+ e− 1}.

IF(N) =
d+e−1∑
d′=d

0 if ⋃Si
PSi,d′ = ⋂

Si
PSi,d′

|⋃Si
PSi,d′ | otherwise

The computation of the conditional overhead feature value is described in Definition
4.23.

Definition 4.23. Let T be a schedule tree and I be the total number of statement
instances scheduled by T . Further, let IF(T ) be the overhead cost for if-instructions
extracted from T .

We define the conditional overhead feature value as

Fcondition(T ) = 1− IF(T )
I

Perfectly structured loop nests without any if -instructions obtain the best feature
value 1.0, whereas the conditional overhead cost increases the deeper an if -guard is
placed in the loop nest and the overhead feature converges to zero.
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Consider the schedule tree in Example 4.24(a). There is only one band node generat-
ing a single loop around both statements. The iteration polytopes for that loop gen-
erating dimension are PS,1 = {c | 0 ≤ i < 2n ∧ 2c = i} and PT,1 = {c | 0 ≤ c < 2n}.
Since the two polytopes are not congruent, an if -guard around the statement S is
placed in the generated code in part (c). The statement S is executed on every
second iteration step of the loop, whereas T is executed at all iteration steps. The
conditional overhead feature value is computed as:

FOB(T ) = 1− 2n
2n+ n2 = 0.998

Context{n = 1000}

Domain{S[i, j] : 0 ≤ i, j < n;
T [i] : 0 ≤ i < 2n}

Band{S[i, j]→ [2i], T [i]→ [i]}

Sequence

Filter{S[i, j]}

Band{S[i, j]→ [j]}

Filter{T [i]}

(a) Schedule tree representation.

PS,1 = {c : 0 ≤ i < 2n, 2c = i}
PT,1 = {c : 0 ≤ c < 2n}

(b) Iteration polytopes of the first band
node.
for(c0 = 0; c0 < 2000; c0 ++){

if (c0 % 2 == 0)
for(c1 = 0; c1 < 1000; c1 ++)

S(c0 / 2, c1);
T(c0);

}

(c) Generated Code.

Example 4.24: Schedule with conditional overhead.

Note, that the overhead cost calculation introduces two inaccuracies. First, in some
cases, more than one if -guard is placed inside a loop, but the cost calculation only
counts one if -instruction per iteration step of the loop in case the iteration polytopes
are not congruent. Second, the compiler might pass the if -guards down the loop
nest in order to reduce the code size of the generated program and the overhead
cost calculation is slightly higher than the number of if -instructions inside the loop
nest.

This feature is only applicable on SCoPs with more than one statement. SCoPs
with only a single statement will not generate conditional instructions and, hence,
the feature value will always be equal to 1.0. Furthermore, loop unrolling, which
is not considered by this feature, can decrease the number of if-instructions in the
code.

Feature: Skewing Overhead

With the skewing transformation, inner loop variables depend on the values of outer
loop variables. The skewing overhead feature classifies schedules regarding to the
complexity of loop boundary computation. The iteration variables of highly skewed
loops depend on the values of many outer loop variables. Before an inner loop can
be executed, the lower and upper bound of the loop variable must be computed. In
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some cases, integer min, max or rounding operations are part of the loop bound-
ary conditions. The complexity increases with the number of iteration coefficients
unequal to zero.

For a statement S, the minimum number of iteration coefficients unequal to
zero is given by the dimensionality of its iteration domain. The maximum number
is reached if all iteration variables of S are part of the affine functions of all loop
generation schedule dimension and can be computed by (dim(DS))2. The skewing
overhead feature calculates the ratio between additional iteration coefficients and the
maximal number of additional iteration coefficients for each statement of the SCoP.
The result is then weighted by the number of statement instances. The skewing
overhead feature value computation is described in Definition 4.25.

Definition 4.25. Let S1, . . . , Sk be all statements of the SCoP with the scheduling
functions θSi

. Further, let Ii be the number of iteration coefficients of the scheduling
matrix Ai from θSi

that are unequal to zero.
We define the skewing overhead feature value as

Fskewing = 1−
k∑
i=1

|DSi
|∑k

i=1 |DSi
|
· Ii − dim(DSi

)
dim(DSi

)2 − dim(DSi
)

Consider the two schedules in Example 4.26. The iteration domain of the statement
S is given by DS = {(i, j, k) | 0 ≤ i, j, k < 10}. The first schedule, in part (a),
has the minimum number of iteration coefficients and the loop boundaries in the
resulting code are constants. The schedule in part (b) has the maximal number of
iteration coefficients unequal to zero. The resulting code contains a lot of min, max
and floord operations in order to compute the loop bounds.

θS(~xS) = (i, j, k)

for (c0 = 0; c0 <= 9; c0 += 1)
for (c1 = 0; c1 <= 9; c1 += 1)

for (c2 = 0; c2 <= 9; c2 += 1)
S(c0 , c1 , c2);

(a) Schedule and code with no skewing overhead. The feature value is 1.0.

θS(~xS) = (2i+ j − k, i+ 3j + 2k, i+ j + 2k)

for (c0 = -9; c0 <= 27; c0 += 1)
for (c1 = max(max (3*c0 -45, -2*c0), -2*c0 +5* floord (c0 -1, 2) +5);

c1 <= min(min (3* c0+45, -2*c0 +90) , (c0 +10) /2+40) ;
c1 += 5)

for (c2 = max(max(c1 -18, (-4*c0 +3* c1)/5) , (2* c0+c1)/5);
c2 <= min(min(c1 , (( -4* c0 +3* c1)/5) +18) , ((2* c0+c1)/5) +18);
c2 += 2)

S((4*c0 -3* c1 +5* c2)/10, (c1 -c2)/2, (-2*c0 -c1 +5* c2)/10);

(b) Schedule and code with high skewing overhead. The feature value is 0.0.

Example 4.26: Two schedules with different skewing overhead. The iteration domain
of S is defined by DS = {(i, j, k) | 0 ≤ i, j, k < 10}.
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Note, not all skewing constellations with additional iteration coefficients unequal
to zero produce expensive loop boundary computations with min, max or rounding
operations. In some further cases, compiler optimizations like strength reduction can
reduce the computation overhead inside the loop body [22]. Moreover, the skewing
transformation can enable parallel loop execution or loop tiling. The advantage will
likely predominate the overhead of complex boundary computation.

4.1.5 Out-of-Order Execution
Out-of-order execution is a paradigm in modern CPUs in order to exploit instruction
level parallelism and to hide cache latency. Instead of wasting clock cycles waiting
on slower processing units or data from the cache, CPUs can execute instructions
from the instruction buffer out-of-order if there is no data dependency.

Iteration domain: DS = {i | 0 < i < 10}; Schedule: θS(~xS) = (i)

Dependency: S[i]→ S[i+ 1].
for(c0 = 1; c0 < 10; c0 ++)

A[i] = A[i -1] + 1 // S

1 // iteration 1:
2 RD %r1 A[0]
3 ADD %r1 1
4 SR A[1] %r1
5
6 // iteration 2:
7 RD %r1 A[1]
8 ADD %r1 1
9 SR A[2] %r1
10
11 // ...

(a) Single loop with a loop carried depen-
dency and the assembly-like CPU instruc-
tion for the first two loop iterations.

No data dependency.
for(c0 = 1; c0 < 10; c0 ++)

A[i] = A[i] + 1 // S

1 // iteration 1:
2 RD %r1 A[1]
3 ADD %r1 1
4 SR A[1] %r1
5
6 // iteration 2:
7 RD %r1 A[2]
8 ADD %r1 1
9 SR A[2] %r1
10
11 // ...

(b) Single loop without loop carried depen-
dencies and the assembly-like CPU instruc-
tion for the first two loop iterations.

Example 4.27: Example with out-of-order execution.

Consider the two loops in Example 4.27. The iteration domain of the statement S
is DS = {i | 0 < i < 10} and the schedule is given by θS(~xS) = (i). In part (a),
each statement instances of S depends on the instance of the previous loop iteration,
whereas in part (b) the loop does not carry any data dependency. The assembly
code in part (a) loads the memory element A[0] into the register %r1 at line 2.
After that, the constant 1 is added in line 3 and, finally, the value of register %r1
is stored back to the memory location of A[1]. These three micro-operations must
be executed in-order. At each memory load or store the CPU stalls, waiting for the
data from the cache or main memory. Since all CPU instructions of the successive
loop iteration depend on the data of the same memory cell A[1], which is written
by the last micro-operation of the first loop iteration, no out-of-order execution
is possible. In contrast, the second loop of the assembly code of part (b) in line
7 is data independent of the first loop in lines 2-4. The only dependency in this
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assembly code is introduced by referencing the same register %r1. This so-called
false dependency is solved with hardware algorithms, e.g. the Tomasulo algorithm
[38, 61], that renames the used registers at runtime. While waiting for the read and
store instructions in line 2 and 4 to finish, the CPU can execute the instructions of
the second loop iteration in lines 7-9. For that reason, a loop with independent loop
iterations can achieve a better performance than with loop carried dependencies.

Out of Order Feature

The out-of-order execution feature verifies whether the innermost loop of each state-
ment carries any dependency. If not, the loop iterations are independent and in-
structions of different loop iterations can be executed out-of-order. Otherwise, the
out-of-order paradigm is limited to the number of instructions inside the loop body.
The out-of-order feature value is computed statement-by-statement and weighted
by the number of instances. The formal computation is described in Definition 4.28.

Definition 4.28. Let S1, . . . , Sk be all statements of the SCoP. Further, let pi ∈
{0, 1} indicate whether the innermost loop of the statement Si carries any depen-
dency.

We define the out-of-order feature value as

Fout-of-order(T ) =
k∑
i=1

|DSi
|∑k

i=1 |DSi
|
· pi

Note, if the dependencies of the innermost loop span more than one loop iteration
or the number of independent statements inside the loop body is big enough, the
performance of the schedule is less or even not influenced by the carried dependencies
of the innermost loop.

4.1.6 Feature Work: Additional Features
The six features described beforehand are only a subset of a wide range of possible
metrics that can classify the performance of a schedule. This section describes two
other features that possibly correlates with the performance of a schedule.

Vectorization. There might be a vectorization feature that determines the num-
ber of statement instances that can be computed with vector operations. The code
generator in Polly can automatically detect and insert vector operations if a loop
can be computed in parallel, no control flow operations are placed inside the loop
body and the number of loop iterations is an integer multiple of the vector width of
the target system [4]. Obviously, the data accessed by a vector operation should be
stored aligned in the RAM, otherwise the vector load or store operation is executed
sequentially. Stock et al. [60] use machine-learned models to predict the performance
of Single Instruction Multiple Data (SIMD) codes. Their features are extracted from
the generated assembly code. Similar approach can be used to classify the vector-
ization capability of a schedule.

We explored that Polly’s auto-vectorization cannot improve the runtime of al-
most all randomly sampled schedules of programs from the Polybench Suite. Most
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of the time the reason is data miss-alignment or a varying number of iterations of
the innermost loop.

Code Size. Pouchet [52] described a procedure for machine-learning the optimal
transformation sequence of an arbitrary program. For this purpose, the best trans-
formation sequences of different programs are detected by several performance met-
rics. Among execution time, parallelism and memory behavior, Pouchet proposed
the code size of the generated output program as a performance related metric.

4.2 Machine Learning a Performance Prediction
Function

The outcome of the features, described in the previous section, form the feature
vector of the schedule. It is computed only from the abstract schedule tree descrip-
tion in the polyhedral model without the need of code generation and performance
measurement.

In general, machine learning techniques are used for two purposes: classification
and regression. A machine learned classifier can assign each new input feature
vector to a certain class, whereas a regression approximates a continuous value.
This master’s thesis uses performance regression which approximates the measured
runtime of the generated program.

The input dataset (feature vectors of schedules for different programs) is split
into two partitions. One partition is used as the training set and the other one as the
testing set to evaluate the learned function. Usually, the ratio is 60% training and
40% testing set. In this thesis, the training and testing set is chosen among different
benchmark programs in order to verify the applicability of the learned performance
prediction function on arbitrary programs. In the evaluation experiments, the train-
ing set consists of three different programs of the Polybench Suit [4]. The learned
model is then verified on three other benchmark programs. A second option that
is considered in this thesis is k-fold cross-validation [39]. This technique randomly
splits the data set into k equally sized partitions. A prediction function is trained k
times, each time with n - 1 partitions as trainings set and one partition as test set.
The learned cross-validation function is the average of the k prediction functions.

The following two machine learning algorithms are used in this master’s thesis
in order to obtain the performance prediction function.

Linear Regression. This algorithm simply defines the output of the learned func-
tion as a linear combination of the values of the feature vector. We assume that the
feature values are normalized in [0, 1]. Linear regression tries to find the best fitting
parameters w1, . . . , wd+1 to define the following linear function.

func : [0, 1]d → [0, 1] : ~v → w1 · v1 + . . .+ wd · vd + wd+1

Each instance of the trainings set produce a linear equation. Obviously, the trainings
set must contain at least as many instances as available features, otherwise the
parameters cannot be determined. The parameters w1, . . . , wd+1 are chosen, such
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that the variance between the estimation and the actual value is minimal for all
trainings instances.

Linear regression might fail if the input features highly depend on each others
or the output (runtime of the generated program) is not linear dependent to the
feature values. Furthermore, it can also fail if the training data set is to small or
contains a lot of noise.

K-Nearest Neighbor Algorithm. The k-nearest neighbor (KNN) algorithm is
an instance based lazy learner [7]. The feature vectors are elements of [0, 1]d ⊂ Rd

and can be compared by their distance, i.e. the Euclidean distance. In the training
phase of this algorithm all instances of the trainings set are stored in the model.
For each new input feature vector only the k nearest neighbors in the feature space
are considered. The estimated output variable (in our case the performance of the
schedule) is the average of the values stored at the k nearest neighbors. It can be
useful to introduce weights to the contributions of the neighbor vectors. The number
of neighbors k is chosen depending on the number of training instances. With a huge
number of trainings instances it is usually set to 20, likewise in this thesis.

For machine learning the performance prediction function we use the data mining
and machine learning framework WEKA [68]. In addition to linear regression and
k-nearest neighbor, the framework provides a wide range of different machine learn-
ing algorithms including function regressions, lazy learners, stochastic models and
decision trees.
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Chapter 5

Evaluation

In this chapter we describe our evaluation of the performance of the geometric sched-
ule sampling method of Section 3.2, the significance and computation time of the
features described in Section 4.1 and, finally, the accuracy of the performance predic-
tion functions learned by the machine learning algorithms described in Section 4.2.

5.1 Aim of this thesis
This master’s thesis aims to machine learn a performance prediction function that
can approximate the runtime of a schedule. In order to learn such a surrogate func-
tion, several different features are defined in Section 4.1, which extract performance
related aspects from the schedule tree representation of the schedule.

5.2 Research Questions
Q1: Is geometric schedule sampling efficient enough to obtain a huge
number of schedules in reasonable time? As we need a huge number of well
distributed schedules for the input data of the machine learning algorithms, the
schedule sampling algorithm must efficiently run in reasonable time. The perfor-
mance of the geometric sampling method, introduced in Section 3.2, depends on the
runtime of Barvinok’s algorithm that counts the number of integer points inside a
polytope and, therefore, depends on the structure of the search space polytopes.

Q2: How can normalization improve schedule comparison? The chosen
geometric sampling method produces schedules that have different schedule matri-
ces, but actually represent the same schedule. By applying the normalization steps
described in Section 3.3 we expect to detect equal schedules that are expressed by
different schedule matrices.

Q3: How long does the feature calculation take compared to the actual
runtime of the generated program? For each new schedule, whose runtime
should be predicted, the set of features described in Section 4.1 must be computed.
In order to gain benefit over runtime measurement, the calculation time of the
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features has to be less than the measured runtime of the generated programs. Oth-
erwise, the measured runtime of the generated program can be used instead of a
prediction.

Q4: Do the calculated feature values correlate with the measured data
of the generated program? The calculated feature values ought to represent
performance key factors of a loop program. In order to get an accurate performance
prediction function, the correlation between the feature values and the measured
data of the testing programs must be high.

Q5: How accurate is the predicted runtime of the machine-learned perfor-
mance prediction function? The performance prediction function is machine-
learned, as described in Section 4.2. The input data is the measured runtime and the
calculated feature values of a huge number of different schedules of several bench-
mark programs. The point of interest is how the predicted runtime correlates with
the measured runtime and if the learned prediction function can be generalized to
arbitrary programs.

5.3 Experimental Setup

5.3.1 Hardware
For runtime measurement of the schedules we use the 10-core Intel Xeon E5-2690 v2
CPU, which can compute the parallel loops by its 10 native cores. The benchmarks’
problem sizes are chosen in a way, such that the total used data memory does not fit
into the L3 cache. The cache specifications of the CPU can be retrieved from Table
A.1. As a second platform, the Intel i5-4570 CPU is used to evaluate the geometric
schedule sampling method.

5.3.2 Software
The geometric sampling method and the features are implemented in the program-
ming language Scala in version 2.11 [6]. The Scala code is compiled to Java Byte
code which is executed with OpenJDK 1.8. There is one utility class for schedule
sampling and one for computing the values of the features, which uses the internal
schedule tree implementation of the Polyite project. Most of the functionalities rely
on polyhedral operations. For polyhedron manipulation we use the Integer Set Li-
brary1 by Verdoolaege [63] and for counting the number of points inside a polytope
we use the implementation of Barvinok’s algorithm in version 0.39, also provided
by Verdoolaege. As described at the beginning of Chapter 4, Polly is used as the
code generator and for further optimization steps, e.g. tiling. We use Polly2 within
the llvm environment in version 3.9.0svn. The compiler gcc is operates in version
5.0.4 and the libpapi for cache hit measurement is used in version 5.4.3. The Intel
Xeon machine for benchmarking the schedules runs Ubuntu 16.04 as the operating

1git version: cfebc0c65aed630a30c6d7925dcf7817e802fd3f
2git version: 2b618e01a6bf30d813bcd39cd22cf60df3d84f17
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system. For machine learning the performance prediction function we make use of
the data mining and machine learning framework WEKA [68] in version 3.8.0.

5.3.3 Benchmarks
The benchmark programs are chosen among 29 of the 30 programs of the Polybench
Suite in version 4.1 [5]. Each of the Polybench benchmarks compromises exactly
one SCoP. Polly cannot automatically detect the SCoP of the benchmark program
nussinov without manually annotating the internal function call as side-effect free.
The Polybench Suite allows to measure the cache hit rate of the kernel function
using PAPI [46].

We selected two sets of programs. First, for evaluation of the geometric sampling
method all 29 benchmark programs are used. The second set consists of the six
programs shown in the Table A.2 and is used to evaluate the normalization steps,
the features and the learned prediction function. Among these programs there are
some variations of matrix multiplication from the so-called Basic Linear Algebra
Subprograms (BLAS) [41] (gemm, syr2k, syrk, trmm), a matrix decomposition as a
linear algebra solver (cholesky) and a 9-point stencil (seidel-2d).

We execute and measure the runtime of each generated program five times and
use the minimum execution time as the result in order to minimize noise from the
system or external influences, e.g., the CPU temperature.

5.4 Experiments
This section describes different experiments that are necessary to answers the re-
search questions.

5.4.1 E1: Schedule sampling
This experiment targets question Q1 and provides data, whether geometric schedule
sampling is efficient enough to obtain a sufficient number of different schedule for the
input data of the machine learning algorithms. Sampling a schedule, as described
in Section 3.2, is reduced to uniformly sampling a point from the search space
polytopes of each schedule dimension. The performance of geometrically sampling
a point from a Z-polytope is highly related to the runtime of the point counting
oracle. This thesis uses an implementation of Barvinok’s algorithm [13]. Without
the sampling optimization described by Pak [51], the Barvinok algorithm is called
O(n2 ·L2) times in the worst case during the sampling process. The parameter n is
defined by the dimensionality of the polytope and L is the bit size of the dimensions’
values. Since our search space polytopes are limited to ([−3, 3]∩Z)n, each dimension
can only have seven different values and, therefore, L is equal to 3. The number of
dimensions n of the search space polytopes of the considered 29 benchmark programs
varies between 4 and 93.

Dependencies between statements are expressed with linear inequality constraints
in the search space polytope. The runtime of Barvinok’s algorithm increases with
the number of constraints of the polytope and the number of dimensions that are
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involved in one inequality. Therefore, the runtime for sampling a schedule depends
on the number of dependencies of the SCoP, too.
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Figure 5.1: We generated two search space regions for each benchmark program and
measured the average Barvinok execution time on the Intel i5-4570 CPU.
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Figure 5.2: The worst case sampling time of one schedule vector from a search space
polytope is computed with O(n2 · L2) multiplied by the corresponding Barvinok execution
times shown in Figure 5.1. The y-axis of this histogram is in logarithmic scale.
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In order to evaluate the runtime of Barvinok’s algorithm on our search space poly-
topes, we have generated two different regions of the search space for 29 programs of
the Polybench Suite. Counting the number of integer points inside those polytopes
performs in less than 5 seconds on the Intel i5-4570 CPU with 17 out of 29 bench-
mark programs. The results for the 17 fastest Barvinok execution times is shown in
Figure 5.1. In 13 cases the runtime is less than 0.5 seconds and in 10 cases it is even
lower than 0.2 seconds. Multiplying the Barvinok execution times with the worst
case number of oracle calls, the sampling of one matrix row vector approximately
takes less than two minutes for 9 of the benchmark programs. Figure 5.2 shows the
worst case sampling time for one schedule vector out of one search space polytope.
Note, the y-axis in this histogram is in logarithmic scale.

In reality, we expect the sampling runtime to be much lower, because each re-
cursion step of the geometric sampling algorithm fixes one parameter and, hence,
the dimensionality decreases and complex constraints of the polytope are simplified.
We have sampled one thousand schedules for the six chosen testing benchmark pro-
grams from 50 regions of the search space. The average sampling time per schedule
(including all schedule dimensions) is only 69.32 seconds, which is clearly less than
the worst case computed above. Figure 5.3 shows the measured averaged schedule
sampling time of the six benchmark programs, that are selected for the evaluation
of the normalization, features and prediction function. As expected, according to
the Barvinok runtime in Figure 5.1, the sampling time for schedules of the trmm
and gemm benchmark program is higher.
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Figure 5.3: Detailed view on the schedule sampling time of the six selected benchmark
programs.
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5.4.2 E2: Enhancing schedule comparison by using the nor-
malization steps

This experiment helps to answer question Q2, how normalization can improve sched-
ule comparison. Therefore, we have sampled one thousand schedule of each of the
six chosen benchmark programs from Table A.2. Polly can generate correct running
code for 90.3 % of all six thousand schedules in a reasonable time (< 5 minutes).
Without normalization there are no schedules with identical matrices. After apply-
ing the normalization steps, we can detect up to 516 duplicated schedules of one
benchmark program. The result of this experiment is shown in Table 5.4. Duplicates
are found only for schedules of the cholesky and seidel-2d benchmarks, because both
span small search space regions containing fewer legal schedules than with the other
programs. All duplicate schedules are later filtered out from the input data set for
the machine learning algorithms, such that only unique, normalized schedules are
used for training the performance prediction function.

benchmark generated and run duplicates(matrix) duplicates (normalized)
cholesky 940 0 516
gemm 902 0 0

seidel-2d 894 0 193
syrk 930 0 0
syr2k 795 0 0
trmm 958 0 0

Table 5.4: Impact of normalization steps on comparing schedules.

5.4.3 E3: Correlation and performance of the cache feature
This experiment refers to question Q3 and Q4 and focuses on the cache feature,
which can be configured with the number of dependency samples that are used for
cache hit approximation.

In order to evaluate the accuracy and the runtime of the cache hit approximation,
we run the cache feature on 100 different schedules of the gemm benchmark. The
runtime of the generated programs is in average 40 seconds. We expect the accuracy
of the cache feature to increase with the number of evaluated dependency instances.
Figure 5.5 shows the cache hit approximation against the measured cache hit rate
for two different numbers of dependency samples. The x-axis specifies the measured
cache hit rate, whereas the y-axis specifies the approximated one by the cache fea-
ture. In part (a) we use 27 instances per dependency and the feature calculation
time is in average 33 seconds per schedule, which is lower than the average of the
measured execution times. The correlation value between the measured cache hit
rate and the approximated one is 0.23. That means, the cache hit rate prediction
is poorly accurate using only 27 dependency instances. By increasing this num-
ber to 64 instances per dependency, as shown in Figure 5.5(b), the accuracy of the
predicted cache hit rate is getting better (with a correlation value of 0.48), but is
still not reliable. Since the approximation time exceeds the measured runtime of
the generated program with this configuration, simple cache hit measurement, for
example with PAPI [46], would be faster and exact.

68



	0.8

	0.82

	0.84

	0.86

	0.88

	0.9

	0.92

	0.94

	0.96

	0.98

	1

	0.8 	0.82 	0.84 	0.86 	0.88 	0.9 	0.92 	0.94 	0.96 	0.98 	1

Fe
at
ur
e

Cache	Hit	Rate

(a) 27 dependency instances per depen-
dency; correlation: 0.23; runtime: 33 sec-
onds

	0.8

	0.82

	0.84

	0.86

	0.88

	0.9

	0.92

	0.94

	0.96

	0.98

	1

	0.8 	0.82 	0.84 	0.86 	0.88 	0.9 	0.92 	0.94 	0.96 	0.98 	1

Fe
at
ur
e

Cache	Hit	Rate

(b) 64 dependency instances per depen-
dency; correlation: 0.48; runtime: 76 sec-
onds

Figure 5.5: 100 different schedules of the gemm benchmark program; the x-axis spec-
ifies the measured cache hit rate and the y-axis specifies the predicted cache hit rate by
the cache feature described in Section 4.1.2.

5.4.4 E4: Calculation time of the features
This experiment refers to question Q3 and considers all features. Apart from the
cache feature, only simple tree walks and static metric calculation is performed. We
expect that the runtime of all features besides the cache feature is clearly lower than
the execution time of the generated program.
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Figure 5.6: Execution time and feature calculation time of the six selected benchmark
programs. The y-axis is in logarithm scale.
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We measure the runtime and the feature calculation time of one thousand gener-
ated programs of the six chosen testing benchmarks. Figure 5.6 shows the average
sequential and parallel execution time of the generated programs along with the fea-
ture calculation time, once including the cache hit approximation and once without.
There are no cache feature calculation times for the two benchmarks seidel-2d and
syr2k, because the cache feature runtime is too huge. For the other benchmarks the
cache feature is configured with 27 instances per dependency. Note, that the y-axis
in this histogram is in logarithmic scale.

The average runtime of all features apart from the cache feature is clearly lower
than the average sequential and parallel execution times of the benchmark programs.
The feature calculation takes on average only 0.5 % of the parallel execution time
of the six benchmarks.

5.4.5 E5: Correlation of the feature values
In order to help answering question Q4, this experiment measures the runtime and
cache hit rate of the generated programs of one thousand sampled schedules from 50
different regions of the search space for the six chosen benchmarks. The correlation
between the feature values and the measured data is shown exemplary with the best
correlating benchmark program (seidel-2d) and one with poor correlation (cholesky).

The seidel-2d is a 9-point stencil, which iteratively updates each point of a two-
dimensional array with the average value of all the eight neighboring cells and the
old cell value. The detected SCoP of this benchmark contains one single statement,
which is surrounded by a loop nest of depth three. The cholesky benchmark com-
putes the decomposition of a Hermitian, positive-definite matrix into the product of
a lower triangular matrix and conjugate transpose.

We measured the runtime and cache hit rate of all cache levels for one thou-
sand schedules of the two benchmarks seidel-2d and cholesky. Remember, that only
894 of the sampled 1000 schedules produce correct executable code for the seidel-2d
benchmark and only 940 schedules for the cholesky benchmark respectively. Re-
moving the duplicates there are 701 schedules left for seidel-2d and 424 for cholesky
respectively. Figure 5.7 shows the distribution of the schedules according to their
runtime and the cache hit rate in different cache levels. Part (a)/(d) shows the L1
cache hit rate, part (b)/(e) show the L1 + L2 cache hit rate and, finally, the overall
cache hit rate of all three cache levels is shown in part (c)/(f). For both programs,
there are several schedules that have a good cache hit rate (independent of the cache
level), but also a high runtime. Normally, we expect a schedule with higher cache
hit rate to perform faster. On the other hand, there are also few schedules with
worse cache hit rate that in contrast perform very well.

In the following we evaluate the correlation of each single feature. All the fol-
lowing scatter plots specify the measured runtime of the generated program at the
x-axis (in seconds) and the measured total cache hit rate of the program at the
y-axis. The color, in which each schedule is drawn in the scatter plot, defines the
value of the depicted feature.

In addition to the scatter plots of the two exemplary benchmark programs in
this section, scatter plots of the other four benchmark programs gemm, syrk, syr2k
and trmm are attached in Appendix B.
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(b) The cache hit rate of L1 and L2 cache.

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0  50  100  150  200  250

C
a
ch

e
 H

it
 R

a
te

 (
A

n
y 

C
a
ch

e
 L

e
ve

l)

Runtime in Seconds

seidel-2d - Schedule Distribution

(c) The cache hit rate of any cache level.
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(d) The cache hit rate of L1 cache.
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(e) The cache hit rate of L1 and L2 cache.
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Figure 5.7: Schedule distribution over the measured runtime and cache hit rate of dif-
ferent cache levels for the seidel-2d stencil (a)-(c) and the cholesky benchmark program
(d)-(f).

Parallelization Feature. We expect from the parallelization feature that sched-
ules with a high value perform faster, because the program can make use of the 10
cores of the Intel Xeon CPU.

The color in the scatter plot of Figure 5.8 describes the value of the parallelization
feature of the seidel-2d benchmark. Its SCoP has only one statement surrounded
by three nested loops and, therefore, the parallelization feature outcome can be 1.0
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in case the outermost loop is parallel, 0.9 in case the second loop is parallel or 0.0
in case no loop is parallel. The innermost loop is never thread-parallelized by Polly.
None of the sampled schedules is capable of parallelizing the outermost loop due
to dependency limitations and, hence, the output of the parallelization feature is
either 0.9 or 0.0 for our set of schedules. From the plot, we can retrieve that all
schedules that perform faster than 68 seconds have parallel loops and are detected
by the parallelization feature.
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Figure 5.8: Result of the parallelization feature applied to the schedules of the seidel-2d
benchmark.
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benchmark.
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Applied to the schedules of the cholesky benchmark program, the parallelization
feature yields the results depicted in Figure 5.9. Only a few schedules are capable of
loop-parallelization, which is detected by the parallelization feature. The maximum
feature value is only 0.0005, which means that either the overhead for the parallel
loops is too high or the number of statement instances that can be computed in
parallel is negligible. The fastest schedules, with runtimes lower than 20 seconds,
are computed only sequentially and achieve a very good overall cache hit rate.

Tiling Feature. The tiling feature detects schedules that produce loops on which
Polly can apply the tiling transformation during code generation process. We expect
those schedules to achieve a good cache hit rate.

The tiling feature results of the seidel-2d schedules are shown in Figure 5.10. A
lot of the schedules with an overall cache hit rate near 100% achieve the cache hit
rate by tiling loops and all detections are correct. Since the overall cache hit rate of
a schedule is not directly related to its runtime, this feature is possibly less relevant
for the performance prediction function.

For the choleksy benchmark, the schedules with the corresponding tiling feature
values are depicted in Figure 5.11. In contrast to seidel-2d, the feature cannot detect
the schedules with the best cache hit rates of this benchmark. Nearly all schedules
achieve a very good cache hit rate above 97.5 % and most of the generated nested
loops are not tilable. Polly can apply tiling only on 14 out of 424 different schedules.

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0  50  100  150  200  250

C
a
ch

e
 H

it
 R

a
te

Runtime in Seconds

seidel-2d - Tiling

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.10: Result of the tiling feature applied to the schedules of the seidel-2d bench-
mark.

73



 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 10  20  30  40  50  60  70

C
a
ch

e
 H

it
 R

a
te

Runtime in Seconds

cholesky - Tiling

 0

 0.2

 0.4

 0.6

 0.8

 1

Figure 5.11: Result of the tiling feature applied to the schedules of the cholesky bench-
mark.

Cache Feature As already discussed in E3, we expect schedules with a high cache
hit rate, equivalent to a good cache feature value, to perform faster. We did not
compute the cache feature for the seidel-2d benchmark, because of performance
issues.
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Figure 5.12: Result of the cache feature applied to the schedules of the cholesky bench-
mark.

The accuracy of the cache feature for the cholesky schedules is shown in Figure 5.12.
As already shown in E3, the cache feature is poorly accurate for the generated
programs of the gemm benchmark. In almost the same manner, the cache feature
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value of the cholesky benchmark hardly correlates with the measured cache hit rates
of the cholesky benchmark.

Out-of-Order Feature We expect schedules that can execute iterations of the
innermost loop out-of-order to perform faster than schedules whose innermost loop
carries dependencies.

Figure 5.13 shows the out-of-order feature result for the seidel-2d benchmark.
As we already know, the schedules at the left side of the plot, with a runtime faster
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Figure 5.13: Result of the out-of-order feature applied to the schedules of the seidel-2d
benchmark.
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Figure 5.14: Result of the out-of-order feature applied to the schedules of the cholesky
benchmark.
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than 68 seconds, produce thread-parallel loops. Among those schedules out-of-order
execution of the innermost loops is not possible. The remaining schedules are mainly
split into two parts. First, the schedules located at the right top of the chart, whose
innermost loop cannot be computed out-of-order, and achieve a good cache hit rate
at a slow runtime. The second part consists of all schedules with the capability of
out-of-order execution. From the plot, we can infer a relation between the runtime
and the cache hit rate of those schedules.

The result of the same feature applied to the schedules of the cholesky benchmark
is shown in Figure 5.14. Nearly no schedule has thread-parallel loops according to
the parallelization feature, but the schedules that allow out-of-order execution have
almost the same cache hit rate with a varying runtime. The result is contrary to what
we expect, because the schedules without out-of-order execution of the innermost
loop perform better.

Conditional Overhead Feature We expect schedules with less conditional over-
head (equal to a high feature value) to require less runtime. The conditional overhead
feature is only applicable on SCoPs with more than one statement. The detected
SCoP of the seidel-2d benchmark has only one statement and the conditional over-
head feature will always returns 1.0.

The conditional overhead feature applied to the schedules of the cholesky bench-
mark creates the result shown in Figure 5.15. Most of the schedules do not need
if-instructions inside their loop bodies and get the highest feature value 1.0. The
schedules whose generated code contains additional if -instructions are equally dis-
tributed in the ranges of the measured runtime and the cache hit rate. Therefore,
no direct correlation can be identified for this feature.
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Figure 5.15: Result of the conditional overhead feature applied to the schedules of the
cholesky benchmark.
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Skewing Overhead Features We expect schedules with a high skewing overhead
value to perform better than the others, because a high feature result indicates less
extra loop boundary calculations.

Figure 5.16 shows the skewing overhead feature applied to the seidel-2d bench-
mark schedules. The schedules with a good skewing overhead feature value are
distributed over the whole range of runtime and cache hit rate. The only thing we
can extract from this plot is that there are slightly more schedules with a higher
skewing feature value at the upper cache hit rate level, whereas with low cache hit
rate, the high skewing feature values are more rare.
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Figure 5.16: Result of the skewing overhead feature applied to the schedules of the
seidel-2d benchmark.
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Figure 5.17: Result of the skewing overhead feature applied to the schedules of the
cholesky benchmark.
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As can be seen from Figure 5.17, the distribution of the good skewing feature values
is entirely different form the cholesky benchmark. Most of the schedules with a
good skewing overhead value achieve a faster runtime than the other schedules. As
against to the seidel-2d benchmark, we cannot detect a correlation between the
skewing feature and the cache hit rate.

5.4.6 E6: Machine learning a performance prediction func-
tion

This experiment provides answers to question Q5 using linear regression and the k-
nearest neighbor algorithm for the performance prediction function. We sample and
run one thousand schedules from the six chosen benchmark programs in order to use
them as the input data of the machine learning algorithm. Removing all duplicated
schedules from the input set of the machine learning algorithms reduces the noise
of the data. For both machine learning algorithms, we learn ten different prediction
models using all of the schedules of three benchmark programs as the learning data
set and the remaining three benchmark programs as the testing set. The schedules
of the syr2k benchmark are always part of the testing set for independent validation
purpose. Furthermore, a 10-fold cross validation model is trained on the schedules
of the three benchmarks from the learning data set. This model is used to evaluate
the feature similarity of the schedules of the three different benchmark programs.

syrk trmm cholesky seidel-2d gemm syr2k 10-fold
x x x 0.5227 0.3135 0.1668 0.6710
x x 0.3379 x 0.1705 0.0747 0.7506
x x 0.5390 0.3274 x 0.1654 0.3838
x 0.5281 x x 0.3386 0.1553 0.7623
x 0.5633 x 0.4936 x 0.1621 0.6900
x 0.5288 0.4204 x x 0.0971 0.7422

-0.0526 x x x 0.2083 0.1573 0.7990
0.0864 x x 0.6090 x 0.1871 0.6883
0.0194 x 0.4197 x x 0.1465 0.7626
0.0494 0.5443 x x x 0.1429 0.7785

Table 5.18: Correlation values of the learned function using linear regression. In each
row, the three benchmark programs that are used as the training set are marked with x.
The values at the other benchmark programs represent the correlation factor between the
measured and the predicted runtime of the model. Additionally, the last column reveals
the correlation value of a prediction model that is learned by a 10-fold-cross-validation
run on the trainings set.

For linear regression, the correlation values between the predicted runtime and the
measured runtime is shown in Table 5.18. Each row represents one prediction model
that is trained on the benchmarks that are marked with a ’x’ and is validated with
the remaining benchmarks, for which the correlation factors are shown. The last
column contains the correlation values of the 10-fold cross validation run of the
three training benchmark programs. Any prediction model that is not trained on
the syrk benchmark cannot predict the performance of the schedules of the syrk
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benchmark at all, which is shown by the correlation factor close to zero. Similar
applies for the syr2k benchmark program. The maximum correlation values in the
model validation phase are reached by the prediction model that is trained on syrk,
cholesky, and gemm in row 5. The correlation values are given with 0.5633 for trmm
and 0.4936 for seidel-2d. These correlation factors are too low to get a reliable
performance prediction. From the correlation value of the 10-fold cross validation
run on the training benchmarks we can see that training a prediction model that is
validated against itself is just as unreliable.

syrk trmm cholesky seidel-2d gemm syr2k 10-fold
x x x 0.5127 0.5218 0.1464 0.8459
x x 0.2507 x 0.5241 0.1576 0.8967
x x 0.4763 0.4814 x 0.2956 0.6310
x 0.6855 x x 0.4230 0.0769 0.8610
x 0.7072 x 0.4290 x 0.2390 0.7955
x 0.6718 0.0520 x x 0.2576 0.8626

-0.0608 x x x 0.5234 0.1443 0.8858
-0.1476 x x 0.5597 x 0.2842 0.8149
-0.1245 x 0.2375 x x 0.2934 0.8837
-0.0506 0.7219 x x x 0.2361 0.8414

Table 5.19: Correlation values of the learned function using KNN-algorithm. In each
row, the three benchmark programs that are used as the training set are marked with x.
The values at the other benchmark programs represent the correlation factor between the
measured and the predicted runtime of the model. Additionally, the last column reveals
the correlation value of a prediction model that is learned by a 10-fold-cross-validation
run on the trainings set.

Table 5.19 shows the correlation values using k-nearest neighbor as the machine
learning algorithm. The parameter k is set to 20 and the predicting value is the
unweighted average of the 20 neighbors. Analogous to linear regression, the machine-
learned models that contain syrk or syr2k in the training set will not produce mean-
ingful prediction values, since their correlation factors are close to or even less than
zero. The prediction model that is trained on syrk, trmm, and cholesky performs
best with the 20-nearest neighbor algorithm, but the performance prediction is still
too inaccurate.

5.4.7 E7: Additional Idea - Iterative Learning.
This experiment follows the idea of learning the prediction model towards one SCoP
using only the schedules of the same benchmark program. This can, for instance,
be done during iterative compilation of the genetic algorithm. We expect the fea-
ture values of schedules of the same SCoP to behave more similar as with different
programs.

We learned a prediction model only on the schedules of the seidel-2d benchmark
using 10-fold cross validation and the resulting correlation value is 0.83. Figure 5.20
shows the measured runtime plotted against the predicted one. The same method
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Figure 5.20: 10-fold cross validation on the schedules of the seidel-2d benchmark
achieve a correlation value of 0.83.

applied to the syrk benchmark reveals a correlation value of only 0.40, hence this
idea is not practical in general.

5.5 Discussion
This section discusses the research questions using the result of the experiments.

Q1: Is geometric schedule sampling efficient enough to obtain a huge
number of schedules in reasonable time? As the result in experiment E1
states, the average sampling time over the six benchmarks, that are chosen for
training and validating the prediction function, is below 70 seconds. Figure 5.21
shows a more detailed view on the average sampling time per benchmark in com-
parison to the sequential and parallel average execution time. As can be seen, the
sampling time exceeds the execution time of the benchmarks gemm and trmm. Sam-
pling is at least faster than the sequential execution time of the other benchmarks.
In total of all six benchmarks, the average sampling time (~70 seconds) is lower
than the average execution times (sequential and parallel), which is given by 75
seconds. Since the generated programs are actually executed five times for better
measurement accuracy, the average sampling time is clearly lower than the average
execution time.

The proposed optimization by Pak [51] can further improve the sampling runtime
by calling the oracle worst case only O(n2 · logL) times, but is not implemented in
this thesis. We believe that this optimization can reduce the sampling time such
that sampling a schedule is in average faster than the sequential execution for all of
the six benchmarks.
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Figure 5.21: This plot shows the average sampling time of the schedules against the
average sequential and parallel execution times.

Arbitrary SCoPs in real programs can produce search space polytopes with much
higher dimensionality and, hence, worse sampling time, but the geometric sampling
strategy is only needed in the learning phase of the performance prediction function
and is efficient enough on parts of the benchmark programs from the Polybench
Suite. In comparison to the execution time of the schedules, the time needed for
sampling a schedule is in a practical range for the six chosen benchmark programs
for learning the prediction function.

Q2: How can normalization improve schedule comparison? We showed
with experiment E2 that it is possible to detect duplicate schedules by transforming
them to a normalized schedule representation. The normalization steps described
in this thesis are not complete and the normalization procedure can be further im-
proved. Duplicates of the sampled schedules are only identified from two of the six
benchmark programs in the experiment above, because their search space regions
are small enough, such that duplicate schedules are actually sampled by the sam-
pling strategy. This schedule normalization is a first step towards total schedule
comparison of different schedules of one SCoP, although future work has to be done.

As mentioned in Section 3.3, the normalization steps can help to improve the
runtime of the generated program, e.g. by enabling the tiling transformation. The
influence of normalization on the runtime of a schedule is also a topic for future
work.

For this thesis, the normalization steps are mainly used to filter duplicates from
the input data of the machine learning algorithm in order to reduce noise. Further-
more, the normalization is needed for correctness of some of the feature calculations,
e.g. the loop overhead feature.
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Q3: How long does the feature calculation take compared to the actual
runtime of the generated program? Since all feature values have to be com-
puted for each new schedule that must be classified, the calculation time should be
significantly lower than the expected runtime of the generated program. Otherwise,
the performance approximation with the prediction function will take longer than
the actual runtime measurement, which is exact.

All features except the cache hit approximation perform simple tree walks or
metrics calculation on static known information that can be retrieved from the
schedule tree. Experiment E4 has shown that their total calculation time lasts
in average only 0.5 % of the measured parallel execution time for the six chosen
benchmarks for prediction model training.

The runtime of the cache feature strongly depends on the execution time of
Barvinok’s algorithm in order to count the number of different memory accesses
between two references to the same memory cell. The cache feature is the only
feature that can be configured by the number of dependency instances that are used
to approximate the cache hit rate of one dependency. The task is to find a config-
uration, which leads to a accurate cache hit approximation but only needs a small
time to calculate. Experiment E3 showed, that there exists no such a configuration
for the gemm benchmark. The result of experiment E4 reveals that the cache fea-
ture calculation with a small number of dependency instances is much too slow in
comparison to the other feature calculations. In average, the calculation takes 387
times longer than all the other features for the four benchmark programs cholesky,
gemm, syrk and trmm. The calculation time even exceeds the measured parallel
and sequential runtime of the generated programs for some of those benchmarks.
With more complex SCoPs and associated schedules we expect the calculation time
of the cache hit approximation to further increase. Because of the high calculation
time and the inaccuracy, the cache feature is not included in the input data for the
machine learned performance prediction function.

Q4: Do the calculated feature values correlate with the measured data
of the generated program? The cache feature is the only feature that can
be directly compared to the measured cache hit rate of the generated benchmark
programs. All the other features influence somehow the runtime of the generated
program, therefore it is hard to rate the correlation.

The cache feature is configurable regarding the number of instances that are
tested per dependency. The data in experiment E4 show that the cache feature
is inaccurate with a small number of dependency instance for the gemm bench-
mark. The accuracy can be improved in a certain range by increasing the number of
instances per dependency, but it is still not reliable for usage as a performance in-
dicator. The experiment further showed, that increasing the number of dependency
instances leads to a longer feature calculation time, which exceeds the measured
execution time of the gemm benchmark. As a result, there is a upper limit of ad-
justing the accuracy of the feature, such that the calculation time does not exceed
the execution time of the program, which is a precondition of a practical perfor-
mance prediction function. From experiment E5 we can conclude that the cache
feature does not produce precise cache hit approximation for the cholesky bench-
mark as well. Therefore, we will not use this feature for training and learning the
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prediction function. A very interesting observation of experiment E5 is, that a good
overall cache hit rate does not imply a fast execution time of the program. That
also applies to the data that is attached in Appendix B. There are a lot of schedules
across the benchmark programs that reach a good overall cache hit rate, but their
execution takes longer in contrast to the other schedules with possibly worse cache
hit rate.

All the other features are expected to correlate with the measured runtime of the
schedules directly. For the two exemplary benchmark programs in experiment E5,
each feature value correlates totally different with the measured data of the generated
programs. The parallelization feature can detect the fast running schedules of the
seidel-2d benchmark as expected, but in case of absence of parallelism, as it is nearly
the case with the cholesky benchmark, the output of this feature is unusable. Most
of the schedules of the benchmark programs in Appendix B produce parallel loops
and reveal similar parallelization feature values. This leads to a worse correlation
as well. The tiling feature correlates well with the overall cache hit rate for five
of the six benchmark programs in experiment E5 and the Appendix B, but for
the cholesky benchmark no correlation can be identified. The out-of-order feature
correlates only for the seidel-2d benchmark. This can be due to the fact that the
SCoP only contains one statement and there are a lot of dependencies between
instances of this statement. From the conditional overhead feature of all benchmark
programs we cannot extract some direct correlation to the runtime by inspecting the
plots. Nearly no schedule needs if -instructions inside the loop body according to
the conditional overhead feature. The influence of this feature will probably increase
with SCoPs that contain more than two statements. The skewing overhead feature
correlates slightly with the measured execution time and/or the measured cache hit
rate for all of the six benchmark programs shown in experiment E5 and Appendix B.

Q5: How accurate is the predicted runtime of the machine-learned per-
formance prediction function? As described in Section 4.2, we use two different
machine learning algorithms for the performance prediction function. Experiment
E6 shows that it is impossible to learn an accurate performance prediction function
based on the proposed features neither with linear regression nor with k-nearest
neighbor algorithm. Each of the prediction models is trained on three of the six
benchmarks and validated on the remaining three benchmark programs. We ob-
serve that in many cases the resulting prediction model is over-fitted to the trainings
set, which means that an accurate prediction is only possible on schedules of the
trainings benchmarks or very similar programs. In contrast, there are benchmark
programs, like the syrk benchmark, that must be part of the trainings set, because
otherwise the correlation between the predicted and the measured value drops to
zero.

In the further experiment E7, we tried to train the prediction model towards
only one of the benchmark programs. We expect the prediction function to be
more accurate. The correlation value of such a 10-fold cross validated prediction
model is good enough for reasonable predictions for the seidel-2d benchmark. But
the syrk benchmark prediction model reveals a correlation value of only 0.4, which
corresponds to a worse prediction. This leads us to the conclusion that the proposed
features are not suitable for performance indication, at least for the syrk benchmark.
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5.6 Threats to Validity
Certain threats to validity affects our results and the ability to generalize them to
arbitrary SCoPs.

Internal threats include the design and selection of the proposed features. Some
of the features described in Section 4.1 make assumptions on the program behavior
that are possible to strong or maybe do not completely apply to the reality. It is also
possible that the features are dealing with a to general view on the performance indi-
cators. Furthermore, there are potentially more, better correlating features beyond
the scope of this thesis.

Another internal threat concerns the selection of the machine learning algorithm.
The input is always a normalized feature vector, but the accuracy can vary with
different machine learning algorithms. In this thesis we used two simple algorithms
to get a first insight, whether a performance prediction function can be learned
based on the proposed features.

The performance of machine learning algorithms depends on the input data.
An internal threat can regard the schedules sampling strategy. We think that by
choosing uniformly distributed schedule vectors from the search space polytopes of
a search space region, we obtain a well distributed set of schedules. The internal
threat of measurement errors is reduced by using the fastest of five execution time
measurements of each generated program.

An external threat is that the learned performance prediction function cannot be
applied to general programs, since our training and testing set consists of benchmark
programs, whose detected SCoP only contains one or two statements. We do not
know how the features and, hence, the performance prediction function perform on
SCoPs with more than two statements.
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Chapter 6

Conclusion

In this thesis, we proposed a methodology to obtain good distributed schedules from
regions of the search space in a reasonable time with the geometric sampling ap-
proach. We were able to sample a huge number of schedules of the chosen benchmark
programs for machine learning the performance prediction function.

For schedule comparison and simplification, we described the normalization steps
that are used in the Polyite project and provided a mathematical proof of correct-
ness. Furthermore, we enhanced the normalization with an additional step, which
is necessary for correctness of the features calculations. The normalization is still
not complete and requires further research.

This thesis proposes several features concerning parallelization, cache hit rate
and overhead computations in Section 4.1. Most of them can be calculated in
reasonable time. Only the performance of the cache feature, which is described
in Section 4.1.2, exceeds the measured runtime of the generated programs from the
schedules. According to our experiments, the correlation of the feature values depend
on the SCoP, on which the feature is applied. The feature values behave different
on various SCoPs. We further observed that a good cache hit rate (independent of
the cache level) does not imply a low execution time.

We trained a performance prediction function with a huge number of schedules
from different benchmark programs, including the cholesky, gemm, seidel-2d, syr2k,
syrk and trmm benchmark from the Polybench Suite. The predicted execution time
achieves only a weak correlation with the measured execution times depending on
the trainings and testing schedules set. The trained prediction models are over-fitted
to the trainings set.

Future Work The normalization steps from the Polyite project and this thesis can
be further improved to obtain a complete normalization procedure, which enables
total comparison of schedules of the same SCoP. A further research topic is to figure
out, whether schedule normalization has any influence on the performance of the
generated programs.

Further investigations in new or more accurate features can lead to a better
correlating performance prediction function. As already mentioned in Section 4.1.6,
a vectorization feature or a feature regarding the code size of the generated program
can be introduced.
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Appendix A

Tables

This Appendix contains tables that are used multiply times in this thesis. The first
Table A.1 contains the cache specification of the benchmark CPU Intel Xeon E5
2600 v2. The second Table A.2 consists of the six benchmark programs from the
Polybench Suite [5] that are used in most of the experiments, e.g., for training and
validating the performance prediction function. The table shows, per benchmark,
the number of statements and the overall number of data dependencies that are
detected by Polly.

Intel Xeon E5 2690 v2 L1 Cache L2 Cache L3 Cache
Implementation instruction data unified unified
Hierarchy - - non-inclusive inclusive
Access private private private shared
Associativity 8-way 8-way 8-way 20-way
Cache Size 32KB 32KB 256KB 25MB
Cache Line Size 64B 64B 64B 64B

Table A.1: Cache data of Intel E5 2690 v2 according to the manual [1, 2], program-
mers guide [3] or extracted with Linux.

benchmarks #statements #dependencies
cholesky 2 4
gemm 2 2

seidel-2d 1 6
syr2k 2 2
syrk 2 2
trmm 2 4

Table A.2: The six benchmark programs that are used for evaluation of the normal-
ization steps, the features and the performance prediction function. Each row shows the
benchmark name along with the number of statements and dependencies between them.
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Appendix B

Evaluation results

This Appendix contains several plots that show the result of the different feature
applied to the benchmark programs gemm, syr2k, syrk and trmm. The x-axis of
these diagrams specifies the measured parallel runtime and the y-axis specifies the
measured overall cache hit rate. The color in the diagrams indicates the depicted
feature value.

For all benchmarks, the cache feature is configured to use 27 instances per de-
pendency. For the syr2k benchmark we have not measured the runtime of the cache
feature, since it takes a too long calculation time.

B.1 Benchmark: gemm
The gemm benchmark is a general matrix multiplication and part of the Basic
Linear Algebra Subprograms (BLAS) [41]. Nearly all sampled schedules are capable
of loop parallelization according to the parallelization feature, but not all of theses
schedules perform fast. The tiling feature detects the programs with the best cache
hit rate near 100 % very well. Neither the out-of-order execution feature, nor the
conditional overhead feature detect any significant difference between the schedules.
The left upper part of the plot regarding the skewing overhead feature contains more
schedules with a better skewing feature value. As already shown in experiment E3
in Section 5.4.3, the cache feature with only 27 instances per produces no reliable
output.
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B.2 Benchmark: syrk
The syrk benchmark is an symmetric rank-k update operation and also part of
BLAS. The distribution of the schedules, the feature values look pretty similar to
the gemm benchmark.
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B.3 Benchmark: syr2k
The syr2k benchmark is an symmetric rank-2k update operation and also part of
BLAS. The distribution of the schedules looks slightly different from the previous
benchmark programs, but the feature values are similar again.
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The cache feature is not calculated
for this benchmark, because of per-
formance issues.
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B.4 Benchmark: trmm
The trmm benchmark is a triangular matrix-matrix multiplication and part of
BLAS. Most of the sampled schedules have parallel loops, but the schedules that
cannot utilize parallelism perform worse than most of the other programs. The
tiling feature, as with the other benchmarks, detects the schedules with a good
overall cache hit rate. Similar to the previous benchmarks, the out-of-order feature
and the conditional overhead feature values are equal for nearly all of the schedules.
The left upper part of the plot regarding the skewing overhead feature contains more
schedules with a good feature value than the rest of the plot. From the cache feature
values it is not possible to draw any conclusions.
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